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Mammeri de Tizi-Ouzou, 15000 Algérie.

Email: merakeb kader@yahoo.fr

acheminef@yahoo.fr

Frédéric Messine

ENSEEIHT-IRIT, UMR-CNRS 5055,

2 rue Camichel, 31000 Toulouse, France.

Email: Frederic.Messine@n7.fr

Abstract—This work deals with simulation on an Inverted
Pendulum (IP). The control strategy of an IP is split into two main
control phases: (i) swing-up control to bring back the pendulum
from the downward position to the upward one, and (ii) upright
stabilization control to maintain the pendulum to the upright
vertical position. In the case (ii), a feedback or a neuro-fuzzy
controller is used to stabilize the pendulum cart, while in the
Þrst case (i), a non-linear controller based on the energy of the
pendulum is used in order to reach the desired performance with
a minimum number of swings. Our contribution is to present
a simulation using MatLab of time-optimal control system for
swinging-up the pendulum, with a single control law in an
open-loop form. From the bang-bang structure of the time-
optimal control resulting from the necessary condition of the
Pontryagin Maximum Principle, the solution obtained from direct
discretization method is adjusted by using Newton based method.

Keywords—Inverted Pendulum; Swing-up control; Time optimal
control; Bang-Bang structure; Unstable equilibrium.

I. INTRODUCTION

The control of an Inverted Pendulum (IP) is one of the
most important classical problems in Engineering command,
and resembles the control systems that exist in robotic arms.
IP has two equilibrium points, one of which is stable while
the other is unstable. The stable equilibrium point corresponds
to a state in which the pendulum is pointing downward. In the
absence of any control force, the system will naturally return
to this state. The unstable equilibrium point corresponds to a
state in which the pendulum raises strictly upward and thus,
requires a control force to reach and maintain this position.

Rigid Broom Balancing (Inverted Pendulum on a cart) is
the problem that involves a cart equipped with a motor that
drives it along an horizontal track able to move backward and
forward, and a pendulum hinged to the cart at the bottom
of its length such that the pendulum can move in the same
plane as the cart. The user is able to manipulate the position
and the velocity of the cart through the motor and the track
restricts the cart to move in the horizontal direction. The
goal is to stabilize the IP such that its the position on
the track is controlled quickly and accurately such that the
pendulum is always erected in its inverted position during
such movements. Different control schemes were discussed
to swing the pendulum from the downward position to the
upright one, as described in [1], [4], [6]. The users are not

Fig. 1. Pendulum phenomenological model.

interested so much in the time to swing-up the pendulum while
their objective is its stabilization when it reaches its unstable
equilibrium point. This paper describes a method to swing-
up a pendulum attached to a cart in a minimum time with
a control in open-loop form. The necessary condition derives
from the Pontryagin Maximum Principle and yields that the
optimal time control has a bang-bang structure. Unfortunately,
the use of shooting method based on the indirect method does
not give any satisfactory results because of the hardness of
the non-linear dynamics of the system. We focus then on the
discretization method to provide us an approached solution.
This last solution will be used to be reÞned via a Þnishing
procedure by taking into account the structure of the control.

In Section 2, the differential equations which come from
the IP system are presented yielding the optimal time control
problem that we have to solve. In section 3, we deduce
the structure of the optimal time control by applying the
necessary condition of the PMP. By discretizing the optimal
control problem, we propose in Section 4 a method to reÞne
the solution obtained, and some numerical simulations are
performed. In Section 5, we conclude.

II. INVERTED PENDULUM MODEL

Mathematical models of mechanical systems are usually
described by Hamiltonian or Euler-Lagrange equations.



In Þgure 1, a model of the IP systems is displayed. The
model used in this paper consists in two rods symmetrically
hinged to a cart which can move horizontally by means of
horizontal forces, driven by DC motor which is the control of
the system. The cart is able to move on a limited horizontal
rail with length |Lr| ≤ 0.5m, and the force of the DC motor
on the cart is denoted by F . The system has one input and four
outputs. The outputs are: (i) the cart horizontal distance x in
relation to the center of the track ; (ii) the angular poles θ from
the downward equilibrium point ; (iii) cart velocity ẋ and (iv)

pendulum angular velocity θ̇. The (control) input designated
by u is the voltage Vm that drives the DC motor.
Two points have to be kept in mind when the controllers are
designed. The cart position and the control signal are both
bounded in a real time application. The bound for the control
signal is set to [−25V, 25V ] and the cart position is physically
bounded by the rail length in the interval [−0.5m, 0.5m]. We
consider in this model that θ = 0 is the stable position (the
pendulum is below) and θ = ±π is the unstable position (the
pendulum is on the top).

