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ABSTRACT

This paper presents an algorithm based on sparse representation for

fusing hyperspectral and multispectral images. The observed im-

ages are assumed to be obtained by spectral or spatial degradations

of the high resolution hyperspectral image to be recovered. Based

on this forward model, the fusion process is formulated as an inverse

problem whose solution is determined by optimizing an appropri-

ate criterion. To incorporate additional spatial information within

the objective criterion, a regularization term is carefully designed,

relying on a sparse decomposition of the scene on a set of dictionar-

ies. The dictionaries and the corresponding supports of active coding

coef�cients are learned from the observed images. Then, condition-

ally on these dictionaries and supports, the fusion problem is solved

by iteratively optimizing with respect to the target image (using the

alternating direction method of multipliers) and the coding coef�-

cients. Simulation results demonstrate the ef�ciency of the proposed

fusion method when compared with the state-of-the-art.

Index Terms� Image fusion, hyperspectral image, multispec-

tral image, sparse representation, alternating direction method of

multipliers (ADMM).

1. INTRODUCTION

Fusion of multi-sensor images has been a very active research topic

during recent years [1]. When considering remotely sensed images,

an archetypal fusion task is the pansharpening, i.e., fusing a high

spatial resolution panchromatic (PAN) image and a low spatial reso-

lution multispectral (MS) image. In recent years, hyperspectral (HS)

imaging, acquiring a same scene in several hundreds of contiguous

spectral bands, has opened a new range of relevant applications such

as spectral unmixing [2] and classi�cation [3]. To exploit the ad-

vantages offered by different sensors, how to fuse HS, MS or PAN

images has been explored widely [4�6]. Note that the fusion of MS

and HS differs from pansharpening since both spatial and spectral

information is contained in multi-band images. Therefore, a lot of

pansharpening methods, such as component substitution [7] and rel-

ative spectral contribution [8] are inapplicable or inef�cient for the

HS/MS fusion problem. To overcome the ill-posedness of the fusion

problem, Bayesian inference provides a convenient way to regularize

the inverse problem by de�ning an appropriate prior distribution for

the scene of interest. Following this strategy, various estimators have

been implemented in the image domain [9�11] or in a transformed

domain [12].

Recent progress in sparse representations and dictionary learn-

ing (DL) have offered new ef�cient tools to address the multi-band

fusion problem. Indeed, the self-similarity, which is prominent in

natural images, implies that the patches extracted from natural im-

ages can be effectively represented with very few atoms coming

from over-complete dictionaries [13�15]. More speci�cally, learn-

ing the decomposition dictionary from the images themselves, in-

stead of resorting to prede�ned ones (e.g., wavelets), has recently

led to state-of-the-art results for numerous low-level image process-

ing tasks such as denoising. DL has also been investigated to analyze

multi-band images [16]. More recently, Liu et al. proposed to solve

the pansharpening problem based on a DL strategy [17].

In this paper, we propose to fuse the HS and MS images within

a constrained optimization framework, by incorporating sparse reg-

ularization using dictionaries learned from the observed images. Af-

ter learning the dictionaries and the corresponding supports of the

codes from these observed images, we de�ne an optimization prob-

lem which is solved by optimizing alternately with respect to the

target image and the sparse code. The optimization with respect

to the image is achieved by the split augmented Lagrangian shrink-

age algorithm (SALSA) [18], which is an instance of the alternating

direction method of multipliers (ADMM). By a suitable choice of

variable splittings, SALSA enables us to decompose a huge non-

diagonalizable quadratic problem into a sequence of convolutions

and pixel decoupled problems, that can be solved ef�ciently. The es-

timation of the code is performed using a standard least-square (LS)

algorithm which is possible because the support of the code has been

�xed a priori. The resulting fusion strategy is summarized in Algo-

rithm 1.

The paper is organized as follows. Section 2 formulates the fu-

sion problem within a constrained optimization framework. Sec-

tion 3 introduces the proposed sparse regularization and the method

used to learn the dictionary and the code support. The optimization

scheme proposed to solve the resulting optimization problem is de-

tailed in Section 4. Simulation results are presented in Section 5

whereas conclusions are reported in Section 6.

