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Abstract. A well known strategy for belief revision is the use of an op-
erator which takes as input a belief base and formula and outputs a new
consistent revised belief base. Many operators require additional informa-
tion such as epistemic entrenchment relations, system of spheres, faithful
orderings, subformulae relation, etc. However, in many applications this
extra information does not exist and all beliefs have to be equally consid-
ered. Other operators that can do without background information are
dependent on the syntax. Among the few operators that possess both
kinds of independence: of extra information and of the syntax, Dalal’s
operator is the most outstanding. Dalal’s revision moves from the models
of the base to the models of the input formula which are closest in terms
of Hamming distance. A drawback of Dalal’s approach is that it fails
when faced with inconsistent belief bases. This paper proposes a new
method for computing Dalal’s revision that avoids the computation of
belief bases models. We propose a new distance between formulae based
on distances between terms of formulae in DNF and a revision operator
based on these distances. The proposed operator produces Dalal’s equiv-
alent results when the belief base and new input are both consistent.
Moreover, this new operator is able to handle inconsistent belief bases.
We also analyze several properties of the new operator. While the input
belief base and formula need a compilation to DNF, the operator meets
desirable properties making the approach suitable for implementation.

1 Introduction

Belief revision is a framework that characterizes the process of belief change
in which an agent revises its beliefs when newly received evidence contradicts
them. Logic-based belief revision has been studied extensively [1–3]. Usually an
agent’s beliefs are represented as a theory or base K and a new input is in the
form of a propositional formula µ which must be preserved after the revision.
Many belief revision operators ◦ have been proposed to tackle the problem, they
take the base and the formula as input and reach a new consistent revised belief
base K ◦µ as output. Diverse operators existing in the literature need additional
information such as epistemic entrenchment relations [4], system of spheres [5],



faithful orderings [1], subformulae relations[6], etc. However, in most of the cases
we do not have this extra information. There exist formula-based belief oper-
ators which do not need extra information; however, they are sensitive to the
syntax, i.e., two equivalent inputs may produce different outputs. So they lose
the desirable property of independence of syntax that is met by most of the
operator mentioned previously. Dalal’s operator is the most outstanding revi-
sion technique that meets both: independence of syntax and independence of
extra information. The revision is based on the Hamming distance between in-
terpretations once it is extended to distances between interpretations and bases.
Dalal’s operator takes the interpretations which are models of the input formula
and which are closest to the belief base. In practice this framework entails a
costly computation of models. For example, suppose that K = {a → b} and
µ = a∧¬c∧d∧ e∧f ∧g. The approach needs to consider 96 models for the base
and 2 models for the input formula, so the approach calculates 192 distances
between interpretations in order to select the models of µ closest to K.

Another drawback of Dalal approach is its inability to revise inconsistent
bases. For example suppose an agent who holds the following information: it is
raining, if it is raining it is cloudy, it is not cloudy, and the sky is blue, represented
by the following base {a, a → b,¬b, c}, now suppose the agent receives the new
information: it is cloudy. In this case Dalal revision needs a preprocessing to
transform an inconsistent base into a consistent one and then revise by b. A
possible solution may be to consider each formula as a base and then merge the
formulae of the belief base, however, the process became more expensive and the
merging phase does not take into account the new information who may be the
key to recover consistency.

On the other hand, efforts have been made to reduce the computational costs
associated with models by compiling the initial belief base and new input into
prime implicant and prime implicate forms [7, 8]. Belief compilation has been
proposed recently for dealing with the computational intractability of general
propositional reasoning [9]. A propositional theory is compiled off-line into a
target language, which is used on-line to answer a large number of queries in
polynomial time. The idea behind belief compilation is to push as much of the
computational overhead into the off-line phase as possible, as it is then amortized
over all on-line queries. Target compilation languages and their associated algo-
rithms allow us to develop on-line reasoning systems requiring fewer resources.
Thus, we propose reducing computation by compiling the belief base and formula
representing new evidence to their Disjunctive Normal Form (DNF), and then
avoiding computation of distances from a interpretation to another by computing
a new distance directly between terms of formulae in DNF. The idea behind this
new distance is that instead of measuring how different the models of the belief
base are from a model of the new evidence, we compute how different the terms
of the belief base are from the terms of the formula representing new evidence.
This notion of distance between terms avoids reaching the level of models and
measures distances between sets of models represented by subformulae (terms)
instead. In the case of the previous example, the computed distances are only



2 instead of 192, see Section 3 for more details. While the operator based on
this new distance meets the desirable properties of independence of syntax and
of extra information, a compilation of the belief base and formula to a DNF is
required.

