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Abstract—In this paper we discuss about the way to approxi-
mate the solution of an optimal control problem with a switched
command. Our Method is based on a discretization technique
associated with a Branch and Bound algorithm. The problem that
we focuss on is the minimization of the consumption of the energy
of an electrical vehicle during some imposed displacements.

Keywords—Discretization Techniques; Optimal Control; Dis-
crete Switch Control; Branch-and-Bound; Electrical Vehicle.

I. INTRODUCTION

In this paper, we discuss about the way to solve efficiently
the problem of the minimization of the energy which is con-
summated by an electrical car during an imposed displacement,
see [1] for an overview on this type of problems.

The problem that we are interested with, can be formulated
as follows:

min; (1) o) pos(yu(t) Elimsw) = fo w(t)im () Vatim

o+ Rpgru® (t)i2, (t)dt
u.cC.
in () = u(t)Va,,-,m—Rzim,(t)—Km,ﬂ(t)

2

(0) = § (Koint) = 5 (Mors + 3oscz (%20)"))
pos(t) = L2
i (£)] < 150
u(t) € {_17 1}
(im(0),92(0), pos(0)) = (i9,, 2, pos”) € IR
(im(ty), Qlty), pos(ty)) € T C IR?

&)
where F represents the electrical energy consummated during
the displacement. The state variables are: (i) i,, the current
inside the motor; (ii) {2 the angular speed, with V' (¢) = 3'[6(% X
Q(t) which represents the speed of the car in km/h (r is the
radius of the wheel); (iii) pos is the position of the car. The
control u is in {—1, 1} (a switch control); the physical system
can switch in 10™%s. In this problem, we have a constraint on
a state variable to limit the current inside the motor in order
to discard the possibility to destroy it. The other terms are
fixed parameters and represent some physical things: -K, =
10, the coefficient of reduction; -p = 1.293kg/m?, the air
density; -C, = 0.4, the aerodynamic coefficient; -S = 2m?,
the area in the front of the car; -r = 0.33m, the radius of the
wheel; - Ky = 0.03, the constant representing the friction of the
wheels on the road; -K,,, = 0.27, the coefficient of the motor
torque; -R,, = 0.03(2, the inductor resistance; -L,,, = 0.05,
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inductance of the rotor; -M = 250kg, the mass; -g = 9.81,
the gravity constant; -J = M x r2/K2; -Vim = 150V, the
battery voltage; -Rpq: = 0.05€2, the resistance of the battery.
The initial conditions are given but the target set 7 is free and
degends on the instances of the problem; it could be a point of
IR” but one or two variables could not be fixed: for example,
T just could be the final position equal to 100m is required
(see the numerical section).

This problem is hard to solve directly by using classical
optimal control techniques. We tried to solve it by using the
Pontryaguin method based on shooting techniques and also by
using a direct shooting algorithm, [3]. For the moment, the fact
that we have a constraint on the state associated with the fact
that it is a switched control involves a lot of difficulties which
does not allow us to obtain interesting solutions (even local
ones). The dynamic programming of Bellman is also difficult
to apply to this problem, [2].

Thus, in this paper we propose another original method-
ology to solve this problem yielding to some discretized
problems which are solved using an exact Branch and Bound
algorithm. This new method provide exact results for the
discretized formulations which correspond to approximations
of the global solutions of Problem (1).

In Section II, we present an approximation of Problem (1)
by a discretization of it based on current references. In Section
III, the Branch and Bound algorithm is presented. In Section
IV, some numerical examples are discussed and validate our
approach. We conclude in Section V.

II.  APPROXIMATION OF PROBLEM (1)

First, we remark that if we discretize all the interval of
time [0, ¢¢] by fixing the value of the control u, it is necessary
to have very small steps about 10735 else the value of the
current will change too roughly. That will generate a very huge
mixed integer non-linear global optimization problem which is,
for the moment, impossible to solve using direct methods of
optimal control.

Another idea, which directly comes from the numerical
simulation of the behavior of the car, is to impose during some
short laps of time the value of the current inside the electrical
motor of the vehicle. This is possible using the control pa-
rameter u(t). Thus, if we impose a reference current iref, if



im(t) > iref+45 then u(t) := —1 and if i,,,(t) < iref— 5 then
u(t) := 1 and else u(t) keep the same value. This technique is
just a way to construct a current regulator which is a first step
before making a speed regulator for an electrical car. Hence,
using this, the following differential system of equations can
be solved:

VS (iref, to, ty) =

E(t) = u(t)iy (£)Vatim + Rearu®(£)i2, (1)
z';n(t) _ u(t)Va“mfRyzim(i)*KmQ(t)

Q(t) = % (Kmim(t) — KLT <MgKf —+ %pSCx (QI((?T

)))
pos(t) = 52"

—1if iy, (1) > iref 4+ 5
u(t) =14 41 ifin(t) < irnf— 3
u(t) else.

»Ym>

u(to) :=1;
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where t( is the initial time which is not necessary equal to 0.
This system of differential equations can be efficiently solved
using a classical differential integrator such as for example
Euler, RK2, RK4 with a step of time less than 1073, The
function ViS(iref,to,ts) will compute in theory all the values
for E(t),im(t), Q(t), pos(t), for all ¢ € [tg,1s] but in practice
only values for a discretized time ¢; € [to,ty] is available.
Here, we are interested by the final values of the state variables,
hence we define a function:

VSFiref, o, t7) := (E(tg),im(ts), Qts), pos(ty)) € R,

all the computations are performed using function VIS which
solves the system of differential equations (2).