By applying the law of the dynamic on the inverted pen-
dulum cart system, we get the following non-linear equations
of motion:

(m + M)ẍ + bẋ − mlcos(θ)θ̈ + mlsin(θ)θ̇2 = F, (1)

−mlẍcos(θ) + Nθ̈ + dθ̇ + mglsin(θ) = 0. (2)

The system has several physical parameters associated with its
components that are required for determining the differential
equations. They are described in Table II. The values of these
parameters are pulled from [1].

TABLE I. PENDULUM PARAMETERS.

Parameter SigniÞcance Value

Km DC motor torque constant 0.05 Nm
Kb Gearbox Gearing ratio 0.05 N/A
R Motor Armature Resistance 2.5 Ω
r Motor pinion radius 0.0148 m
M Cart mass 2.4 kg
m Pendulum mass 0.23 kg
g Gravity 9.81 m/s2

l Pole length 0.36 m
N Moment of Inertia of the pole 0.099 kg.m2

b Cart friction coefÞcient 0.05 Ns/rad
d Pendulum damping coefÞcient 0.005 Nms/rad

The force that the DC motor provides on the cart is
dependent on the input voltage u and on the velocity of the
cart ẋ. The relationship is given by:

F =
KmKb

Rr
u −

K2
mK2

b

Rr2
ẋ . (3)

The state vector of the inverted pendulum-cart system is

X = (x1, x2, x3, x4)
t = (x, ẋ, θ, θ̇)t, where x1 = x

is the cart position, x3 = θ represents the pendulum angle
(see Fig. 1), and x2 = dx

dt , x4 = dθ
dt are the velocity and the

angular velocity of the cart and the pendulum, respectively.
From equations (1), (2) and (3), the dynamic equations of the
inverted pendulum-cart system are given by:

Ẋ = f(X) + b(X)u ⇔











ẋ1 = x2
ẋ2 = f1(X) + b1(X)u
ẋ3 = x4
ẋ4 = f2(X) + b2(X)u

where














b1(X) = NKm

Rr h1(X)

b2(X) = lmKmcos(θ)
Rr h1(X)

f1(X) = h1(X)[h2(X) + h3(X) + h4(X)]
f2(X) = h1(X)[h5(X) + h6(X)]

and






























h1(X) = (N(M + m) − l2m2cos2(θ))−1

h2(X) = −(NKbKm

Rr2 + Nb)ẋ
h3(X) = −gl2m2cos(θ)sin(θ)

h4(X) = −dlmθ̇cos(θ) − Nlmθ̇2sin(θ)

h5(X) = −( lmKbKm

Rr2 + blm)ẋcos(θ) − dhθ̇

h6(X) = −g(M + m)lmsin(θ) − l2m2θ̇2cos(θ)sin(θ)

The problem that we are interested in, can be formulated as
an optimal time control problem in presence of state constraint
on x1(t). We have to solve:











































min
X(t),u(t)

J(tf , X, u) = min

∫ tf

0

dt

s.t.

Ẋ = f(X) + b(X)u
|x1(t)| ≤ 0.5
|u(t)| ≤ 25
(x1(0), x2(0), x3(0), x4(0)) = (0, 0, 0, 0)
(x2(tf ), x3(tf ), x4(tf )) = (0, ± π, 0)

(4)

III. THE USED SWING-UP CONTROLLER DESIGN

Different control schemes were discussed to swing the
pendulum from the downwards position to the upright position.
One of these methods, namely heuristic controller, provides a
constant voltage in the appropriate direction, and drives the
cart along the track repeatedly. Thus, it will repeat this action
until the pendulum is close enough to the upright position such
that the stabilizing controller can be triggered to maintain this
balanced state [1], [4].

Another scheme is an energy controller that regulates the
amount of energy in the pendulum. This controller inputs
energy into the cart-pendulum system until it attains the energy
state that corresponds to the pendulum in the upright position.
Similarly to the heuristic control method, the energy control
method will also switch to the stabilizing controller when the
pendulum is close to the upright position.

The switch that triggers the stabilizing controller in both
cases is activated when the pendulum is within 0.1 radians of
the upright position and the angular velocity is slower than 2.5
radians per second [2], [6], [8].

