
HAL Id: hal-01178580
https://hal.science/hal-01178580

Submitted on 20 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A generic framework for executable gestural interaction
models

Romuald Deshayes, Tom Mens, Philippe Palanque

To cite this version:
Romuald Deshayes, Tom Mens, Philippe Palanque. A generic framework for executable gestural
interaction models. IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC
2013), Sep 2013, San Jose, CA, United States. pp. 35-38. �hal-01178580�

https://hal.science/hal-01178580
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 13006

URL: http://dx.doi.org/10.1109/VLHCC.2013.6645240

To cite this version : Deshayes, Romuald and Mens, Tom and Palanque,
Philippe A generic framework for executable gestural interaction models.
(2013) In: IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC 2013), 15 September 2013 - 19 September 2013
(San Jose, CA, United States).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

A Generic Framework for Executable

Gestural Interaction Models

Romuald Deshayes, Tom Mens

Service de Génie Logiciel, Université de Mons

7000 Mons, Belgique

Email: romuald.deshayes,tom.mens@umons.ac.be

Philippe Palanque

ICS-IRIT, Université Paul Sabatier

31062 Toulouse, France

Email: palanque@irit.fr

Abstract—Integrating new input devices and their associated
interaction techniques into interactive applications has always
been challenging and time-consuming, due to the learning curve
and technical complexity involved. Modeling devices, interactions
and applications helps reducing the accidental complexity. Visual
modeling languages can hide an important part of the technical
aspects involved in the development process, thus allowing a faster
and less error-prone development process. However, even with the
help of modeling, a gap remains to be bridged in order to go from
models to the actual implementation of the interactive application.
In this paper we use ICO, a visual formalism based on high-level
Petri nets, to develop a generic layered framework for specifying
executable models of interaction using gestural input devices. By
way of the CASE tool Petshop we demonstrate the framework’s
feasibility to handle the Kinect and gesture-based interaction
techniques. We validate the approach through two case studies
that illustrate how to use executable, reusable and extensible ICO
models to develop gesture-based applications.

I. INTRODUCTION

Gestural interaction was proposed several decades ago [1]
but it took until now for unconstrained gestural interaction to
become widely available in the mass market, with the release
of new input devices such as Kinect, Wiimote and multi-touch
sensing surfaces. With the release of Microsoft’s hands-free
controller Kinect, a consumer 3D sensor packed with powerful
real-time algorithms to track a user’s body, numerous novel
interaction applications were published on the internet [2], [3].

Developing reactive interactive applications involves a lot
of technical complexity, because developers need to address all
low-level aspects regarding input and output devices. Beyond
that, the toolkits and programming environments proposed
by manufacturers integrate innovations only after they have
raised enough interest to developers. We propose a generic
reusable framework for gestural interaction that copes with
this accidental complexity by raising the level of abstraction,
and separating concerns into different modules. The framework
is built using ICO, a powerful model-based approach relying
on high-level Petri nets [4], and realized in Petshop, a tool for
the specification and execution of interactive systems based on
ICO models.

Our framework enables the specification of executable
models that receive gestural input from devices such as the
Kinect. The raw input data is converted into abstract events that
are processed by the models and interpreted by virtual objects
on an output device such as a graphical user interface or 3D
rendering engine. This contribution counters the critique of [5]

that model-based approaches “model the previous generation
of user interfaces”.

II. CASE STUDIES

To illustrate the expressiveness and reusability of our
framework, we present two different case studies. We refer
to [6] for more technical details.

Our first case study is a Pong game using the Java Swing
UI. The player needs to prevent the opponent (the computer
or another human player) from returning the ball with his
paddle. The ball can bounce on the upper and lower parts of
the screen. A gestural interface allows the player to use hand
gestures instead of a joystick. Kinect’s 3D sensor is used to
track a person’s hand movements in real-time. The paddle on
the screen follows the player’s hand movements. The ball can
be grabbed by closing the hand when the ball is close to the
paddle. When the hand is reopened, the ball is released and
the game continues.

Fig. 1. Screenshot of the bookshelf application.