The main idea of this work is to subdivide the cycle of time
[0,%¢] into P subintervals. In each step of time [t,_1,t,] with
p € {1, Py, =p x %), we apply.a reference current
iref,, which takes values in [—150,150] in order to directly
satisfy the constraint on the state variable of Problem (1).

Thus, we focuss on the resolution of the following opti-
mization problem:

. P
MINGyefe[~150,150]F Zk:l Ey

u.c.
(Ek,ik,Qk,pOSk) = VSF(i’/Bfk,tkfl,tk) (3)
(EOaiOa QQ,pOSO) = (E07i971v QO’pOSO) € B4

(ip,Qp,posp) € T C IR?

Problem (3) is a good approximation of the initial problem (1)
which generates just a few number of variables: P. In fact,
we use a current regulator system to control the vehicle; this
is also interesting in itself for a future implementation of the
system in the car.

III. DEDICATED BRANCH AND BOUND ALGORITHM

For the moment, we are not able to solve exactly the global
optimization problem (3), thus we need to discretize also the
possible values for the reference current: iref € {—150, —150+
s, —150+2x s, 150}P; we will take integer values for s

(E(to),i,m(t()),Q(to),pOS(to)) = (Eto ito Qt07post0) € R4

which divide exactly [—150, 150]. Therefore, the set of solution
becomes finite and could be enumerated. Nevertheless, if we
want to have a good approximation for the resolution of the
global optimization problem (3) we have to discretize into
small steps and the finite set of possible points becomes rapidly
too huge to be entirely enumerated in a reasonable CPU-time.

The idea is then to use a Branch and Bound algorithm in
order to not explore all the finite set of solutions. For using
such an algorithm, we have to elaborate a technique to compute
bounds for the four main parameters: Fjy, i, (i, pos; over
a box IREF C {150,150 + s,—150 + 2 x s,---, 150}
and for given ¢y and ¢;. In order to be more efficient, in
a previous step, we compute 4 matrices: Mg, M;, Mq, M,
where the columns corresponds to values when iref is fixed
with %2 = iref and the lines provides values for the entities
when a speed Q' is given (we discretize also the possible
values of the speed). For example mpg(i,j) represents the
value of the energy which is consummated during a step of
time ¢, — t,—1 when ref is equal to the jth components of
{=150,—150 + s, =150 +2 x s, - - -, 150} with i‘¢ = jref and
the 7th discretized value for the speed, the other initial values
are taken equal to 0: i.e., E% = post® = (.

When a box IREF is considered, we can compute bounds
for F,i,€) and pos by computing the integer sets / and J of
the indices corresponding to the possible values of the speed
at the previous step and the possible values of iref. Then, we
have to compute the bounds which correspond to the minimal
and maximal values of mg(i,7), m;(i, ), ma(%, J), Mpos (i, J)
with (¢, 7) € I x J. To obtain the final value for E and pos, we
have to sum all the lower and upper bounds. The rest of the
Branch and Bound algorithm that we develop is simple and
uses the following classical principle: (i) subdivision into two
(distinct) parts of the enumerate set IREF (which represents
the possible values for iref); (ii) the upper bound is updated
by taking the middle of the box IREF if the constraints are
satisfied and if its value is better than the previous one (we start
with 400); (iii) we branch following the heuristic of lowest
lower bound of the energy.

IV. NUMERICAL EXPERIMENTS

To illustrate our method, we simulated it for a dis-
placement of 100 meters, and a cycle ¢y = 10 seconds:
(i1 (0), 2(0), pos(0)) = (0,0,0); (i (t7). ts), pos(ty)) €
T =R x IR x {100}.

For the resolution of the VSF function, we used the
Runge-Kutta integrator at the order 4, with a step of time
equal to 1073, simulated on MatLab 7 on a standard PC
Laptop with 2GB of RAM. The parameters for our code
are fixed to P = 5, s = 5, 0.1km/h for the step of
the discretization of the speed (to compute the matrices M)
and A = 1. Thus, we obtain the exact (for the discretized
problem) solution iref* = (150,90,25,—15,—110) corre-
sponding to the minimal value E*(10) = 24430.21.J. More-
over, we have pos*(10) = 100.03m. The CPU-time is about
966s corresponding to 201830 iterations of the Branch and
Bound algorithm. This long CPU-time strongly depends on
the parameter s and also P which is understandable for a
Branch and Bound code (the complexity of such an algorithm

depends on (X130 4 1)P). Thus, if we take s = 10, we
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Fig. 1. Solution for a final position of 100m in 10s.

obtain the following results: ire f* = (150, 90, 20, —10, —100)
corresponding to the minimal value £*(10) = 24589.90.J with
a position of 100.15m in only 17.62s for 31090 iterations.
This solution is represented in the following figure: Therefore
an idea to obtain much more precise solutions, is simply to run
the Branch and Bound code iteratively by defining more and
more precise zones around the previous exact solutions and
by increasing parameter P and decreasing s. We remark that
the current i, remains trapped around ire f with respect to the
tolerance A. The values of u switches many times between —1
and +1; this is due to the fact that the current in the motor
increases too quickly (average of 34 every 10~35s). Note that
the final speed is not equal to zero because the final time is
too short. Moreover, we remark that the curve of the energy
decreases at the end of the cycle because this corresponds
to the phase of deceleration with a negative period for the
reference current iref.

V. CONCLUSION

In this paper, we show an original way based on discretiza-
tion and a Branch and Bound algorithm to solve a hard global
optimization problem which is an approximation of an optimal
control problem. In a future work, we want to improve the
efficiency of our Branch and Bound algorithm. Furthermore,
we are interested by the resolution of Problem (3) directly by
computing bounds.
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