Although the swing-up controllers described above are on
the feedback form, the objective in this work is to swing-up
the pendulum from the downward position θ = 0 to the upright
one θ = ±π in minimum time with an open-loop form.

IV. INDIRECT METHOD USING PMP

In this case, we consider the Problem (4) and we relaxe
the state constraint |x1(t)| ≤ ∞. One can understand that we
can solve the relaxed problem as considering the rail is long
enough, but this constraint could be restored after resolving the
problem by replacing the cart at the beginning in the adequate



position in order to satisfy this constraint. From the PMP, we
deduce the expression of the optimal time control of Problem
(4), which has a bang-bang structure. Indeed, we introduce the
adjoint states variables p(t) = (p1(t), p2(t), p3(t), p4(t)),
and we deÞne the Hamiltonian function as:

H(t,X, p, u) = p0 + p1x2 + p2(f1(X) + b1(X)u) + p3x4 +
p4(f2(X) + b2(X)u),

which is linear in relation with u. With p0 = −1 (maximum
principle), the adjoint states variables verify the equations ṗ =
−∂H(t,X,p,u)

∂X and are given by















































ṗ1 = − ∂H
∂x1

= 0

ṗ2 = − ∂H
∂x2

= −p1 − p2(
∂f1(X)

∂x2

+ ∂b1(X)
∂x2

u)

−p4(
∂f2(X)

∂x2

+ ∂b2(X)
∂x2

u)

ṗ3 = − ∂H
∂x3

= −p2(
∂f1(X)

∂x3

+ ∂b1(X)
∂x3

u)

−p4(
∂f2(X)

∂x3

+ ∂b2(X)
∂x3

u)

ṗ4 = − ∂H
∂x4

= −p2(
∂f1(X)

∂x4

+ ∂b1(X)
∂x4

u) − p3

−p4(
∂f2(X)

∂x4

+ ∂b2(X)
∂x4

u)

(5)

The maximum of the Hamiltonian H leads to the optimal
control which has a bang-bang structure:

u(t) = Vmaxsign(p2b1(X) + p4b2(X)) (6)

where Vmax = 25V is the maximum voltage delivered by the
DC motor.

The classical approach based on the PMP (indirect
method), known for its speed and accuracy, has been tested
on this optimization problem. However, its implementation
using shooting techniques may (in practice) deal with some
difÞculties. Indeed, the shooting method consists to Þnd a zero
of the shooting function S(y) = ẑ(tf ) − (0, ± π, 0), where
ẑ corresponds to the integration of the Initial Value Problem
(IVP) associated with the original problem

(IV P )















Ẋ = f(X) + b(X)u

ṗ = −∂H(t,X,p,u)
∂X

X(0) = 0
p(0) = y.

(7)

After applying necessary conditions of optimality, this method
has to solve a system of non-linear differential equations.
However, its main drawback is the need of a correct starting
point: as this method typically involve applying a quasi-
Newton based algorithm using the shooting function, the radius
of convergence can be very low, depending on the regularity
of the problem. The shooting method does not converge
systematically, and one understands that it is not realistic to
hope to solve the relaxed Problem (4) by this way.

V. DIRECT METHOD USING DISCRETIZATION TECHNIQUES

Considering direct methods which traditionally involve
total or partial discretizations of the problem, we have to
use various local approaches to solve the arising optimization
problem. These methods are generally imprecise and they can
lead to the resolution of large scale problems depending on
the used step of discretization.

At the heart of a well-founded discretization method for
solving optimal control problems, one has the following three
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Fig. 2. Simulation of Swing-up control in optimal time.

fundamental components: - methods for solving the differential
equations and integrating functions ; - a method for solving a
system of non-linear algebraic equations ; and - a method for
solving a non-linear optimization problem.

Methods for solving differential equations and integrating
functions are required for all numerical methods in optimal
control. In a direct method, the numerical solution of differ-
ential equations is combined with non-linear optimization. In
this work, the time-marching is the considered approach used
for solving the differential equations with an explicit fourth
order Runge-Kutta integrator.

In a direct method, the state and the control are discretized
in some manner and the problem is transcribed to a non-
linear programming problem (NLP). The NLP is then solved
using well-known optimization techniques (we use the fmincon
MatLab subroutine). In a direct method, the optimal solution
is found by transcribing an inÞnite-dimensional optimization
problem into a Þnite-dimensional one. In Figure 2, the obtained
solution is drawn, and one remarks that the optimal time con-
trol is not a bang-bang control but possesses a structure close
to a switching function. This structure will be exploited from
the approximated switching times and a Þnishing procedure is
implemented. Note that the corresponding minimum time is
about 1.79 seconds.

