
HAL Id: hal-01178557
https://hal.science/hal-01178557

Submitted on 20 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Goal-Oriented Monitoring Adaptation : methodology
and patterns

Antoine Toueir, Julien Broisin, Michelle Sibilla

To cite this version:
Antoine Toueir, Julien Broisin, Michelle Sibilla. Goal-Oriented Monitoring Adaptation : methodology
and patterns. 8th IFIP WG 6.6 International Conference on Autonomous Infrastructure, Management,
and Security (AIMS 2014), Jun 2014, Brno, Czech Republic. pp. 133-146. �hal-01178557�

https://hal.science/hal-01178557
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 13146

URL: http://dx.doi.org/10.1007/978-3-662-43862-6_17

To cite this version : Toueir, Antoine and Broisin, Julien and Sibilla,
Michelle Goal-Oriented Monitoring Adaptation : methodology and
patterns. (2014) In: 8th IFIP WG 6.6 International Conference on
Autonomous Infrastructure, Management, and Security (AIMS 2014),
30 June 2014 - 3 July 2014 (Brno, Czech Republic).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Goal-Oriented Monitoring Adaptation:

Methodology and Patterns

Antoine Toueir, Julien Broisin, and Michelle Sibilla

IRIT, University Toulouse III - Paul Sabatier
118 rue de Narbone, 31062 Toulouse, France
{toueir,broisin,sibilla}@irit.fr

Abstract. This paper argues that autonomic systems need to make
their distributed monitoring adaptive in order to improve their “compre-
hensive” resulting quality; that means both the Quality of Service (QoS),
and the Quality of Information (QoI). Thus, we propose a method-
ology to design monitoring adaptation based on high level objectives
(goals) related to the management of quality requirements. One of the
advantages of adopting a methodological approach, is that monitoring
reconfiguration will be conducted through a consistent adaptation logic.
Starting from a model-guided monitoring framework, we introduce our
methodology to assist human administrators in eliciting the appropriate
quality goals piloting the monitoring. Moreover, some monitoring adap-
tation patterns falling into reconfiguration dimensions are suggested and
exploited in a cloud provider case-study illustrating the adaptation of
Quality-Oriented monitoring.

Keywords: Quality requirements, adaptive monitoring, autonomic sys-
tems, goal-oriented adaptation.

1 Introduction

Autonomic systems that are implemented by virtue of their four characteristics
self-configuration, self-optimization, self-healing and self-protection, are serving
the main principle of making them self-managed to achieve high level objectives
[1]. In practice, the four self-* characteristics are realized by implementing the
MAPE-K (Monitoring, Analyzing, Planning, Executing - Knowledge) loop mod-
ules. This implementation is either embedded within a resource, or distributed
over several resources. However, the monitoring module of MAPE-K loop plays
a crucial role, since wrong decisions might be taken by the analyzing & planning
modules, if they were provided with interrupted or wrong information. There-
fore, autonomic systems need to ensure the quality of information (e.g., correct-
ness, freshness, timeliness, accuracy, etc.) exposed by the distributed monitoring
modules.

Within autonomic systems, monitoring is usually quality-oriented. In other
words, the underlying monitoring instruments metrics and evaluates them against
quality specifications expressed via Service Level Agreements (SLAs) or man-
agement high level objectives. Since the management system could provide the

possibility to renegotiate or modify the QoS specification afterward, and also,
various management needs could be distinguished during the management sys-
tem lifetime, the monitoring system has to adapt its behavior according to these
new requirements. To resume, the monitoring of autonomic systems has to be
capable of configuring the underlying gathering mechanisms (i.e., polling & no-
tification) carrying the monitoring functions (e.g., measuring, gathering, evalu-
ating, filtering, etc.) starting from quality specification, as well as reconfiguring
those mechanisms based on quality requirements.

Most of the time, reconfiguration is held through ad-hoc logic. But this ap-
proach isn’t suitable for reuse in other scenarios, and also doesn’t satisfy high
level objectives; which are extended at the autonomic system whole scale. To
overcome these issues, first, we adopted the Requirements Engineering method-
ology to design monitoring adaptation; it starts from high level goals, and ends up
with the (re)configuration of monitoring mechanisms. However, reconfiguration
questions such as: why to delay launching some monitoring mechanisms? Why to
substitute remote agents? What determine the instrumentation of particular set
of metrics but not another one? need to be answered. In other words, identifying
goals representing the ”starting point” for deriving monitoring (re)configuration
is a big challenge. Thus, besides adaptation methodology, this paper answers
these questions by proposing monitoring adaptation patterns to assist human
administrators in designing meaningful adaptations, that increase the overall
quality of autonomic systems.

