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Abstract. This paper develops methods to reason about graph
transformation rules for proving the preservation of structural proper-
ties, especially global properties on reachability. We characterize a graph
transformation rule with an applicability condition specifying the match-
ing conditions of the rule on a host graph as well as the properties to
be preserved during the transformation. Our previous work has demon-
strated the possibility to reason about a graph transformation at rule-
level with applicability conditions restricted to Boolean combinations of
edge expressions. We now extend the approach to handle the applica-
bility conditions containing transitive closure of edges, which implicitly
refer to an unbounded number of nodes. We show how these can be in-
ternalized into a finite pattern graph in order to enable verification of
global properties on paths instead of local properties on edges only.

Keywords: graph transformations, verification, formal methods, tran-
sitive closure, global property.

1 Introduction

Graph transformations have numerous applications in computer science. Many
of them can be considered safety critical and therefore have to satisfy stringent
correctness requirements. Verifying the correctness of a transformation involves
formulating a property to be verified using a suitable logic and providing a
method for proving the correctness of a given transformation. Although many
efforts have been made to prove properties about transformation systems, like
confluence or termination, there is only little work on ensuring the correctness
of transformations. One challenge here is that many verification problems turn
out to be hard to express, or worse, to be undecidable on graphs.

Two popular strategies can be used for verification of graph transformations:
model checking and theorem proving. Works on model checking involve exploring
the set of reachable states of a graph transformation system with respect to

⋆ Part of this research has been supported by the Climt (Categorical and Logical
Methods in Model Transformation) project (ANR-11-BS02-016).



a start graph to ensure that the required conditions holds. This technique is
in particular possible if the graph is small enough but puts immediate limits
on the state space of problems, potentially enormous, that can be explored by
model checkers. In contrast to the model checking approach, the theorem proving
approach reasons about constraints on states, not about instances of states. The
search space of a theorem prover is thus typically infinite, whereas the search
space of model checkers are usually finite (though large). One drawback of the
theorem proving approach is that it is typically done interactively with advanced
proof skills and not automatically, as in model checking.

The work described in this paper adopts the theorem proving approach to
prove that a transformation rule is correct when applied to an arbitrary graph,
provided certain applicability conditions are met. Our aim is to develop methods
allowing to demonstrate the preservation of a given structural property during
a graph transformation. A fundamental question underlying our approach is: is
it possible to reason about a graph transformation by just taking into account
the elements appearing in the rule itself, without having to consider others that
might exist in the graph where the rule is applied?

This paper homogenizes and continues the strands developed by the authors
in previous papers [17,18], in which we have shown that reasoning about a trans-
formation applied to an arbitrary graph can be essentially reduced to reasoning
about a bounded portion of the graph, namely the image of the transformation
rule in the target graph. However, in this previous work, the verifiable proper-
ties are restricted to those that can be formulated by Boolean combinations of
simple edge relations, encompassing properties that hold for vertices or constant-
size vertex-neighborhoods. Consequently, the proposed solution could not handle
global properties that hold for the graph as a whole, thus concern possibly an
infinite number of edges which are outside of the rule, as acyclicity and connec-
tivity. Generally, global properties must be expressed and verified at a global
level [3]. The challenges here are how to express those global properties in the
rule’s applicability condition and how to reason about a possibly infinite num-
ber of nodes and edges with a finite number of computations. In this paper, we
extend our approach to deal with global properties on paths in the rules’ appli-
cability conditions, especially connectivity and separation, thus allow verifying
global properties at the rule-level.

First we introduce transitive closure patterns to express that the rule can be
applied provided that two nodes are connected via the transitive closure of an
edge relation. Then we show that this pattern, even though referring to a possibly
unbounded number of nodes, can be reduced to a verification on simple edges,
thus allows automation in this case. We also point out that sometimes one has to
stipulate the non-existence of a connection in the underlying graph. Reasoning
about these negative connectivity patterns turns out to be much more difficult,
and we cannot give a complete calculus. We present however some reasoning
patterns that allow a simplification in common situations.

We have used the interactive proof assistant Isabelle to model the transfor-
mations and to carry out the proofs described in this paper.



The rest of the paper is structured as follows: after a summary of our graph
transformation representation in Section 2, we give some introductory examples
in Section 3. Then in Section 4 we describe the background of our approach for
rule-level verification. Section 5 presents the main contributions of this paper
to handle the applicability conditions having transitive closure patterns in order
reduce them to a finite case. In Section 6 we discuss some significant related
work. Then we conclude with a perspective on future work.

2 Graphs and Graph Transformations

In order to facilitate the understanding of the rest of this article, we summarize
our way of representing graphs and graph transformations.

In its simplest form, a graph gr is a datatype with two functions nodes (yield-
ing the set of the nodes of the graph) and edges (yielding the set of edges of
the graph). An edge is just an ordered pair of nodes. The node set of a graph is
assumed to be finite (and, consequently, is the edge set).