2. PROBLEM FORMULATION

In this paper, we consider the fusion of HS and MS images. The HS

image is supposed to be a spatially blurred and down-sampled ver-

sion ofX corrupted by additive Gaussian noise whereas the MS im-

age is a spectrally degraded noisy version of X. As a consequence,

the observation models associated with the HS and MS images can

be written as follows [9, 19]

YH = XBS+NH

YM = RX+NM

(1)



where

• X ∈ R
mλ×n is the full resolution unknown image with mλ

bands and n pixels,

• YH ∈ R
mλ×m andYM ∈ R

nλ×n are the HS and MS images,

• B ∈ R
n×n is a cyclic convolution operator acting on the bands,

• S ∈ R
n×m is a downsampling matrix (with downsampling fac-

tor denoted as d),

• R ∈ R
nλ×mλ stands for the spectral response of the MS sensor,

• NH ∈ R
mλ×m andNM ∈ R

nλ×n are the HS and MS noises.

Note that B is a sparse symmetric Toeplitz matrix for a sym-

metric convolution kernel and m = n/d2. In this work, we as-
sume thatB, S andR are known. The elements of the matricesNH

and NM are assumed to be independent zero-mean white Gaussian

noises with variances s2h and s
2

m respectively.

The imageX can be decomposed asX = [x1, · · · ,xn], where

xi = [xi,1, · · · , xi,mλ
]T is the mλ × 1 vector, also named hyper-

pixel, corresponding to the ith spatial location (with i = 1, · · · , n).
Because the HS bands are usually spectrally correlated, the HS vec-

tor xi usually lives in a subspace whose dimension m̃λ is much

smaller than mλ [2]. This property has been extensively exploited

when analyzing HS data, in particular to perform spectral unmixing.

More precisely, the image can be rewritten asX = VU whereV ∈
R

mλ×m̃λ has normalized orthogonal columns and U ∈ R
m̃λ×n is

the projection of X onto the subspace spanned by the columns of

V. Incorporating this decomposition of the HS image X into the

observation model (1) leads to

YH = VUBS+NH

YM = RVU+NM.
(2)

In this work, we assume that the signal subspace denoted as

span {V} has been previously identi�ed, e.g., obtained from the

available a priori knowledge regarding the scene of interest, or from

a principal component analysis (PCA) of the HS data. Then, the

considered fusion problem is solved in this lower-dimensional sub-

space, by estimating the projected image U. The estimation of the

projected imageU fromYH andYM is herein addressed by solving

the inverse problem

min
U

1

2

∥∥YH−VUBS
∥∥2

F
+

λm

2

∥∥YM−RVU
∥∥2

F
+λdφ(U), (3)

where the two �rst terms are linked with the MS and HS images

(data �delity terms) and the last term is a penalty ensuring appro-

priate regularization. The parameter λm is equal to the ratio of the

noise variances s2h/s
2

m that is supposed to be a priori known and λd

is regularization parameter. Various regularizations relying on ℓ1, ℓ2
or total variation [20] norms have been widely used to tackle this

ill-posed problem. In this work, we derive an appropriate regulariza-

tion term exploiting a sparse representation of the target image on a

dictionary. More details are given in the next section.

3. DICTIONARY-BASED REGULARIZATION

The regularization proposed in this paper relies on the assumption

that the target image U can be sparsely approximated on a given

dictionary. Based on the self-similarity property of natural images,

modeling images with a sparse representation has been shown to be

very effective in many signal processing applications [13]. Based on

these works, we propose to de�ne the regularization term of (3) as

φ(U) =
1

2

∥∥U− Ū (D,A)
∥∥2

F
(4)

where D is the dictionary, A is the sparse code, and Ū is the ap-

proximation of U derived from the dictionary and the code. Gen-

erally, an over-complete dictionary is proposed as a basis for the

image patches. In many applications, the dictionary D is �xed a

priori, and corresponds to various types of bases constructed using

atoms such as wavelets [21] or discrete cosine transform coef�cients

[22]. However, these bases are not necessarily well matched to nat-

ural or remote sensing images since they do not necessarily adapt

to the nature of the observed images. As a consequence, learning

the dictionary from the observed images instead of using prede�ned

bases generally improves signal representation [23]. More precisely,

the strategy advocated in this paper consists of learning a dictionary

D from the high resolution MS image to capture most of the spatial

information contained in this image. To learn a dictionary from a

multi-band image, a popular method consists of searching for a dic-

tionary whose columns (or atoms) result from the lexicographically

vectorization of the HS 3D patches [16, 24]. However, this strat-
egy cannot be followed here since the dictionary is learned on the