Classical belief revision always trust new information and thus revises the
current beliefs to accommodate new evidence to reach a consistent belief base.
Most studies on belief revision are based on the AGM (Alchourron, Gardenfors
& Makinson) postulates [6] which captures this notion of priority and describe
minimal properties a revision process should have. The AGM postulates for-
mulated in the propositional setting in [1], denoted as R1-R6, characterize the
requirements with which a revision operator should comply. For example, postu-
late R1, also called the success postulate, captures the priority of new evidence
over the belief base, it requires that the revision result of a belief base K by a
proposition µ (new information) should always maintain µ being believed. R3 is
the previously mentioned principle of independence of syntax. In this paper we
analyze the satisfaction of R1-R6 by the new operator.

To summarize, the major contribution of this paper is to propose a new
method that reproduces Dalal’s results and is able to handle two drawbacks
of Dalal’s revision: the need to compute all the models of formulae and the in-
ability to handle inconsistent belief bases. The new method satisfies postulates
R1-R6 when both inputs: the belief base and new evidence are consistent, and
it satisfies some of postulates when the inputs are inconsistent. The complexity
of the new method, once the formula is in DNF, is polynomial. The rest of the
paper is organized as follows. After providing some technical preliminaries and
reviewing the characterization of revision process, in Section 3 we introduce the
new distance and its respective operator. Then we analyze the satisfaction of
the postulates and the complexity issues. Finally, we conclude with some future
work.

2 Preliminaries

We consider a language L of propositional logic using a finite ordered set of
symbols or atoms P := {p1, p2, ..., pn}. A belief base/theory K is a finite set of
propositional formulae of L representing the beliefs from a source (we identify
K with the conjunction of its elements). A literal l is an atom or the negation
of an atom. A term D is a conjunction of literals: D = lr

1
∧ ... ∧ lr

m
, where,

r
i
∈ {1, ..., n} and l

ri
concerns atom pri . A minterm is term in which each atoms

of language appears exactly once. A Disjunctive Normal Form of a formula φ
is a disjunction of terms DNFφ =D1 ∨ ... ∨ Dk which is equivalent to φ. If
a literal l appears in a term D, it is denoted by l ∈ D and if D appears in
DNFφ, it is denoted by D ∈ DNFφ. If D is a term, index(D) denotes the set of
indexes of the literals appearing in D. For example, if D = p4 ∧ ¬p2 ∧ p8, then
index(D) = {2, 4, 8}.

A set of possible interpretations from P of language L is denoted asW . w ∈ W
is denoted as vectors of the form (w(p1), ..., w(pn)), where w(pi) = 1 or w(pi) = 0



for i = 1, ..., n. A interpretation w is a model of φ ∈ L if and only if φ is true
under w in the classical truth-functional manner. The set of models of a formula
φ is denoted by mod(φ). K is consistent iff there exists model of K.

|X | denotes the cardinality of X if X is a set or |X | denotes the number of
literals occurring in X if X is a term, finally, it denotes the absolute value of X
if X is a number. |l|

b
denotes 1 (respectively 0) if l is an atom (respectively the

negation of an atom). Let ≤ψ be a relation over a set of possible interpretations;
x =ψ y is a notation for x ≤ψ y and y ≤ψ x, and x <ψ y is a notation for x ≤ψ y
and y 6≤ψ x.

In [6] eight postulates have been proposed to characterize the process of belief
revision, which are known as the AGM Postulates. Assuming a proposition set-
ting, in [10, 1] this characterization is rephrased producing the following R1-R6

postulates, where K, K1 and K2 are belief bases to be revised and µ, µ1 and µ2

are new evidence:

R1. K ◦ µ implies µ.
R2. If K ∧ µ is satisfiable, then K ◦ µ ≡ K ∧ µ.
R3. If µ is satisfiable, then K ◦ µ is also satisfiable.
R4. If K1 ≡ K2 and µ1 ≡ µ2, then K1 ◦ µ1 ≡ K2 ◦ µ2.
R5. (K ◦ µ1) ∧ µ2 implies K ◦ (µ1 ∧ µ2).
R6. If (K ◦ µ1) ∧ µ2 is satisfiable, then K ◦ (µ1 ∧ µ2) implies (K ◦ µ1) ∧ µ2.