The paper is organized as follows: Section 2 points out the weaknesses of other
monitoring adaptation approaches; Section 3 gives an overview of the monitor-
ing framework at the basis of our contributions; the methodology of designing
goal-oriented adaptive monitoring is presented in Section 4; the reconfiguration
dimensions as well as monitoring adaptation patterns are discussed in Section 5
and then applied on a case-study in Section 6; finally, we conclude by listing our
perspectives in Section 7.

2 Related Work

This section enumerates some existing trends focusing on (i) adapting the QoS
monitoring in autonomic systems [2,3,4,5,6], and (ii) designing patterns regard-
ing the distributed deployment as well as the adaptation of MAPE loop modules
[7,8,9].

Collecting additional metrics or joining managed resources is addressed in
[2,3,5] either to adapt monitoring to meet SLA modifications, or to deal with
the managed scope changes, or even to operate a ”minimal” monitoring that is
able to be extended in case of SLA violations. Indeed, the capability of scaling
up/down the monitored metrics and resources is important as an adaptation ac-
tion. But, it isn’t clear whether this capability could be applied in other scenarios
for distinct objectives, if so, how that could be feasible.

Runtime deployment of monitoring resources (i.e., managers, probes) is dis-
cussed in [3,4,6] either to integrate monitoring into the SLA management life-
cycle of large scale systems, or to replace failed managers, or even to monitor

metrics concerning particular paths or segments. But here also, besides the un-
deniable gains of deploying monitoring resources during runtime, we don’t see
how the system administrators can orchestrate the monitoring adaptation of the
distributed modules among several collaborating managers. The orchestration
isn’t a trivial task, because a given quality objective may need to be extended
on several managers and treated differently on each of them. Thus, a ”simple
deployment” of new monitoring resources isn’t enough to realize orchestration.

Inspired from the autonomic computing reference architecture proposed in [7],
patterns regarding the distribution of the MAPE loop modules were proposed
in [8,9]. Those patterns are useful in term of design reuse as well as clarifying
the application contexts and benefits, but they target mainly the deployment
of the monitoring modules rather than the monitoring behavior itself. That is,
once the autonomic system is designed and deployed based on the proposed
patterns, the monitoring conserves its behavior. Consequently, the management
system knowledge won’t exceed a ”maximum ceiling” and the management will
be limited regarding treating new situations; as it has specific vision reflecting
the same aspects all the time.

To resume, most of the studied work focuses either on the auto-configuration
of monitoring, or on the reconfiguration of the functional system based on the
knowledge produced from the QoS monitoring, or even the reconfiguration of
the monitoring itself based on static purposes. Contrary to the studied work, we
argue that increasing the QoS of the whole system begins from designing adaptive
monitoring, that is derived from and satisfies high level quality requirements, and
interpreted by several managers.

3 The Enriched Adaptive Monitoring Framework

Our approach is based on a 3-layered framework [10,11,12] illustrated in Figure
1, and defines three capabilities required to control monitoring: being config-
urable, adaptable and governable. This framework operates monitoring mecha-
nisms without any consideration regarding agents or management protocols.

The configurability layer stands on the Distributed Management Task
Force (DMTF) Common Information Model (CIM) standard. This low level layer
aims at representing, in addition to the managed resources, the metrics [13] and
their gathering mechanisms as well [10]. Moreover, those models have been en-
riched with the concept of Monitoring Mode. The latter encapsulates: metrics
(Aspects of Interest to be instrumented), constraints (thresholds to be checked
once associated metrics are instrumented), indications (notifications to be raised
once metrics are violated), as well as two types of subscriptions to deliver both
metrics values and raised indications to the appropriate destinations (see Figure
1). The adaptability layer provides an interface encapsulating operations to
be applied on the lower layer models. Those operations constitute a ”control
interface” to update the attributes of both monitoring modes and metrics, thus
the underlying gathering mechanisms will be reconfigured, and consequently the
monitoring adapts its behavior. Finally, the governability layer is the top

level layer representing the ”intelligence” of the monitoring adaptation. To ex-
press the quality requirements, it uses Event/Condition/Action (ECA) policies
to describe when and how adaptation should take place, that is, they determine
the situations during which the adaptability layer operations should be invoked.