MS image Ym ∈ R
nλ×n composed of nλ bands to approximate

the target image U composed of m̃λ spectral bands. Conversely, to

capture most of the spatial details contained in each band of the MS

image, we propose to approximate each band of the target imageU

by a sparse decomposition on a dedicated dictionary. In this case,

the regularization term (4) can be written as

φ(U) =
1

2

m̃λ∑

i=1

∥∥Ui − L (DiAi)
∥∥2

F
(5)

where

• Ui ∈ R
n is the ith band (or row) ofU ∈ R

m̃λ×n,

• Di ∈ R
np×nat is the dictionary dedicated to the ith band of

U (np is the patch size and nat is the number of atoms) and
D = [D1, · · · ,Dm̃λ

],

• Ai ∈ R
nat×npat is the ith band�s code (npat is the number of

patches associated with the ith band) andA = [A1, · · · ,Am̃λ
],

• L(·) is a linear operator that averages the overlapping patches of
each band to restore the target image.

Note that each column of Di is a basis element of size np (corre-
sponding to the size of a patch). The dictionary is supposed to be

�xed before addressing the fusion problem. The learning procedure

used to estimate the dictionary is detailed in the following paragraph.

3.1. Dictionary learning and sparse coding

We propose to learn the set of dictionariesDi from a rough estima-

tion of U, constructed from the MS image YM and HS image YH,

following the strategy used by Hardie et al. [9] and Zhang et al. [12].

More precisely, assuming that the hyperpixels of the target imageU

and MS data are jointly Gaussian distributed, the probability density

function (pdf) ofU conditionally uponYM is also Gaussian

p(U|YM) =
n∏

i=1

[
(2π)m̃λ

∣∣∣Cui|ym,i

∣∣∣
]−1/2

× exp

{
−
1

2

(
ui − µ

ui|ym,i

)T

C
−1

ui|ym,i

(
ui − µ

ui|ym,i

)}

whereYM =
[
ym,1, · · · ,ym,n

]
andU = [u1, · · · ,un]. The con-

ditional meanµ
U|YM

= E [U|YM] =
[
µ

u1|ym,1
, · · · ,µ

un|ym,n

]

can be computed using joint pdf p (U,YM) and approximated as



in [9]. It provides a �rst approximation of the target image U to be

restored. We propose to estimate the dictionaries Di introduced in

(5) by applying a DL algorithm on the patches of µ
U|YM

. Many DL

methods have been studied in the recent literature. These methods

are for instance based on K-SVD [14], online dictionary learning

(ODL) [15] or Bayesian learning [16]. In this study, we have consid-

ered the ODL method to learn the set of over-complete dictionaries

D = [D1, · · · ,Dm̃λ
]. Once the dictionaries are learned, the orthog-

onal matching pursuit (OMP) is adopted to estimate the sparse code

Ai for each band of Ui. A maximum number of atoms, denoted

as nmax, is assumed to represent each patch of Ui. Generally, the

maximum number of atoms is much lower than the number of atoms

in the dictionary, i.e., nmax ≪ nat. The positions of the non-zero ele-
ments of the codeAi, namely the supportΩi ⊂ N

2, i = 1, · · · , m̃λ

are also identi�ed.

3.2. Re-estimation of the sparse code

Once the dictionaries D and codes A have been learned following

the procedure detailed in the previous paragraph, it can be interesting

to make the approximation in (5) more  exible for the fusion task.

Interpreting the minimization problem in (3) as a standard maximum

a posteriori estimation in a Bayesian framework, the regularization

term (5) can be interpreted as a Gaussian prior distribution for the

target image U, with hyperparameters D and A. Inspired by hier-

archical models frequently encountered in Bayesian inference, we

propose to include the code A within the estimation process. One

strategy would consist of de�ning a new regularization term

φ(U,A) =
1

2

m̃λ∑

i=1

∥∥Ui − L (DiAi)
∥∥2

F
+ µa

∥∥Ai

∥∥
0

(6)

where ‖.‖0 is the ℓ0 counting function (or ℓ0 norm) and µa is a reg-

ularization parameter. The ℓ0-norm of codeA is naturally chosen to

enforce the sparsity of the code Ai ∈ R
nat×npat . However, the re-

sulting optimization problem would become NP-hard. Conversely,

in this work, we propose to �x the supports Ωi to the values com-

ing from the sparse coding step detailed in the previous paragraph.

Therefore, the ℓ0 norm becomes a constant and the �nal regulariza-

tion term (5) reduces to

φ(U,A) =
1

2

m̃λ∑

i=1

∥∥Ui − L (DiAi)
∥∥2

F
s.t. Ai,\Ωi

= 0, (7)

where Ai,\Ωi
= {Ai(l, k) | (l, k) 6∈ Ωi}. The resulting objective

criterion, which combines (7) with (3), is minimized using an al-

ternate optimization procedure introduced in the following section.