A representational theorem has been provided which shows equivalence be-
tween the six postulates and a revision strategy based on total pre-orders. The
theorem is based on the notion of faithful assignment. The formal definitions are
as follows [10]:

Definition 1. Let W be the set of all interpretations of a propositional lan-
guage L. A function that maps each sentence ψ in L to a total pre-order ≤ψ on
interpretations W is called a faithful assignment if and only if:

1. w1, w2 |= ψ only if w1 =ψ w2;
2. w1 |= ψ and w2 6|= ψ only if w1 <ψ w2; and
3. ψ ≡ φ only if ≤ψ=≤φ.

Theorem 1 (Representation Theorem). A revision operator ◦ satisfies Pos-
tulates R1-R6, iff there exists a faithful assignment that maps each sentence ψ
into a total pre-order ≤ψ such that: mod(ψ ◦ µ) = min(mod(µ),≤ψ).

3 Distance between Terms

Without loss of generality we consider only compiled languages so that each
belief base is taken as a DNF, and each formula representing new evidence is
taken as a DNF too. For example, for the belief base {a, a→ b,¬b, c}, we consider
the compiled belief base (a∧¬a∧¬b∧c)∨ (a∧ b∧¬b∧ c). Moreover, we consider
only terms with non repeated literals, then terms such as a ∧ a ∧ a ∧ b will be
considered simply as a ∧ b.



Classically in Dalal’s revision the process uses two type of distances: Ham-
ming distance which is a distance from a interpretation to another one defined
as follows: d(w1, w2) =

∑

p∈P |w1(p) − w2(p)| and a distance from a interpre-
tation to a belief base defined as follows: d(w,K) = min

w′∈mod(K)
d(w,w′). The

latter distance allows the definition of a pre-order over the models of the in-
put information, w1 ≤

K
w2 iff d(w1, K) ≤ d(w2, K). The closest interpreta-

tions to the belief base are the models of the revision process mod(K ◦
D
µ) =

min(mod(µ),≤
K
). Our proposal of belief revision is quite similar; the process

defines a distance between terms as follows:

Definition 2 (Distance between terms). Let D = lr
1
∧ ... ∧ lr

m
and D′ =

l′s
1
∧ ... ∧ l′s

k

be two terms, the distance between D and D′, denoted d(D,D′), is

defined as: d(D,D′) =
∑

i∈{r
1
,...,r

m
}

(

||li|b − |l′i|b | s.t. i ∈ {s1, ..., sk}
)

.

Or equivalently d(D,D′) =
∑

i∈index(D)

(

||li|b − |l′i|b | s.t. i ∈ index(D′)
)

,

when bothD andD′ are consistent, d(D,D′) =
∑

i∈index(D)∩index(D′) ||li|b−|l′i|b |

can be used instead. If both D and D′ are minterms, we can consider them
as possible interpretations and then recover Hamming distance. Moreover, the
following desirable properties are satisfied: d(D,D′) = d(D′, D) and d(D,D′) =
0 if D = D′.

This term-based distance allows us to define a succinct process to repro-
duce minimal Hamming distances. Consider the example in the Introduction,
where K = {¬a ∨ b} and µ = a ∧ ¬c ∧ d ∧ e ∧ f ∧ g. The 96 models
of K: {(0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 1), ..., (0, 1, 1, 1, 1, 1, 1), (1, 1, 0, 0, 0, 0, 0),
(1, 1, 0, 0, 0, 0, 1), ..., (1, 1, 1, 1, 1, 1, 1)} can be represented in a succinct form as
(0, x2, x3, x4, x5, x6, x7) or (x′1, 1, x

′
3, x

′
4, x

′
5, x

′
6, x

′
7) where every xi and x′i can

take the value 0 or 1. The models of µ can be represented in a succinct form as
(1, y2, 0, 1, 1, 1, 1) where y2 can take the value 0 or 1. Now, it is easy to verify
that a Hamming distance between two interpretations is the number of positions
for which the corresponding valuation of symbols is different. In other words, it
measures the minimum number of substitutions required to change one interpre-
tation into the other. We want to transform the models of K into models of µ
with minimal change. The notion of minimal change is expressed by substitutions
as follows: in order to change a model of K expressed as (0, x2, x3, x4, x5, x6, x7)
into a model of µ expressed as (1, y2, 0, 1, 1, 1, 1) we need to substitute 0 by 1 in
the first position and assign the following values to the variables: x2 = y2, x3 = 0,
x4 = 1, x5 = 1, x6 = 1, and x7 = 1, i.e., the minimal change, the minimal Ham-
ming distance for these two patterns is 1. Considering now the second succinct
form of expressing models of K: (x′1, 1, x

′
3, x

′
4, x

′
5, x

′
6, x

′
7), in order to transform

it into the succinct form of models of µ (1, y2, 0, 1, 1, 1, 1), no substitution is re-
quired, solely an assignment of Boolean variables as follows: x′1 = 1, x′3 = 0,
x′4 = 1, x′5 = 1, x′6 = 1, x′7 = 1 and y2 = 1. This means the minimal Hamming
distance for these two patterns is 0. Thus, we found the model of µ (1,1,0,1,1,1,1)
that represents the revision of K by µ in terms of minimal Hamming distance,
i.e. the minimal change found is 0: none substitution is required.