In the second case study, depicted in Fig. 1, the user
gesturally interacts with a virtual bookshelf on the screen. By
moving an open hand, the user can browse books stored on the
shelf. He can also drag a selected book towards him. To open
the book he has to move both closed hands away from each
other. A drag from right to left (or left to right) will turn a
page from the book. Approaching both closed hands will close
the book, and a drag towards the screen will place the book
back on the bookshelf. A YouTube video of this case study is
available at http://youtu.be/m9NIvZpQyjs.

The Kinect comes along with the NITE framework, pro-
viding a set of algorithms to perform real-time body tracking.
These algorithms are used to retrieve the position of the hands
and head of the user in 3D space, the origin of the coordinate

���������	

�����������

�	��
��	��
������� ���

���	����� ������ ���

����������� ���������� ���

��������	
 ���

��

��

��

��

���������	��

�
�
�
	

�
�
�

�����
��� ��

 ����!��!����"��
����

!��!����"��
������#��$!����"��
����

 �	� %��& ���

Fig. 2. Layered architecture of the gestural interaction framework (left). Communication between layers following the Observer design pattern (right).

system being located on the eye of the Kinect’s camera. As
the provided algorithms do not allow knowing whether hands
are open or closed, we implemented this feature to widen the
range of possible gestures to be recognized.

III. LAYERED ARCHITECTURE

Our gestural interaction framework is implemented fol-
lowing a layered client-server architecture (Fig. 2 left). All
framework layers are specified as executable ICO models.1

Gestural input devices implement a simple client connected to
a Java server that forms the entry point to the lowest layer of
the framework. The Java server sends the raw data to this layer,
which processes the information and sends it further to layer
2 and so on. Information that has been processed in layer 4 is
sent by another Java server outside the framework to the target
client application. Target applications can be developed using
different output devices. For the first case study, we have used
a Java Swing user interface, and for the second we have used
C++ client code interfacing to the Ogre3D rendering engine.

Communication between layers is explicitly modeled by an
Observer design pattern (Fig. 2 right). This model is executed
only once at startup and is used to create the layers and estab-
lish the communication between them. It allows each layer to
receive and process events sent by the lower layers. Transitions
containing the create primitives (depicted by a small green
arrow inside the transition) consume a token to create a
new model instance. For example, transition createLayer1
produces a token containing a reference to the model of layer
1 and puts it in place layer1. The models of communicating
layers are connected by a listener that specifies which events
generated by the sending layer will be observed by the

1For more details about this, consult to technical report at http://difusion.
academiewb.be/vufind/Record/UMONS-DI:oai:di.umons.ac.be:17510.

receiving layer. For example, transition Listener specifies
that layer 2 listens to the events NewUser and HandEvent

of layer 1.

Layer 1 is used to detect new users and propagate them
through the rest of the framework, but also to receive raw
information from the gestural input device about the hands
and head of the current users and combine them to calculate
the hands’ positions relative to the head. Layer 2 transforms
absolute positions of the hands into relative movements be-
tween two consecutive updates. It is in this layer that state
changes of the hands (opened or closed) are detected.

Layer 3 combines low-level gestures of layer 2 (e.g.,
Open, Close, Move) into high-level ones (e.g., Move, Drag,
ColinearDrag and NonColinearDrag). This layer is divided
into 2 models. The first model (Fig. 3) serves to process
the state of the users’ hands. The second model combines
low-level gestures into high-level ones by taking into account
the state of the user’s hands (e.g., open or closed). The
possible states are represented in Fig. 3 by 4 different places:
twoOpened, twoClosed, leftClosed, rightClosed.
Transition NewUser_ processes the incoming event NewUser
to consume a token from place players and associates an id
to it when a new user joins the game. The system initializes
each new user with both hands open, and will produce a
token in place twoOpened. When an open (resp. close)
event is received from layer 2, transition OpenEvent_ (resp.
CloseEvent_) is triggered, producing a new token in place
openTokens (resp. closeTokens). Depending on the state
of the user, one out of 8 possible transitions can be fired to
change the user state. Imagine that a user enters the game
with both hands opened. A token will be generated for his
id in place twoOpened. If he closes the left hand, a close
event is received and the transition CloseEvent_ is fired,
thus producing a token in place closeTokens. The only

Fig. 3. Layer 3: Model processing the state of the users’ hands.

transition that can then be fired is closeLeft. This transition
consumes both tokens and produces a new token for the user’s
id in place leftClosed.