4. ALTERNATE OPTIMIZATION

With known D, Ω and V learned from the HS and MS data, the

problem (3) is a constrained quadratic optimization problem with

respect to U and A. However, this problem is dif�cult to solve due

to the large dimensionality of U and due to the fact that the linear

operatorsV(·)BD and L(·) cannot be easily diagonalized. To cope
with this dif�culty, we propose an optimization technique that alter-

nates optimization with respect toU andA.

Conditional on A, the optimization with respect to U can be

achieved ef�ciently with the SALSA algorithm [18]. Conditional on

U, the optimization with respect toA under the support constraint is

an LS problem for the non-zero elements of A, which can be easily

solved. The overall resulting scheme that includes learning D, Ω

and V is detailed in Algorithm 1. The alternate SALSA and LS

steps are detailed below.

Algorithm 1: Alternate Optimization

Input: YH,YM, SNRh, SNRm, m̃λ (HS subspace

dimension),R, nmax (number of maximum atoms

for the support of each image patch)

Output: X̂ (high resolution HS image)

1 /* Estimate the conditional mean */

2 Approximate µ
U|YM

usingYM andYH following the

method of [9]

3 /* Online dictionary learning */

4 D̂← ODL(µ̂
U|YM

)

5 /* Sparse image coding */

6 Â← OMP(D̂, µ̂
U|YM

, nmax)

7 /* Computing support */

8 Ω̂← Â 6= 0
9 /* Computing subspace transform matrix */

10 V̂← PCA(YH, m̃λ)
11 /* Start alternate optimization */

12 for t = 1, 2, . . . to stopping rule do

13 Ût ∈ {U : L(U, Ât−1) ≤ L(Ût−1, Ât−1)} ;
/* solved with SALSA */

14 Ât ∈ {A : L(Ût,A) ≤ L(Ût, Ât−1)} ;
/* solved with LS */

15 end

16 X̂ = V̂Û

4.1. SALSA Step

After introducing the splittings V1 = UB, V2 = U and V3 = U

and the respective scaled Lagrange multipliersG1,G2,G3, the aug-

mented Lagrangian associated with the optimization of U condi-

tional onA can be written as

L(U,V1,V2,V3,G1,G2,G3) =

1

2

∥∥YH −VV1S
∥∥2

F
+

µ

2

∥∥UB−V1 −G1

∥∥2

F
+

λm

2

∥∥YM −RVV2

∥∥2

F
+

µ

2

∥∥U−V2 −G2

∥∥2

F
+

λd

2

∥∥Ū(D,A)−V3

∥∥2

F
+

µ

2

∥∥U−V3 −G3

∥∥2

F
.

The update ofU is achieved with the SALSA algorithm [18], which

has a O (nitm̃λn log (m̃λn)) computational complexity, where nit

is the number of iterations for SALSA.

4.2. LS step

The objective of this step is to solve the following optimization prob-

lem with respect toAi (i = 1, · · · , m̃λ) conditional onUi

min
Ai

∥∥Ui − L(DiAi)
∥∥2

F
s.t. Ai,\Ωi

= 0.

It is a standard LS problem, which can be solved analytically. To

tackle the support constraint ef�ciently, the optimization with re-

spect to Ai considers only the non-zero elements of Ai, denoted

as Ai,Ωi
= {Ai(l, k) | (l, k) ∈ Ωi}, which allows the compu-

tational complexity of the algorithm to be generally reduced to

O (nmaxnpnpat).



5. SIMULATION RESULTS

This section studies the performance of the proposed sparse repre-

sentation based fusion algorithm. The reference image considered

here as the high spectral and high spectral image is an HS image ac-

quired over Moffett �eld, CA, in 1994 by the JPL/NASA airborne

visible/infrared imaging spectrometer (AVIRIS) [25]. This image is

of size 128 × 128 and was composed of 224 bands that have been

reduced to 177 bands after removing the water vapor absorption and
noisy bands.