The succinct forms of models can be represented by terms of a DNF, hence,
¬a represents (0, x2, x3, x4, x5, x6, x7), b represents (x′1, 1, x

′
3, x

′
4, x

′
5, x

′
6, x

′
7) and

a∧¬c∧d∧e∧f∧g represents (1, y2, 0, 1, 1, 1, 1). Actually, in this case the models
of µ leave free solely the second position, which means that the models of K can
fix a Boolean value only in the second position if it is required to hold a minimal
change, in this case the second position is fixed with 1 by the second pattern of
K. To capture this notion of fixing a model of µ with the help of literal belonging
to the models of K, we introduce the notion of extension of terms as follows:

Definition 3 (Extension of terms). The extension of term D1 by a term D2,
denoted ext(D1, D2), is defined as: ext(D1, D2) = D1 ∧

∧

li∈D2|i6∈index(D1)
li.

I.e. the result of extending a term with a second term is a term that includes
all the literals of the former and the literals of the second term that do not
consider atoms appearing in the former. Notice that in the running example,
ext(¬a, a∧¬c∧d∧e∧f∧g) = ¬a∧¬c∧d∧e∧f∧g and ext(a∧¬c∧d∧e∧f∧g,¬a) =
a∧¬c∧d∧e∧f ∧g, then the extension of terms is not commutative. This notion
of extension can be extended to formulae. Thus, we will be able to extend the
terms of µ by terms of belief base K preserving consistency.

Definition 4 (Extension of formulae). We define the extension of formula
φ1 by a formula φ2, denoted ext(φ1, φ2), as the following multiset:

ext(φ1, φ2) = {ext(D1, D2)|D1 ∈ φ1 and D2 ∈ φ2}.

This definition can help us to find the potential extended terms that will form
part of the revision result. In the running example considering the term of µ
and the two terms of K, we have ext(µ,K) = {a ∧ ¬c ∧ d ∧ e ∧ f ∧ g, a ∧
b ∧ ¬c ∧ d ∧ e ∧ f ∧ g}. If we see a term as a subformula, we can find the
models of a term. Then mod(ext(D1, D2)) ⊆ mod(D1) and the union of the
models of every term appearing in a formula equals the models of the formula:
∪D∈φmod(D) = mod(φ). Thus ∪D∈ext(µ,K)mod(D) ⊆ mod(µ), i.e., the models
of the extension of µ by K are a refinement of the models of µ such that the
refinement models are the closest to the models of baseK, and then the extended
terms belonging to such extension are the potential candidates to forming part
of the revision result.

Once we compute the potential terms that may be part of the revision result,
the question arises of how to select from all the extended terms the ones that
will constitute the revision result? A solution is to deploy the notion of minimal
change, i.e., minimal substitutions for transforming a model of K into a model of
µ. Definition 2 measures the change required for such transformation. Note that
the distance between terms is a succinct form of computing Hamming distances
where the sum considers solely the atoms appearing in both terms and, as in
Hamming distance, the sum increases only when the related literals are opposite.
Definition 2 allows us to define a pre-order over the extended terms as follows:
ext(D1, D2) ≤ ext(D3, D4) iff d(D1, D2) ≤ d(D3, D4).

Which means that the extension of D1 by D2 is preferred to the extension of
D3 by D4. So, finally, the terms forming part of the operator’s outcome are the



extended terms of µ by terms of K that required minimal change to transform
a model of K into a model of µ, i.e.

Definition 5 (Dalal’s Revision without Hamming distance). Let K be a
belief base and µ a formula representing new evidence. The revision of K by µ,
K ◦ µ, is defined as follows: K ◦ µ =

∨

min(ext(µ,K),≤).

It should be noted that our process of revision inputs formulae in DNF and
outputs formulae in DNF, i.e. we propose a syntactical framework which is de-
sirable for a framework of iterated belief revision: from the second iteration the
compilation of formulae to DNF is no longer required. Classical Dalal’s revision
inputs formulae and outputs models.