Autonomic Manager - Adaptive Monitoring Framework
Methodology Governability

Adaptability

Manager-2-

Shared DB

Communication

Manager-2-Agent Communication

Mgd. Rs. Scope

Manager-2-Manager

Communication

Shared DBAuton. Mgr.

Operation 2 Operation 4

Operations Models

Operation 1 Operation 3

Agents Models

RE

Agent 1

RE

Agent 2

Goals & Obstacles Models

Re nement

Base_Metric_De nition

Resource

MeasurableMathematical

Composite Elementary

Metric_Collection

Violation_Subscription

Violation_Filter

Violation_Destination

Push_Subscription

Push_Filter

Push_Destination Listening

Metric Model
Monitoring Mode Model

Monitoring_Mode

Constraint_Collection

Threshold_Indication

Goal

Requir-

ement 1

Requir-

ement 2

Con gurability

Polling

Gathering

Model

ME

Managed

Elelemt

Model

¬Goal

¬Req 1

¬Req 2

#add

#delete

#update

...

Gathering

Operators

Monitoring Mode Operators

+activateMode

+deactivateMode

+joinMEs

+withdrawMEs

+activateExporting

+deactivateExporting

+updatePollingPeriod

+updateExportingPeriod

...

Managed Resources Scope

Managed ResourceManaged Resource

Mgmt Agent Mgmt Agent

Managed Resource

Mgmt Agent

Event1 / Condition1 / Action1 PolicyEvent1 / Condition1 / Action1 Policy

Metrics Operators

+startInstrumentation

+stopInstrumentation

+substituteAgent

+substituteProtocol

...

Obstruction

Obstruction

Fig. 1. Adaptation Methodology & Enriched Monitoring Framework

4 A Goal-Oriented Methodology for Adaptive

Quality-Oriented Monitoring

Thinking that one of the existing software engineering approaches should an-
swer our needs, we looked forward a suitable method for designing monitoring
adaptation. The origin of Requirements Engineering (RE) goes back to the need
to avoid crucial mistakes committed at the project design phase, and aims at
building systems solving real-world problems. This methodology applies iterative
activities about ”eliciting, evaluating, documenting, consolidating and chang-
ing the objectives, functionalities, assumptions qualities and constraints that the
system-to-be should meet based on the opportunities and capabilities provided by
new technologies” [14]. Among multiple RE approaches, Keep All Objectives
Satisfied (KAOS) is adopted as RE goal-oriented method, due to its formal
assertion layer that proves correctness and completeness of goals [15].

In KAOS the system-to-be is divided into various models. The goal models

elicit goals representing high level behavioral prescriptions of the system-to-be (the
monitoring system in this study). Each goal may serve one or more objectives, and
a given goal is realized through the cooperation of several components or actors,

the so-called Agents1. Goals are decomposed into sub-goals via a refinement pro-
cess (see Section 6), where the most refined goals are called Requirements, or Leaf
Goals ; in KAOS, each of those leaf goals is assigned to a specific agent in order
to be realized. Others goals, depicted within the obstacle models, are deduced
from the goal models and prevent the satisfaction of the latter. In our study, since
goals converge on the quality of monitoring, their obstacles will be related to the
monitoring failures. The operation models are composed of the sets of internal
operations carried by agents in order to realize the Leaf Goals. Finally, the object
models identify the system-to-be objects.

By iterating refinement process on goals and obstacles, leaf goals will be iden-
tified. Once leaf goals are determined, both of ECA policies (to be inserted
into the governability layer) and agents (invoking operations of the adaptability
layer) will be reconnoitered. Thus, monitoring adaptation is automatically han-
dled, and high level goals remain satisfied. However, human administrators have
to refine manually the high level objectives they want to reach, in order to iden-
tify the leaf goals. To facilitate this task, we investigated the monitoring aspects
that are subject to adaptation. As a result, we have identified various leaf goals
belonging to four dimensions (i.e., Spatial, Metric, Temporal, Exchange) [16].
In Section 5, we pursuit in proposing monitoring adaptation patterns falling into
those dimensions, in order to assist human administrators in refining goals.