A. Finishing procedure

A system of non-linear algebraic equations can be consid-
ered equivalently to root-Þnding one. In this case, where all of
the algebraic equations can be written as equalities, we have a
problem of the form S(y) = 0. The most common method for
solving a multidimensional root-Þnding problem is a Newton
based method, and an initial point is made of the vector y.
It is well-known that the Newton method converges when the
initial point is close to a root.

The Þnishing procedure consists in constructing the solu-
tion of the system of non-linear equations. Then the system
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Fig. 3. Solution adjusted by the Þnishing procedure.

is solved using a Newton based method with the initial
approximation which is uniquely determined from the switch
times of the problem obtained at the end of the algorithm
which solve a non-linear optimization problem (7). According
to Newton based method, the switching function (bang-bang
control) is constructed using the fsolve MatLab subroutine.
The optimal time control u∗(t) corresponding to the switching
function is drawn in Figure 3 and the minimum time is about
1.75 seconds.

VI. CONCLUSION

This study presents the simulation and the results of an
optimal time control problem which deals with the balancing
of a cart inverted pendulum driven by a motor. By using
tools from optimal control theory through the PMP, we have
obtained a description of the optimal time control problem, for
the problem with the voltage of the DC motor as control inputs.
In order to determine the solution, we used the direct method
based on the discretization techniques and the computations
are performed using fmincon from MatLab. From the bang-
bang structure of the optimal control, the Þnishing procedure
based on the switching times is used. It operates with a Newton
based method. This approach appears to work efÞciently very
well for the resolution of the system studied here. Further study
on this system would bring signiÞcant beneÞts to robotic and
control professional.

REFERENCES

[1] R. Mellah, F. Lahouazi, S. Djennoune, S. Guermah and R. Toumi,
Composite Sliding Mode Control of Inverted Pendulum, International
Journal of Control, Automation and Systems, Vol. 1, No. 3, May 2012.

[2] W. Zhong and H. Rock, Energy and Passivity Based Control of the
Double Inverted Pendulum on a Cart, Proceedings of the 2001 IEEE
International Conference on Control Applications, September 5-7, Mex-
ico City, 2001.

[3] A. Bogdanov, Optimal Control of a Double Inverted Pendulum on
the Cart, Technical Report CSE-04-006, OGI School of Science and
Engineering, OHSU, 2004

[4] M. Bugeja, Non-Linear Swing-Up and Stabilizing Control of an Inverted
Pendulum system, University of Malta, Msida, Malta, 2002.

[5] C. A. Ibanez, O. Gutierrez Frias and M. Suarez Castanon, Lyapunov-
Based Controller for the Inverted Pendulum Cart System, Nonlinear
Dynamics 40: 367374, Springer 2005.

[6] K. J. Astrom and K. Furuta, Swinging Up a Pendulum by Energy Control,
Automatica, vol. 36, no. 2, pp. 287-295, February 2000.

[7] W. Zhong, Yang Chen and Fang, Minimum-Time Swing-up of a Rotary
Inverted Pendulum by Iterative Impulsive Control, Proceeding of the 2004
American Control Conference, June 30-July 2, Boston, pp:1335-1340,
2004.

[8] N. Muskinja and B. Tovornik, Swinging Up and Stabilization of a Real
Inverted Pendulum, IEEE Transactions on Industrial Electronics, Vol. 53,
No. 2, pp:631-639, 2006.

[9] F.L. Chernousko, S.A. Reshmin, Time-optimal swing-up feedback control
of a pendulum, Nonlinear Dyn., Vol 47, pp. 65-73, 2007.

[10] P. Mason, M. Broucke and B. Piccoli, Time Optimal Swing-Up of the
Planar Pendulum, IEEE Transactions on Automatic Control, Vol. 53, No.
8, pp. 1876-1886, 2008.

[11] P. Melba Mary and N. S. Marimuthu, Minimum Time Swing Up and
Stabilization of Rotary Inverted Pendulum Using Pulse Step Control,
Iranian Journal of Fuzzy Systems Vol. 6, No. 3, pp. 1-15, 2009.

[12] V. Sukontanakarn and M. Parnichkun, Real-Time Optimal Control for
Rotary Inverted Pendulum, American Journal of Applied Sciences 6 (6):
1106-1115, 2009.