Example 1. The following example was presented in [8]: K = (¬p2 ∧ ¬p3) ∨
(¬p1 ∧ ¬p3 ∧ p4) ∨ (¬p2 ∧ p4) and µ = (p3 ∧ ¬p4) ∨ (p1 ∧ p2). Dalal’s revision
must find the models of the result on the models of µ. As we can see in Table 1
the models of µ that are in the revision result using Dalal K ◦

D
µ are (0,0,1,0),

(1,0,1,0), (1,1,0,0), (1,1,0,1) and (1,1,1,1) which minimal Hamming distance is
1. An equivalent result is produced with our operator K ◦µ = (¬p2 ∧p3∧¬p4)∨
(¬p2∧p3∧¬p4)∨(p1∧p2∧¬p3)∨(p1∧p2∧¬p3∧p4)∨(p1∧p2∧p4) by computing
solely 6 distances instead of 49 (7 models of µ by 7 models of K), see Table 2.

Table 1. Distances between interpretations required for K ◦
D
µ

w′
∈ mod(K)

(0,0,0,0) (0,0,0,1) (0,0,1,1) (0,1,0,1) (1,0,0,0) (1,0,0,1) (1,0,1,1)

w ∈ mod(µ) d(w,w′) d(w,w′) d(w,w′) d(w,w′) d(w,w′) d(w,w′) d(w,w′)

(0,0,1,0) 1 2 1 3 2 3 2

(0,1,1,0) 2 3 2 2 3 4 3

(1,0,1,0) 2 3 2 4 1 2 1

(1,1,0,0) 2 3 4 2 1 2 3

(1,1,0,1) 3 2 3 1 2 1 2

(1,1,1,0) 3 4 3 3 2 3 2

(1,1,1,1) 4 3 2 2 3 2 1

Table 2. Distances between terms required for K ◦ µ

D1 = p3 ∧ ¬p4 ∈ µ D1 = p1 ∧ p2 ∈ µ

D2 ∈ K ext(D1, D2) d(D1, D2) ext(D1, D2) d(D1, D2)

¬p2 ∧ ¬p3 ¬p2 ∧ p3 ∧ ¬p4 1 p1 ∧ p2 ∧ ¬p3 1

¬p1 ∧ ¬p3 ∧ p4 ¬p1 ∧ p3 ∧ ¬p4 2 p1 ∧ p2 ∧ ¬p3 ∧ p4 1

¬p2 ∧ p4 ¬p2 ∧ p3 ∧ ¬p4 1 p1 ∧ p2 ∧ p4 1



Example 2. In [7] the following example is presented: K = a ∨ (a ∧ b) ∨ (a ∧
c) ∨ (b ∧ c) and µ = ¬a ∧ ¬b. From now we suppose that atoms are ordered
alphabetically. The models of µ are (0, 0, 1) and (0, 0, 0). As we can see in Table
3 the models of K ◦

D
µ are (0, 0, 0) and (0, 0, 1) too. Given 5 models of K, the

number of Hamming distances computed is 10. An equivalent result is found
with our operator K ◦ µ = (¬a ∧ ¬b) ∨ (¬a ∧ ¬b ∧ c) ∨ (¬a ∧ ¬b ∧ c), which
computes only 4 distances between terms.

Table 3. K ◦
D
µ

w ∈ mod(µ) d(w,K)

(0,0,0) 1
(0,0,1) 1

Table 4. K ◦ µ

ext(D1, D2) ∈ ext(µ,K) d(D1, D2)

¬a ∧ ¬b 1
¬a ∧ ¬b 2

¬a ∧ ¬b ∧ c 1
¬a ∧ ¬b ∧ c 1

As we can see in Table 4 the extension of terms of µ by terms of K can hold
repeated elements as a result of Definition 4 where a multiset is considered
instead of a set. However, the repeated elements do not necessarily hold the
same distance; we may compute different distances for repeated elements of
the multiset given that the repeated elements come from different extensions to
different terms. In this case the extended terms ext(¬a ∧ ¬b, a) and ext(¬a ∧
¬b, a∧ b) hold the same result ¬a∧¬b, even when the second operand is not the
same in both cases. Indeed, this difference is the cause of producing a different
distance between the corresponding terms: d(¬a ∧¬b, a) = 1 and d(¬a ∧¬b, a∧
b) = 2. This means that any model represented1 by a needs 1 substitution for
transforming it to a model represented by ¬a∧¬b while any model represented by
a∧b needs 2 substitutions for transforming it to a model represented by ¬a∧¬b,
see 2nd and 3rd rows in Table 4. Actually, it is simpler considering the terms as
subformulae, then we can say the models of a need at least 1 substitution for
being transformed to models of ¬a ∧ ¬b, while the models of a ∧ b need at least
2 substitutions for being transformed to models of ¬a ∧ ¬b.