5 Dimensions and Patterns

With regard to refinement process, besides the basic AND/OR-decompositions,
we rely on some predetermined correct and complete refinement patterns proved
mathematically [17]. Those patterns refine Achieve goals of the form P ⇒ ♦Q

(see Table 1), and written in Linear Temporal Logic (LTL) classical operators
where ♦, � and W mean respectively some time in the future, always in the
future, and always in the future unless. Starting from a given goal (P), milestone
pattern identifies one or many intermediate goals (R, [...]) that must be reached
orderly before reaching the ultimate one (Q). Rather, case pattern identifies the
set of different and complete cases (P1, P2) for reaching final goals (Q1, Q2)
that OR-decompose the ultimate goal (Q). Finally, the guard pattern requires
the recognition of a condition (R) before achieving the ultimate goal (Q).

In order to clarify the exploitation contexts, pattern goals and requirements, as
well as the various situations in which they may apply to, our pattern structure
encompasses: context, pattern refinement, and examples. Notice that we are
focusing on adaptation actions taken at the autonomic manager side only. Thus,
investigating adaptations at the agent side is out of scope. In addition, the
patterns are refined using KAOS graphical language [14].

1 Notice that Agents in networks and systems management are entities responding to
management requests coming from othermanagement entities calledManagers; there-
fore the term ”Agent” in RE has a different meaning.

Table 1. Patterns Refining Achieve Goals (P ⇒ ♦Q) [17]

Pattern Subgoal 1 Subgoal 2 Subgoal 3

Milestone Pattern P ⇒ ♦R R ⇒ ♦Q

Case Pattern P ∧ P1 ⇒ ♦Q1 P ∧ P2 ⇒ ♦Q2 �(P1 ∨ P2) Q1 ∨Q2 ⇒ Q

Guard Pattern P ∧ ¬R ⇒ ♦R P ∧R ⇒ ♦Q P ⇒ P W Q

5.1 Exchange Dimension Pattern

Context. Relying on IBM blueprint reference architecture [7], autonomic sys-
tems could distribute the MAPE loop over multiple collaborating autonomic
managers. Each of which is responsible for managing particular scope of man-
aged resources. Patterns belonging to this dimension are useful to overcome
metrics gathering and delivering problems. Those problems could affect either
metrics values, communication reliability between the information sources and
destinations, or even on trustworthiness of those sources and destinations.

Pattern Refinement. Communications inside autonomic system could be clas-
sified according to the entities involved in information exchange (i.e., managers,
agents, shared databases). Therefore, we identify three communication classes:
Manager-2-Agent, Manager-2-Manager, and Manager-2-Shared Database (see
Figure 1). By taking into consideration push and pull modes2, along with pre-
vious communications classes, we use case pattern for the first two refinement
levels to cover all possible cases. Based on the triplet 〈 Information Source,
Communication Protocol, Information Destination 〉, the Manager-2-Agent pull
mode will be OR-decomposed into Substitute Agent and Substitute Protocol leaf
goals. Rather, Substitute Protocol and Substitute Destination OR-decompose
both Manager-2-(Manager/SharedDB) push mode. Besides,Activate/Deactivate
Polling & Exporting leaf goals are elicited to launch and stop polling & exporting
(see Figure 2a).

Since a manager responds to pull requests in both Manager-2-(Manager/
Shared DB) pull mode communications, it is considered as agent (because it
is the source of information); therefore, this case becomes identical to Manager-
2-Agent pull mode. Moreover, adaptation actions related to Manager-2-Agent
push mode are not treated because they need to be held at the agent side.

Examples. This pattern is suitable for the following cases: (1) Increasing ac-
curacy or precision of pulled/pushed metrics values, by replacing information
source. (2) Querying more available agents, or blocking fake agents trying to
integrate the distributed management system. (3) Securing the communication
between information sources and destinations. (4) Modifying information desti-
nation when changing the topology of collaborating autonomic managers.

2 In pull, entity needing information solicits the one possessing it, that responds with
queried information; while in push, entity possessing information reports it to others.

(a) Exchange Pattern (b) Metric Pattern

(c) Spatial Pattern (d) Temporal Pattern

Fig. 2. Dimensional Patterns

5.2 Metric Dimension Pattern

Context. The main idea behind building autonomic systems is to delegate
decisions, that human administrators are used to make, to the autonomic systems
themselves. Thus, to be able to make ”wise” decisions, monitoring system needs
to instrument specific metrics that could be activated/deactivated according to
the management needs during runtime. Patterns belonging to this dimension
are useful to control the trade-off between constructing richer knowledge and
monitoring the information that is necessary for management.

