N
N

N

HAL

open science

PetriNect: A tool for executable modeling of gestural
interaction

Romuald Deshayes, Tom Mens, Philippe Palanque

» To cite this version:

Romuald Deshayes, Tom Mens, Philippe Palanque. PetriNect: A tool for executable modeling of
gestural interaction. Symposium on Visual Languages and Human-Centric Computing (VL/HCC

2013), Sep 2013, San Jose, CA, United States. pp.197-198, 10.1109/VLHCC.2013.6645266 .

01178577

HAL Id: hal-01178577
https://hal.science/hal-01178577
Submitted on 20 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01178577
https://hal.archives-ouvertes.fr

OATAQO

Open Archive Toulouse Archive Ouverte

Open Archive TOULOUSE Archive Ouverte (OATAQO)

OATAO is an open access repository that collects the work of Toulouse researchers and
makesit freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toul ouse.fr/
Eprints D : 13007

URL: http://dx.doi.org/10.1109/V LHCC.2013.6645266

To citethisversion : Deshayes, Romuald and Mens, Tom and Palanque,
Philippe PetriNect: A tool for executable modeling of gestural interaction.
(2013) In: Symposium on Visual Languages and Human-Centric Computing
(VL/HCC 2013), 15 September 2013 - 19 September 2013 (San Jose, CA,
United States).

Any correspondance concerning this service should be sent to the repository
administrator: staff-oatao@listes-diff.inp-toulouse.fr

PetriNect: A Tool for Executable Modeling
of Gestural Interaction

Romuald Deshayes, Tom Mens

Service de Génie Logiciel, Université de Mons

7000 Mons, Belgique

Email: romuald.deshayes,tom.mens @umons.ac.be

Abstract—In this showpiece we demonstrate PetriNect, an
instance of a generic layered framework that we have developed
for the specification and use of executable models of gestural
interaction with virtual objects. The framework is built on top of
Petshop and uses ICO models, a variant of high-level Petri nets.
PetriNect uses the Kinect as input device for allowing the user
to interact gesturally with virtual objects. We present two simple
proof-of-concept prototype applications that have been developed
for the purpose of this showpiece: a simple Pong game, and the
interaction with a virtual bookshelf.

I. INTRODUCTION

Mouse and keyboard have been the main devices for
human-computer interaction for a few decades. A lot of
effort has since been dedicated to come up with new means
of interacting with computers. A recent trend consists of
controlling the computer using natural interaction such as
unconstrained human gestures. While many new applications
using gestural interaction arise, few of them propose a unified
way to internally represent the gestural interaction. Integrating
such interaction techniques within a software application is
often a real burden for developers, because of the technical
details involved in the implementation and because of the
accidental complexity of the tools and languages used. Visual
modeling languages can hide an important part of the technical
aspects involved in the development process, thus allowing a
faster and less error-prone development. Executable modeling
even reduces the need of compiling and maintaining lower-
level source code altogether.

In a short article published at VL/HCC we have presented
a generic and reusable layered framework for the specification
of gestural interaction with virtual objects [1]. This framework
has been realized using Petshop, a tool dedicated to the
specification and execution of interactive systems based on
ICO, a powerful model-based approach relying on high-level
Petri nets [2]. The main aim of this framework is to facili-
tate prototyping of applications requiring gestural interaction,
through the use of visual, executable models.

In this showpiece, we focus on PetriNect, an instantiation
of the aforementioned framework customized to using the
Kinect (www.xbox.com/kinect) as gestural input device
to recognize and track hand movements of the user. This show-
piece illustrates by means of a video and a live demonstration
how to use PetriNect to model the interaction with virtual
objects and execute these models. A preliminary video can
be found here [3].

Philippe Palanque
ICS-IRIT, Université Paul Sabatier
31062 Toulouse, France
Email: palanque @irit.fr

The PetriNect showpiece is illustrated by means of two
simple prototype applications that serve as proof-of-concept:

e A Pong game (figure 1), in which the player needs to
prevent the opponent (the computer or another human
player) from returning the ball with his paddle. To
interact with the game, the player simply uses single-
hand gestures instead of a joystick.

e A virtual book shelf (figure 2), from which the user
can drag books, open them, and turn pages, by using
hand gestures, synchronized with the position of the
head.

Fig. 1. A Pong game

Fig. 2.

A virtual book shelf

II. THE PETRINECT TOOL

The PetriNect instantiation of our framework receives ges-
tural input from the Kinect 3D sensor that provides information
about movement of body limbs.

A client-server approach is used to achieve modular com-
munication between the Kinect and the framework. Raw input
data regarding position of hands and head is captured by
the Kinect, at a framerate of 30Hz, in a client application
developed in C++ and sent to a Java server following a
dedicated protocol. The server parses the data and encapsulates
it in Java objects. An observer design pattern is used to transfer
the Java objects to the first layer of the framework, inside
Petshop (at model level). In this first layer, the positional
information about hands and head is merged. The merging
performs a transformation to match the head’s coordinate
system, so that the position of the hands is expressed with
respect to the head’s position.