Although the notion of multiset helps to define the process, this notion leads
into duplicate terms in the final result. Then, an elimination phase of repeated
terms will be desirable. A simple transformation from a multiset to a set will
be enough for erasing the repeated elements. However, there are non-desirable
elements as ¬a∧¬b∧c that is model inclusion subsumed by ¬a∧¬b, i.e.mod(¬a∧
¬b ∧ c) ⊆ mod(¬a ∧ ¬b). Thus, we propose cleaning the result as follows: first
create a set with terms that are not model inclusion subsumed by other terms,
NonSubsum(K ◦ µ) = {D ∈ K ◦ µ|∀D′∈K◦µmod(D

′) ⊆ mod(D)}, then take the
disjunction of such set Clean(K ◦µ) = ∨D∈NonSubsum(K◦µ)D. We can argue about
the necessity of computing models but actually this set can be defined through
indexes sets as follows: NonSubsum(φ) = {D ∈ φ|∀D′∈φ|index(D)⊆index(D′)|D| ≤

1 Recall, a representing a model means a represents the model pattern (1, x2, x3) where
x2 and x3 can take value of 1 or 0.



|D′| and ∀l∈Dl ∈ D′}. I.e., if two or more terms share the same literals the set
will keep only the term that has the minimal number of literals. So, K ◦ µ =
(¬a ∧ ¬b) ∨ (¬a ∧ ¬b ∧ c) ∨ (¬a ∧ ¬b ∧ c) can be written in an equivalent form
as Clean(K ◦ µ) = (¬a ∧ ¬b) which makes more apparent the equivalence with
Dalal’s result: mod(K ◦

D
µ) = {(0, 0, 0), (0, 0, 1)}.

Example 3. Let us now consider the inconsistent base presented at the beginning
of this section K = (a ∧ ¬a ∧ ¬b ∧ c) ∨ (a ∧ b ∧ ¬b ∧ c) and suppose that
the new evidence b is received, then as we can see in Table 5 the models of µ
can be computed, however, there are no models of K, which disqualify Dalal’s
revision: the Hamming distances cannot be computed. The result of our operator
is Clean(K ◦ µ) = a ∧ b ∧ c which means the agent gives up its belief concerning
¬b but keeps the rest. The process transforms the inconsistent base K into a
consistent base K ◦ µ with a minimal change. Notice that the extended term
a ∧ ¬a ∧ b ∧ c is model inclusion subsumed by a ∧ b ∧ c, due to an inconsistent
term being subsumed by a consistent one.

Table 5. K ◦
D
µ

w ∈ mod(µ) d(w,K)

(0,1,0) ?
(0,1,1) ?
(1,1,0) ?
(1,1,1) ?

Table 6. K ◦ µ

ext(D1, D2) ∈ ext(µ,K) d(D1, D2)

a ∧ ¬a ∧ b ∧ c 1
a ∧ b ∧ c 1

Our operator can deal with inconsistent beliefs bases, which do not have any
models; in contrast Dalal’s operator does not operate without belief base models.
Some authors such as [11] consider K ◦

D
µ = µ when K is inconsistent, however,

the revised result loses too much consistent information which can be retained.
Let K = a ∧ ¬a ∧ b ∧ c ∧ ¬c and new evidence µ = c, the revised result is
K◦

D
µ = c, which is consistent but the revision itself violates the minimal change

principle. The agent actually gives up all the previous information keeping on
the new information. Iteratively, an agent would forget everything every time
it has inconsistent information and retains only the newest information. Notice
that between the inconsistencies there is consistent information about b which is
lost. The result of our approach conserves as much as possible the information of
K, i.e. K ◦µ = a∧¬a∧b∧c, even when the result is inconsistent, the agent keeps
the information concerning b, gives up the contradiction about c and retains the
contradiction about a. Actually, the method can be easily extended for recovering
consistency when the result is not consistent: merely erasing the contradictory
information; then for this example the result would be b ∧ c.