Pattern Refinement. Metric instrumentation must be thought at the whole
management system level. In other words, a given autonomic manager could
activate/deactivate instrumentation of particular metrics, but when deactivat-
ing metrics on that manager, it doesn’t mean necessarily that those metrics
are ”abandoned”, because they could be transferred to other collaborating auto-
nomic manager on which they are activated. These two cases are OR-decomposing
the first refinement level. Regarding metrics manipulation inside autonomic

manager, the second refinement level uses case pattern to cover metric classes.
Our research exploits both CIM Metric Model [18] classifying metrics into Base,
Discrete & Aggregation, as well as our mathematical extension [13] classifying
base metrics into Resource, Measurable & Mathematical. Each of these classes
is OR-decomposed using Add Aspects and Remove Aspects leaf goals. On the
other hand, the transfer of metrics among autonomic managers could be refined
through milestone pattern, when metrics are activated on the collaborating man-
ager first (Add Aspects in Figure 2b, as Subgoal 1 in Table 1), and then removed
from the delegating one (Remove Aspects, as Subgoal 2).

It is worthy to precise that previously mentioned Aspects are representing
”metric definitions”, rather than ”metric values”. The former encompasses at-
tributes related to the nature of metric (e.g., data type, unit), while the latter
describes the instrumented values and their relevant contexts.

Examples. This pattern can be applied in the following cases: (1) Troubleshoot-
ing, or applying root cause analysis algorithms. (2) Modifying the hierarchical
topology of the management system by instrumenting aggregated metrics to be
exported to other managers or shared DBs. (3) ”Engineering” the distribution
of monitored metrics among autonomic managers.

5.3 Spatial Dimension Pattern

Context. As mentioned earlier, in autonomic system, each manager is respon-
sible for managing a set of managed resources. In many cases, the number of
users consuming the autonomic system services may oscillate rapidly, or even
become quite important in term of size. Thus, managed resources are subject to
be joined/withdrawn during runtime. Patterns belonging to this dimension are
useful to react to the important changes of the managed resources scope.

Pattern Refinement. As management of autonomic systems is orchestrated
by the collaboration of multiple autonomic managers, each of which can act on
its own perimeter, as well as the perimeters of its collaborating peers. Thus, the
first refinement level uses case pattern to cover these two cases. In fact, acting
on its own perimeter is OR-decomposed using Expand and Shrink Monitoring
Perimeter leaf goals to join/withdraw resources respectively into its managed
scope. Rather, acting on others perimeters is refined using case pattern into
deploying a new manager, or soliciting an existing one. First, the case of deploy-
ing a new manager is refined using milestone pattern into launching manager
(Launch Delegated Manager in Figure 2c, as Subgoal 1 in Table 1), and then,
delegating perimeter (Delegation, as Subgoal 2). In its turn, delegation goal is
also refined through milestone pattern into joining delegated perimeter on the
delegated manager (Expand Perimeter, as Subgoal 1), and then, deleting this
perimeter from the delegating manager (Shrink Perimeter, as Subgoal 2). About
the second case, where acting is held on existing manager, it is refined twice,
using milestone pattern, into delegating the whole perimeter to the delegated
manager (Delegation, as Subgoal 1), and then shutting down the delegating one
(Shutdown Delegating Manager, as Subgoal 2).

Examples. This pattern is suitable for the following cases: (1) Load balanc-
ing of monitoring among autonomic managers. (2) Supporting scalability of the
autonomic systems. (3) Decreasing the number of monitoring resources.

5.4 Temporal Dimension Pattern

Context. Temporal aspects are decisive factors in adapting monitoring behav-
ior. Notice that the previous patterns are explained without considering time
notions, but in fact, they imply some temporal aspects. Patterns belonging to
this dimension are useful to overcome, among others, both temporal violations
and scheduling problems, as well as to tune the analysis over the instrumented
metrics. However, these two cases are far from being exhaustive, and time inter-
venes in a lot of other cases.

Pattern Refinement. Regarding information exchange, once again, we use
case pattern to represent the same cases identified in exchange dimension. Obvi-
ously, dealing with information exchange temporal aspects, means that exchange
is done iteratively and not once. Thus, Manager-2-Agent case is OR-decomposed
into periodic poll, and both Manager-2-(Manager/Shared DB) cases are OR-
decomposed into periodic export. We distinguish two levels of temporal granu-
larity: the fine-grained level deals with an individual polling (exporting), whereas
the coarse-grained level addresses a collective polling (exporting). Based on this
distinction, we identify various leaf goals OR-decomposing periodic poll (ex-
port), where: Update Polling (Exporting) Period to update the frequency of a
given polling (exporting), Align Polling (Exporting) to launch a set of synchro-
nized parallel pollings (exported metrics) at the same time, and Misalign Polling
(Exporting) to launch pollings (exported metrics) according to a ”relative offset”
delaying their launching moments one another (see Figure 2d).