Layer 4 contains a different model for each type of object
in the virtual scene the user is interacting with. These objects
can be controlled using the gestures interpreted by layer 3
(Fig. 4). The same gesture can be interpreted differently by
different objects, e.g., picking up an object lying on a desk or
opening a door. By combining the provided gestures, one can
create a wide range of interaction behaviors. This versatility
is illustrated through the case studies of Section 2.

IV. LESSONS LEARNED

We can learn a number of lessons from using our visual for-
malism based on Petri nets for developing a gestural interaction
framework and having applied it to two case studies. The visual
formalism reduces the technical complexity of developing
gestural interaction behavior by raising the level of abstraction.
We have personally experienced that hardcoding such behavior
using standard textual programming languages can be quite
cumbersome. A visual formalism facilitates system under-
standing as its behavior is highly concurrent within models and
as several models evolve in parallel. The dynamic simulation
facilities allow finding and correcting bugs more easily and
offer an elegant way of bridging the gap between modeling
and execution. When executing the models in Petshop we can
actually see the Petri net tokens moving from one place to
another, and see their values changing as different transitions
are fired. We can even change models during their execution,
and study how this affects the running process. One very useful
feature is the ability of models to communicate by means of
events, using synchronized transitions in the listening models
to trigger transitions only when an event is received. Thanks
to the ability to store data in tokens, we were able to process
hand state and position in a very straightforward way. This data
could be used for calculations in the transitions, thus resulting
in an increased expressiveness.

The work presented in this article has convinced us that
executable visual modeling is the way to go for developing
interactive applications. Not only is it adapted for this kind of
systems, but also the learning time is relatively low. Without
any prior knowledge of Petri nets or ICO models, it took the
first author about 4 weeks to learn the formalism and the
Petshop tool, and to design a first running version of our
framework. After that, it turned out to be very easy to add
more functionality (such as pointers and new gestures) to our
models. Excluded from the aforementioned learning time is
the time needed to understand how to use and interface with
the gestural input and graphical output devices.

An alternative for executable specification of gestural inter-
action is the use of heterogeneous modeling. In [7] we explored
this alternative by developing a similar layered client-server
framework using the ModHel’X environment [8]. The different
layers were specified using different visual formalisms such as
synchronous data flow models and timed finite state machines.
The challenge of heterogeneous modeling lies in the need for
semantic adaptation between the different layers using different
formalisms, as well as the need to master multiple formalisms.

A limitation of our approach is the potential difficulty
for domain experts and designers of interactive applications
to master the notation of ICO models. It is important to
note, however, that the low-level models are device-dependent
and only have to be built once. Designers then only need
to adapt the models to implement the desired behavior for
the target interaction technique. Beyond that, we believe that
the full expressive power of ICO is not always needed and
can be abstracted away by using a domain-specific modeling
language. At the risk of a certain loss of expressiveness,
this would allow designers to compose gestures and process
them to create new behaviors for virtual objects more easily,
without requiring detailed knowledge of the underlying visual
formalism.

A current limitation is the performance issues encoun-
tered during our case studies, because Petshop interprets and

simulates ICO models at runtime. To be able to apply it in
real commercial applications, faster execution is necessary.
This can be achieved by compiling the models directly into
executable code, but it will go at the expense of no longer
being able to dynamically visualize and modify the models
during their execution, which is very useful for development
and debugging purposes.

In [9], ICO models were proposed to model multimodal
interactions in virtual reality applications. As a proof-of-
concept, a virtual chess game was developed that could be
manipulated by a single user using a data glove on one hand.
The design of this application was quite different from ours. It
did not focus on reusable models, did not include the state of
the user or the notion of virtual objects, and contained a very
limited set of gestures using only one hand.