4 Postulates and Complexity

We show now that the newly proposed operator satisfies postulates R1-R6. In
[10] the representation theorem is used for proving Dalal’s operator satisfies



the postulates, therefore, we show our proposal and Dalal’s revision provide
equivalent results.

Proposition 1. If both K and µ are consistent formulae in DNF, then K◦
D
µ ≡

K ◦ µ where ◦
D

denotes Dalal’s revision operator and ◦ denotes terms distance-
based revision operator.

Proof. First, if a interpretation w belongs to the set of models of formula φ:
w ∈ mod(φ), there exists at least one term D ∈ φ such that w ∈ mod(D).
(⇒) Let w ∈ mod(K ◦

D
µ) iff w ∈ mod(µ) and ∀w′∈mod(µ) w ≤

K
w′, then

∀w′∈mod(µ) minx∈mod(K)d(w, x) ≤ minx∈mod(K)d(w
′, x). Let x′ ∈ mod(K) such

that d(w, x′) =minx∈mod(K)d(w, x) and callm the Hamming distance between w
and x′, i.e. d(w, x′) = m; note that m is the minimal Hamming distance between
w and base K, in other interpretations the minimal change for transforming a
model of K into a model of µ is m. Now, we use the notation introduced above:
pi = 1 and ¬pi = 0, where pi is an atom and i = 1, ..., n, then w can be seen as
(l1, ..., ln) and x

′ can be seen as (l′1, ..., l
′
n) where li = pi if w(pi) = 1 and li = ¬pi

if w(pi) = 0 and similarly for the l′is. Notice that there are m opposite literals
between w and x′, i.e. Hamming distance between w and x′ can be calculated
by

∑n

i=1 ||li|b − |l′i|b | = m.
Also, it is worth to note that for every term D1 ∈ µ such that w ∈ mod(D1) it

must be satisfied that if l ∈ D1, l ∈ {l1, ..., ln}, similarly, for every term D2 ∈ K

such that x′ ∈ mod(D2) it must be satisfied that if l ∈ D2, l ∈ {l′1, ..., l
′
n}; thus

∑

i∈index(D1)∩index(D2)
||li|b −|l′i|b | ≤

∑n
i=1 ||li|b −|l′i|b | = m, i.e. d(D1, D2) ≤ m.

Now, suppose that d(D1, D2) < m, then there exists a model of K that can be
transformed to a model of µ with strictly less substitutions thanm, contradicting
the fact that m is the minimal Hamming distance. Therefore, d(D1, D2) = m,
which means that all the opposite literals appear in both terms, thus ext(D1, D2)
extends D1 with literals of D2 that do not oppose the literals of D1, there-
fore if l ∈ D2 and l ∈ ext(D1, D2) then l ∈ {l1, ..., ln}, which means that
w ∈ ext(D1, D2). Now, suppose that there is a ext(D3, D4) ∈ ext(µ,K) such
that ext(D3, D4) < ext(D1, D2), then d(D3, D4) < d(D1, D2), i.e., we can find a
model of D4 (model of K) that can be transformed into a model of D3 (model
of µ) with strictly less substitutions than m, which is not possible. Therefore,
∀ext(D3,D4)∈ext(µ,K) ext(D1, D2) ≤ ext(D3, D4) and given that w ∈ ext(D1, D2),
we can conclude that w ∈ mod(K ◦ µ).
(⇐) The proof in the other direction is straightforward. Let w ∈ mod(K◦µ), then
there exist k terms D′

1, ..., D
′
k in µ such that w ∈ mod(D′

i), i = 1, ...k. Let’s take
D1 ∈ {D′

1, ..., D
′
k}, D2 ∈ K such that w ∈ ext(D1, D2) and ∀ext(D3,D4)∈ext(µ,K)

ext(D1, D2) ≤ ext(D3, D4), notice that we assure the existence of such D1

and D2, given that w ∈ mod(K ◦ µ). Thus ∀ext(D3,D4)∈ext(µ,K) d(D1, D2) ≤
d(D3, D4), which means that the minimal change for transforming a model of
K into a model of µ is the same distance required for transforming a model
of D2 into w, which in terms of Hamming distance is expressed as ∀w′∈mod(µ)

minx∈mod(D2)d(w, x) ≤ minx∈mod(K)d(w
′, x). Given that mod(D2) ⊆ mod(K),

∀w′∈mod(µ) minx∈mod(K)d(w, x) ≤ minx∈mod(K)d(w
′, x) holds, which means that



∀w′∈mod(µ) w ≤K w′, clearly w ∈ mod(µ) and finally, we can conclude that
w ∈ mod(K ◦

D
µ).