The information regarding absolute 3D position and status
(open or closed) of the users’ hands is converted [4] into
abstract events in a stepwise fashion, by the different exe-
cutable ICO models of the framework. Layer 2 transforms
the absolute position into relative movements by analyzing
two consecutive data frames. This layer detects the state
changes of the hands and interprets low-level gestures based on
these relative movements. Layer 3 then interprets higher-level
gestures by combining the low-level ones with information
about the user’s state.

The top layer of the framework, aimed at combining all
provided gestures into models of gestural interaction with vir-
tual objects, sends the necessary output to the target application
(such as a graphical user interface or 3D rendering engine).
As each virtual object is specified by an ICO model, a Java
client is implemented at the code level to convert these models
into output events that are sent, by means of an observer
design pattern, to a Java server linked to the external target
application.

Regarding our two prototypes, a Java server has been im-
plemented for the Pong game, and a C++ server for the virtual
bookshelf. For both applications, the data received from the
framework are textual commands with some parameters (e.g.
amount of movement). The Pong game has been developed
using the Java Swing APL. When a move event is received,
the user’s paddle moves according to the position of the hand.
In the virtual bookshelf prototype using the Ogre3D graphical
engine, different commands are received and can trigger visual
feedback such as grabbing a book, opening it or turning the
pages. The setup of the 3D scene and the animations are
created with Ogre 3D, but all the logic depends on ICO models.
For example, while opening the book, it is the role of the model
to set the maximum opening angle of the book.

III. PROVIDED GESTURES

The top layer of the framework contains a different model
for each type of object in the virtual scene the user wants to
interact with. These objects can be controlled using the ges-
tures provided by layer 3. The same gesture can be interpreted
differently by different objects, e.g., picking up a book from
the shelf or opening a door can be performed by closing one
hand and moving it towards one’s chest.

The high-level gestures that we have currently provided to
specify the interactive behaviour of virtual objects are:

e Open and Close are triggered when the user opens or
closes a hand; a parameter specifies which hand.

e Move an open hand; a parameter specifies which hand
and its 3D direction.

e Drag: move a closed hand; a parameter specifies
which hand and its direction.

e ExpandClose: move both hands away from each
other; a parameter indicates the direction of both
hands.

e ShrinkClose: move both hands towards each other.

e ColinearDrag: move both hands in different direc-
tions while keeping them colinear.

e NonColinearDrag: move both hands in different di-
rections but not colinearly; a parameter indicates the
direction of both hands.

All these gestures can be analyzed in a short time interval
(essentially, two consecutive updates received from the input
sensor). These gestures have no concrete behavior associated
to them, and can therefore be applied in different ways to
different types of virtual objects.

The list of provided gestures is inevitably incomplete, as it
is impossible to enumerate all possible gestural interactions
using two hands. Our framework facilitates, however, the
specification of new high-level gestures as a combination of
more primitive ones. For example, we could combine the
moving of both open hands to create a new gesture similar
to ExpandClose. In such a way, one can create a wide range
of behavioral models for an unbounded number of different
types of objects.

IV. CONCLUSION

PetriNect is a fully functional prototype for executable
modeling of interactive applications, relieving the developer
from writing complex and statically compiled code. PetriNect
is an instantiation of a generic, layered and modular framework
for the visual specification and execution of gestural interaction
models. High-level Petri nets, incarnated as ICO models in
Petshop, proved to be particularly suited for expressing such
models. Our proof-of-concept prototypes using the Kinect
gestural input device show the practical feasibility of using
our framework for gestural interaction.

ACKNOWLEDGEMENT

The first author of this showpiece is financed by a FRIA
scholarship.

REFERENCES

[1] R. Deshayes, T. Mens, and P. Palanque, “A generic framework for
executable gestural interaction models,” in Proc. VL/HCC, 2013.

[2] D. Navarre, P. Palanque, J.-F. Ladry, and E. Barboni, “ICOs: A
model-based user interface description technique dedicated to interactive
systems addressing usability, reliability and scalability,” ACM Trans.
Comput.-Hum. Interact., vol. 16, no. 4, pp. 18:1-18:56, Nov. 2009.
[Online]. Available: http://doi.acm.org/10.1145/1614390.1614393

[3] R. Deshayes, “YouTube video,” YouTube, 2013. [Online]. Available:
http://youtu.be/m9NIVZpQyjs

[4] Z.Ren,J. Meng, J. Yuan, and Z. Zhang, “Robust hand gesture recognition
with Kinect sensor,” in ACM Int’l Conf. Multimedia, 2011, pp. 759-760.