Regarding metrics calculation, we identify the case of modifying the temporal
interval covered by the metric value3. Therefore, case pattern is used twice to
cover all possible metric classes previously mentioned. But, we refine only mea-
surable, mathematical & aggregation metrics, because time has a sense in their
calculation, but not the others. Thus, we OR-decompose measurable & math-
ematical metrics using Update Time Scope Interval, while Update Time Series
Interval OR-decomposes aggregation metrics (see Figure 2d).

Examples. This pattern is suitable for the following cases: (1) Controlling (e.g.,
relaxing, stressing) the monitoring load on autonomic managers, network paths
among autonomic managers and shared DBs, as well as remote agents. (2) Tuning
temporal parameters of metrics analysis.

6 Case-Study

Context. Our scenario rolls in a cloud data center providing to the virtual ma-
chines (VMs) owners a continuous monitoring of their enforced SLAs metrics.

3 For instance, the throughput is not an instantaneous metric, and the validity of its
value equals to the temporal interval through which that value was measured.

Each VM integrates two agents (primary: MIB-II SNMP & secondary: SBLIM
ProviderCmpiBase) providing metrics reflecting the performance level of that
VM. In most large scale systems, distributed agents push metrics periodically;
in our case, agents push metrics each 10 seconds to specific pre-configured auto-
nomic managers. We assume that our studied SLA template distinguishes two
time-slots: metrics must be refreshed at the client side with a freshness falling
into the range of [3-6] seconds during the first time-slot, and a range of [30-40]
seconds for the second one. The SLAs metrics values are instrumented and de-
livered automatically through polling and exporting respectively in a manner
that, once new SLA is enforced, the autonomic managers pull metrics with the
lowest freshness value (3 seconds).

Objectives. Based on the data center management strategies, human admin-
istrators identify three high level monitoring goals: Respect Metrics Freshness
makes sure that SLAs are monitored appropriately regarding freshness, Mini-
mize Monitoring Cost aims at limiting the resources dedicated to monitoring as
much as possible, and React to Gathering Problems operates resilient gathering
mechanisms after analyzing the potential reasons of gathering problems.

Patterns. Several patterns could be exploited to refine the first objective. Dur-
ing the first time-slot, we use the temporal pattern to relax polling & exporting
by updating their periods (Update Polling & Exporting Period in Figure 3) with
respect to the highest freshness range (6 seconds). If delivering freshness vio-
lates the highest freshness, that would be a result of overloading manager [16],
thus we apply the spatial pattern as a second alternative, and consequently, a
new autonomic manager will be deployed to assist the overloaded one (Launch
Delegated Manager, Expand Perimeter & Shrink Perimeter). As a third alter-
native, and in case that the overloaded autonomic manager monitors non-SLAs
metrics (i.e., physical servers healthiness), the metric pattern could be applied
to transfer them to other manager, in order to relax the first one (Add & Re-
move Aspects). Since the second time-slot freshness ([30-40] seconds) is greater
than agents push period (10 seconds), there is no need to poll metrics, nor to
export all received metrics. Rather, we apply the temporal pattern to update the
exporting period from [3-4] to [30-40] seconds (Update Exporting Period), and
consequently, the first time-slot pollings will be stopped (Deactivate Polling).

The second objective is refined using spatial pattern in order to shutdown
recently deployed managers, during the first time-slot. Thus, an underloaded
manager delegates its whole perimeter to another one, and shutdowns itself (Ex-
pand Perimeter, Shrink Perimeter & Shutdown Delegating Manager). During
the second time-slot, autonomic managers already deliver to clients around one-
third of the metrics pushed by agents, thus no adaption actions are to be taken
in regard with minimizing monitoring resources.

As the third objective deals with gathering problems (e.g., lack of collected
information), autonomic managers would act on the exchange pattern. Notably,
they substitute either remote agent or communication protocol (Substitute Agent
& Protocol in Figure 3). But, if ”failures” at the agent side cause information

lack, in such case substituting protocol won’t solve the problem. Therefore, we
act on the metric pattern by launching troubleshooting to acquire more knowl-
edge (Add Aspects) required to determine the appropriate substitution.