�

Thus, we can be sure that the distance-based operator ◦ based on terms satisfies
postulates R1-R6 when both the belief base and new evidence are consistent.
When the belief base or the new evidence are inconsistent, then only some of
the properties are satisfied. For instance, it is evident R2 is satisfied, however, R1

and R3 are not satisfied, let’s take K = ¬a∧a and µ = b then K ◦µ = ¬a∧a∧b,
which intuitive interpretation is if the agent holds inconsistent beliefs concerning
a and he receives information concerning b he keeps holding its inconsistency
concerning a because the new information does not help him to give up the
inconsistency. R4 is not satisfied, we can find inconsistent belief bases or formulae
for which results are not equivalent. Finally, our operator satisfy R5 and R6, for
the sake of space we omit the proofs.

Complexity: An important issue is the computational complexity of the op-
erators, even when the revision methods are intractable in the general case, it
is not clear under which restrictions the methods would became tractable. The
most widely investigated computational task in the literature is deciding the fol-
lowing relation: K ◦µ |= φ where K, µ and φ are inputs. I.e., Given a knowledge
base K, a new formula µ and a formula query φ, decide whether φ is a logical
consequence of the revised belief base K ◦ µ. The complexity of Dalal’s revi-
sion operator belongs to, in the general case, PNP [O(log n)]-complete (the class
of problems solvable in polynomial time using a logarithmic number of calls
to an NP oracle, where an NP oracle is a subroutine solving an NP-complete
problem) [11]. Another problem studied is the complexity of model checking for
belief revision: given a knowledge base K, a new formula µ and a interpretation
w, decide if w ∈ mod(K ◦ µ). The complexity of Dalal’s revision in this case is
in PNP [O(log n)]-complete too [12]. The authors in both cases have proved that
the complexity remains the same whether inputs are restricted to those in Horn
format (conjunctions of Horn clauses) or not. However, as far as we know there
is no formal analysis when inputs are restricted to those in the dual format (dis-
junctions of terms) even when it is evident that the problem of determining the
satisfiability of a Boolean formula in DNF is polynomial time.

Once the inputs are in DNF the proposed method can be implemented in poly-
nomial time. The extension of terms can be computed in n1 ∗ n2 ∗ n3, where n1 is
the number of terms in K, n2 is the number of terms in µ and n3 is the maximum
number of literals appearing in a term, if both K and µ are consistent n3 is the
number of atoms of the language. Thus, for realistic implementations we propose
maintaining an algorithm in class polynomial using a method that transforms a
formula to its DNF, we know that the worst case, when the input is a formula in
Conjunctive Normal Form (CNF), has exponential complexity. However, given the
quantity of research about SAT problems, we can find many efficient examples in
the literature transforming a formula to CNF, which can be adapted distributing
conjunction over disjunctions rather than disjunctions over conjunctions in the fi-
nal step of the conversion and then obtain an algorithm for dealing with realistic
scenarios, in particular we are interested in adapting the algorithm used in [13].



5 Conclusion

One of the most established methods of revising belief bases without extra infor-
mation is Dalal’s operator, which takes as input a belief base K and a formula
µ and gives as result a revised consistent belief base. Suitable implementations
of Dalal’s operator must deal with the calculation of belief base models. In this
paper, we have proposed a new method for computing Dalal’s revision which
does not need to compute Hamming distances and calculates distance between
terms instead. Given that the classical revision framework gives priority to new
evidence, the proposed method uses definitions considering this principle, thus
the extension of formulae gives priority to the new formula µ keeping all the
literals of µ and complementing the term with literals of K. However, there are
some attempts that consider µ should not have the priority, and our approach
is flexible enough that Definition 3 can be easily adapted in order to take ex-
tensions of K by µ instead of µ by K or we can consider a weighted formulae
to compute the extension. The operator meets the desirable properties of R1-R6

when both inputs are consistent. When the belief base or new information is
inconsistent some properties are satisfied such as R2, R4, R5, independence of
extra information and the first property of iterated belief revision framework
[2]. Properties R1, R3 and R4 cannot be accomplished for inconsistent inputs,
however, the results seem intuitive.

Our method has another advantage over Dalal’s result: its representational
succinctness at once erasing both repeated and subsumed terms. As future work,
a deep analysis of the definitions will be carried out in order to combine this
approach with an algorithm transforming formulae to its DNF and solve realistic
cases. Moreover, an analysis and extension of the proposal will be considered in
order to satisfy the four properties of iterated belief revision framework.
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