According to [5], one of the limitations of many virtual en-
vironment toolkits is the predefined and limited small amount
of interaction means they provide, which are intended to be
used regardless of context. To extend the flexibility of such
toolkits, developers must be provided with the possibility to
design, test and verify new interaction techniques. The authors
presented Marigold, a toolset supporting such a development
process. This toolset allows visual specification of the inter-
action techniques but unlike our approach, it is not dynamic.
C code is generated from the models, making it impossible to
modify the models at runtime or to see the models running.
Moreover, the entire specification resides in a single monolithic
model, unlike our layered architecture that is more modular
and easier to adapt.

Fig. 4. Layer 4: ICO model of the interaction behavior for a virtual book.

V. CONCLUSIONS AND FUTURE WORK

We implemented a generic, layered and modular client-
server framework (see YouTube video http://youtu.be/
m9NIvZpQyjs) to specify and execute models of gestural inter-
action based on the visual formalism of high-level Petri nets.
This framework relieves the developer from writing complex
and statically compiled code. Our case studies illustrated the
feasibility of using the framework to allow a user to interact
with multiple virtual objects displayed on screen.

The models in each framework layer are based on discrete
events provided by the gestural input devices. High-level Petri
nets, incarnated as ICO models in Petshop, proved to be
particularly suited for expressing such models. One of the
reasons was their ability to concurrently execute complex
behavior involving a dynamically changing number of actors
(e.g., players, virtual objects) and requiring a huge amount of
user interaction. Using high-level Petri nets allowed us to cope
with the high complexity by separating the behavior of gestural
interactions in separate communicating layers. In addition, data
manipulation and data flow were facilitated by the ability to
encapsulate data in tokens. Future work will be carried along
the lines discussed in the previous section. We plan to validate
and extend the framework further with more extensive case
studies and other input devices such as the Wiimote. We plan
to define a domain-specific language on top of ICO as a means
to provide the scaffolding required for wider use by designers
and developers.

ACKNOWLEDGMENT

The first author is financed by a FRIA scholarship.

REFERENCES

[1] R. A. Bolt, “Put-that-there: Voice and gesture at the graphics interface,”
in Proc. SIGGRAPH. ACM, 1980, pp. 262–270.

[2] G. Bailly, R. Walter, J. Müller, T. Ning, and E. Lecolinet, “Comparing
free hand menu techniques for distant displays using linear, marking and
finger-count menus,” in INTERACT, 2011, pp. 248–262.

[3] Z. Ren, J. Meng, J. Yuan, and Z. Zhang, “Robust hand gesture recognition
with Kinect sensor,” in ACM Int’l Conf. Multimedia, 2011, pp. 759–760.

[4] D. Navarre, P. Palanque, J.-F. Ladry, and E. Barboni, “ICOs: A
model-based user interface description technique dedicated to interactive
systems addressing usability, reliability and scalability,” ACM Trans.

Comput.-Hum. Interact., vol. 16, no. 4, pp. 1–56, Nov. 2009.

[5] P. N. Sukaviriya, S. Kovacevic, J. D. Foley, B. A. Myers, D. R. Olsen Jr.,
and M. Schneider-Hufschmidt, “Model- based user interfaces: What are
they and why should we care?” in Proc. UIST94. ACM, Nov. 1994,
pp. 133–135.

[6] R. Deshayes, T. Mens, and P. Palanque, “Petrinect: A tool for executable
modeling of gestural interaction,” in Proc. VL/HCC, 2013.

[7] R. Deshayes, C. Jacquet, C. Hardebolle, F. Boulanger, and T. Mens,
“Heterogeneous modeling of gesture-based 3D applications,” in MoDELS

Workshops, 2012.

[8] C. Hardebolle and F. Boulanger, “Modhel’x: A component-oriented
approach to multi-formalism modeling,” in MoDELS Workshops, 2007,
pp. 247–258.

[9] D. Navarre, P. A. Palanque, R. Bastide, A. Schyn, M. Winckler, L. P.
Nedel, and C. M. D. S. Freitas, “A formal description of multimodal
interaction techniques for immersive virtual reality applications,” in
INTERACT, 2005, pp. 170–183.