For all previous objectives, autonomic managers adapt their monitoring if
they recognize adaptation stimuli. Therefore, we exploit guard pattern to apply
adaptation actions (Adaptation in Figure 3, as Subgoal 2 in Table 1) as response
to specific stimulus (Guard, as Subgoal 1), while maintaining the current moni-
toring behavior unless adaptation takes place (Unless, as Subgoal 3).

Milestone Pattern

Expand

Perimeter

Shrink

Perimeter

Launch

Delegated

Manager

Guard

Adaptation Unless

Guard

Pattern

Add

Aspects

Remove

Aspects

Mileston Pattern

Update

Exporting

Period

Milestone Pattern

Deactivate

Polling

Update

Exporting

Period

Milestone Pattern

Update

Polling

Period

Guard

Adaptation Unless

Guard

Pattern
Guard

Adaptation Unless

Guard

Pattern

Acting on

Temporal Dimension

Respect Metric Freshness

Acting on

Spatial Dimension

Acting on

Metric Dimension

Acting on Exchange &

Temporal Dimensions

Guard

Adaptation Unless

Guard

Pattern

Expand

Perimeter

Shrink

Perimeter

Milestone Pattern
Shutdown

Delegating

Manager

Guard Adaptation Unless

Guard Pattern

Minimize Monitoring Cost

Acting on Spatial Dimension

OR-Decomposition

Substitute

Agent

Substitute

Protocol
Add Aspects

Milestone Pattern

Guard Adaptation Unless

Guard Pattern

Acting on Exchange & Metric Dimensions

React to Gathering Problems

Fig. 3. Case-Study High Level Objectives Refinement

Applying Leaf Goals. In our case-study, autonomic managers are CIM servers
operating model-guided monitoring. Moreover, the healthiness indicators of the
physical servers, as well as each SLA template, are converted into a monitoring
mode each, whereby metrics and constraints are encapsulated.

The Update Polling/Exporting Period leaf goals are realized through applying
the corresponding methods on all SLA monitoring mode instances to stretch the
time interval of collecting/delivering metrics.

The Expand Perimeter leaf goal is realized in two manners: first, in case of
delegating managed resources to another autonomic manager, whereby the same
SLA templates are already enforced (i.e., SLAs monitoring modes are already
instantiated), the delegated manager will join the yet transfered managed re-
sources in their SLA monitoring mode instances. Otherwise the delegated man-
ager will activate the appropriate monitoring mode instances over the transfered
resources. However, the Shrink Perimeter leaf goal is realized through withdraw-
ing the determined managed resources from their SLA monitoring modes.

Each metric definition instance belonging to a SLA monitoring mode is sys-
tematically associated with a listening instance to update that metric with the
pushed values. But, the same metric definition is also associated with a polling
instance to pull its values according to the SLA period. However, Deactivate
Polling leaf goal is applied on all SLA monitoring mode instances to stop polling
and consequently listening continues to instrument associated metrics with the
agents push period.

Both Add/Remove Aspects leaf goals are realized respectively through mon-
itoring mode activation/deactivation. Therefore, to transfer the servers health-
iness indicators, the corresponding monitoring mode will be activated on the
delegated manager and deactivated from the delegating one. Rather, autonomic
manager activates the ”gathering troubleshooting” mode to determine whether it
must substitute agent or protocol. This mode encapsulates metrics collected from
remote agents SNMPv2-MIB variables, such as: snmpInBadVersions & snmpIn-
BadCommunityNames4. If the SNMP messages querying agent don’t increment
the ”gathering troubleshooting” mode metrics of that agent, it means that the
synthesized SNMP messages are correct, and probably the problem comes from
the agent itself; in that case, Substitute Agent is applied.

7 Conclusion and Perspectives

Based on the Requirements Engineering, we proposed a goal-oriented approach
for designing self-managed monitoring in autonomic systems. This approach as-
sists human administrators to adapt the monitoring system behavior regarding
quality requirements. We designed four reusable monitoring adaptation patterns
falling into reconfiguration dimensions.

About the perspectives, and in order to validate our approach, we need to
consider two validation levels. First, the completeness and correctness of the
patterns refinement must be validated. Using proof theory, we can avoid missing
some necessary requirements, and also, we can discover the available alternatives
to refine a given goal [17]. On the other hand, once the monitoring system
adaptation is modeled as a transition system (i.e., set of states and transitions)
through the Temporal Logic, we need to determine the critical properties to be
checked (i.e., invariance, safety, eventuality, fairness, and precedence) [19]. Using
model checking, the properties satisfaction is checked, either on particular state,
or path, or even the whole system model. Apart from validation, and besides
enriching patterns, adaptation actions at the agent side need to be investigated,
and orchestrated with those applied at the autonomic manager side.