5.1. Simulation Scenario

We propose to reconstruct the reference hyperspectral image from

two lower resolved images. First, we have generated a high-spectral

low-spatial resolution HS image by applying a 5× 5 Gaussian low-
pass �lter on each band of the reference image and downsampling

every 4 pixels in both horizontal and vertical directions. In a sec-

ond step, we have generated a 4-band MS image by �ltering the

reference image with the LANDSAT re ectance spectral responses

[26]. The HS and MS images are both contaminated by zero-mean

additive Gaussian noises with the signal to noise ratios (expressed

in decibels) SNRh = 10 log
(

‖XBS‖2F
‖Nh‖2

F

)
= 30dB (HS image) and

SNRm = 10 log
(

‖RX‖2F
‖Nm‖2

F

)
= 30dB (MS image). A composite

color image, formed by selecting the red, green and blue bands of

the reference image is shown in the bottom right of Fig. 1. The

noise-contaminated HS and MS images are depicted in the top left

and top right �gures. (Note that the HS image has been interpolated

for better visualization and that the MS image has been displayed

using an arbitrary color composition).

The parameters used for the proposed fusion algorithm have

been speci�ed as follows

• The ODL algorithm has been run with patches of size 6×6, and
with a maximum number of atoms nmax = 4. These parameters
have been selected by cross-validation.

• The regularization parameter used in the ADMMmethod is µ =
0.05. Simulations have shown that the choice of µ does not

affect signi�cantly the fusion performance as long as the two

optimization steps have converged.

• The regularization coef�cient is λd = 34s2h. The choice of this
parameter will be discussed in Sec. 5.3 and has been tuned by

cross-validation.

5.2. Comparison with other fusion methods

This section compares the proposed method with two other state-of-

the-art algorithms studied in [9] and [12] for the fusion of HS and

MS images. To evaluate the quality of the proposed fusion strat-

egy, different image quality measures are investigated. Referring

to [12], we propose to use RMSE (root mean square error), SAM

(spectral angle mapper), UIQI (universal image quality index) and

DD (degree of distortion) as quantitative measures. The de�nition

of these indexes can be found in [1, 27]. Larger UIQI and smaller

RMSE, SAM and DD indicate better fusion results. Fig. 1 shows

that the proposed method offers competitive results comparing with

the other two methods. Quantitative results are reported in Table 1

which shows the RMSE, UIQI, SAM and DD for all methods. It

can be seen that the proposed method always provides the best re-

sults for the considered quality measures (at the price of a higher

computational complexity).

Fig. 1. Fusion results. (Top left) HS image. (Top right) MS im-

age. (Middle left) MAP estimator [9]. (Middle right) Wavelet MAP

estimator [12]. (Bottom left) Proposed DL-based fusion method.

(Bottom right) Reference image.

Table 1. Performance of different MS + HS fusion methods: RMSE

(in 10−2), UIQI, SAM (in degree), DD (in 10−2) and Time (in sec-

ond)).

Methods RMSE UIQI SAM DD Time

Hardie 15.416 0.9770 8.1158 9.9937 3.2

Zhang 13.892 0.9807 7.2929 8.9801 74.4

Proposed 12.632 0.9848 6.8994 8.189 747.0

5.3. Selection of the regularization parameter λd

In order to select an appropriate value of λd, we have tested the per-

formance of the proposed algorithm when this parameter varies. The

results are displayed in Fig. 2. Obviously, when λd is approaching

0 (no regularization), the performance is relatively poor. Each qual-

ity measure is convex with respect to λd. However, there is not a

unique optimal value of λd for all the quality measures. In terms of

RMSE, λd = 38s2h provides the best fusion results. The value of

λd that has been used for all simulations presented before is selected

as λd = 34s2h, which is not too far from the �optimal� point in the

sense of RMSE.

6. CONCLUSIONS

This paper proposed a new dictionary learning based fusion method

for the fusion of multispectral and hyperspectral images. A sparse

regularization was introduced by considering that the image patches
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Fig. 2. Performance of the proposed fusion algorithm versus λd

(from left to right): RMSE, UIQI, SAM and DD.

of the target image can be represented by the atoms learned from

the observed images. The resulting cost function was simpli�ed as-

suming that the code support has been estimated a priori by sparse

coding. The target image and the values of the code were then de-

termined by an alternate optimization technique. The alternating di-

rection method of multipliers was �nally investigated to solve the

optimization with respect to the unknown image projected onto a

lower dimensional subspace. Numerical experiments showed that

the proposed method is always competitive with other state-of-the-

art fusion methods. Future work includes the estimation of the HS

and MS degradation operators and the validation of the proposed

method on other datasets including real multispectral and hyperspec-

tral images. Including the estimation of the regularization parameter

into the optimization algorithm would also be interesting.
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