4 These variables describe the number of SNMP messages delivered to a SNMP agent
with unsupported version and unknown ”community string”, respectively .

References

1. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

2. Grefen, P., Aberer, K., Ludwig, H., Hoffner, Y.: Crossflow: Cross-organizational
workflow management in dynamic virtual enterprises. International Journal of
Computer Systems Science & Engineering 15, 277–290 (2000)

3. Roxburgh, D., Spaven, D., Gallen, C.: Monitoring as an sla-oriented consumable
service for saas assurance: A prototype. In: 2011 IFIP/IEEE International Sympo-
sium on Integrated Network Management (IM), pp. 925–939 (2011)

4. Thongtra, P., Aagesen, F.: An adaptable capability monitoring system. In: 2010
Sixth International Conference on Networking and Services (ICNS), pp. 73–80
(2010)

5. Munawar, M.A., Reidemeister, T., Jiang, M., George, A., Ward, P.A.S.: Adaptive
monitoring with dynamic differential tracing-based diagnosis. In: De Turck, F.,
Kellerer, W., Kormentzas, G. (eds.) DSOM 2008. LNCS, vol. 5273, pp. 162–175.
Springer, Heidelberg (2008)

6. Nobre, J.C., Granville, L.Z., Clemm, A., Prieto, A.G.: Decentralized detection of sla
violations using p2p technology. In: Proceedings of the 8th International Conference
on Network and Service Management, pp. 100–107. International Federation for
Information Processing (2012)

7. IBM Corp.: An architectural blueprint for autonomic computing. IBMWhite Paper
(June 2005)

8. Weyns, D., et al.: On patterns for decentralized control in self-adaptive systems.
In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Self-Adaptive Systems.
LNCS, vol. 7475, pp. 76–107. Springer, Heidelberg (2013)

9. Ramirez, A.J., Cheng, B.H.C.: Design patterns for developing dynamically adaptive
systems. In: Proceedings of the 2010 ICSE Workshop on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS 2010, pp. 49–58 (2010)

10. Moui, A., Desprats, T., Lavinal, E., Sibilla, M.: A cim-based framework to man-
age monitoring adaptability. In: 2012 8th International Conference on Network
and Service Management (CNSM) and 2012 Workshop on Systems Virtualiztion
Management (SVM), pp. 261–265 (2012)

11. Moui, A., Desprats, T., Lavinal, E., Sibilla, M.: Information models for managing
monitoring adaptation enforcement. In: International Conference on Adaptive and
Self-adaptive Systems and Applications (ADAPTIVE), Nice, July 22-27, pp. 44–50
(2012)

12. Moui, A., Desprats, T., Lavinal, E., Sibilla, M.: Managing polling adaptability in
a cim/wbem infrastructure. In: 2010 4th International DMTF Academic Alliance
Workshop on Systems and Virtualization Management (SVM), pp. 1–6 (2010)

13. Toueir, A., Broisin, J., Sibilla, M.: Toward configurable performance monitoring:
Introduction to mathematical support for metric representation and instrumenta-
tion of the cim metric model. In: 2011 5th International DMTF Academic Alliance
Workshop on Systems and Virtualization Management (SVM), pp. 1–6 (2011)

14. Van Lamsweerde, A.: Requirements Engineering: From System Goals to UMLMod-
els to Software Specifications. Wiley (2009)

15. Van Lamsweerde, A.: Requirements engineering in the year 00: a research perspec-
tive. In: Proceedings of the 2000 International Conference on Software Engineering,
pp. 5–19 (2000)

16. Toueir, A., Broisin, J., Sibilla, M.: A goal-oriented approach for adaptive sla mon-
itoring: a cloud provider case study. In: LATINCLOUD 2013, Maceió, Brazil (De-
cember 2013)

17. Darimont, R., Van Lamsweerde, A.: Formal refinement patterns for goal-driven
requirements elaboration. In: Proceedings of the 4th ACM SIGSOFT Symposium
on Foundations of Software Engineering - SIGSOFT 1996, pp. 179–190 (1996)

18. DMTF Applications Working Group: Base metrics profile (December 2009)
19. Goranko, V.: Temporal logics for specification and verification. In: Proceedings of

the European Summer School in Logic, Language and Information, ESSLI 2009
(2009)