A graph transformation rule gt is characterized by the following elements:

– Transfo gives the rule’s name, followed by a list of parameters that designate
nodes of the graph that the rule is applied to.

– Appcond specifies under which applicability condition the rule can be ap-
plied to a given graph. This condition, having as only free variables the rule’s
parameters, is a path formula whose structure will be defined later.

– Action describes which nodes and edges are to be deleted or added during
the transformation.

Visually represented, a graph transformation rule consists of a left-hand side
graph (LHS) and a right-hand side graph (RHS). The rule’s LHS presents the
rule’s applicability condition and the rule’s RHS presents the result of the rule’s
actions.

The specification of the transformation in Figure 1 is given as follows. The
transformation Refactoring is applicable to three nodes c1, c2 and c3. The ap-
plicability condition is that there is an edge between c1 and c3 (written as
≪ c1, c3 ≫) and another between c2 and c3. The action is to delete the edge
≪ c1, c3 ≫ and to add one between c1 and c2.

c1 c2

c3

c1 c2

c3

n1 n2

n3

n4 n1 n2

n3

n4

Fig. 1. Application of a graph transformation rule



Transfo Refactoring(c1, c2, c3)
Appcond ≪ c1, c3 ≫ ∧ ≪ c2, c3 ≫
Action delete-edges: ≪ c1, c3 ≫

add-edges: ≪ c1, c2 ≫
When applying the transformation rule gt to a host graph gr, we need the notion
of morphism which maps the variables of the rule to nodes of the target graph.
For example, in Figure 1 the morphism is the mapping [c1 7→ n1, c2 7→ n2, c3 7→
n3]. Quite naturally, some nodes of the graph gr might not be in the image of
the morphism, e.g. node n4.

For a transformation rule gt, its applicability condition appcond gt is repre-
sented by a path formula pf built on path expressions pe which are defined as
follows:

pe ::= ≪ n1, n2 ≫ - edge between nodes n1 and n2

| n1  n2 - path between nodes n1 and n2

pf ::= pe - elementary path formula
| ¬ pf
| pf ∧ pf

Given a graph transformation gt, a host graph gr, a graph morphism gm:

– the predicate path-form-interp defines what it means for the applicability
condition of gt, i.e. the path formula pf, to be satisfied under gm in gr.

– the application apply-graphtrans-rel performs the modifications specified in
the action part of the transformation rule gt, by adding (respectively delet-
ing) nodes and edges. The precise definition is technically more complex
because it has to take deletion of dangling edges into account (c.f. [16]).

With these preliminaries, we can define apply-transfo-rel, the relation between
a graph gr and the graph gr′ resulting from applying the transformation gt to gr.

∃gm.path-form-interp gr gm pf ∧ apply-graphtrans-rel gt gr gr′

apply-transfo-rel gt gr gr′

This definition is entirely descriptive and not executable, because it imposes
no choice as to which morphism gm (among several applicable morphisms) is
selected. The graph gr′ thus appears as a function of gr.

3 Illustrating Examples

To illustrate the motivations of our work, we use the example of refactoring nav-
igation models to reorganize the set of web pages included in a web application
and the links between those pages.

The rule displayed in Figure 2 describes a refactoring step that might be
carried out on a navigation model. This rule refers explicitly to three pages c1,
c2 and c3. The solid arrow −→ presents a direct navigation link r and the dashed
arrow − → presents a navigation path r∗ (reflexive-transitive closure of direct
navigation links). The refactoring step consists in cutting the direct navigation
link between c1 and c3 and introducing one between c1 and c2. As explained in



c1 c2

c3

c1 c2

c3

Fig. 2. Reorganizing a navigation model

Section 2, the rule’s LHS presents the applicability condition. The application
context might require that this refactoring only extends, but does not restrict the
previous navigation possibility, for example in order to avoid that pages become
unreachable. For example, the transformation keeps c3 accessible from c1 thanks
to the navigation path c2− → c3. If r is the navigation relation before and r′ the
navigation relation after refactoring, we can express this preservation property
more formally by the requirement r∗ ⊆ (r′)∗.

The delicate point about this transformation is the navigation path c2− → c3
in the rule’s applicability condition, because it might be composed of some edges
inside the rule, or might refer to an arbitrary number of intermediate nodes that
are not explicitly mentioned in the rule. The next sections discuss three possible
patterns of such a path and point out the problems to resolve for reducing
the reasoning of graph transformation application to reasoning about the graph
transformation rule.

3.1 Edge Conditions

The first example, displayed in Figure 1, describes the refactoring rule where the
navigation path c2− → c3 contains just one edge (c2, c3). This example repre-
sents a more general case of transformation rules whose applicability condition
includes only the elements described inside the rule. In other words, the appli-
cability conditions of such rules can be expressed with path formulae that are
essentially Boolean combinations of simple edge relations.

In our previous work [17], we have proposed a solution to reason locally about
this kind of transformation rules to prove the preservation of reachability prop-
erties. We will briefly recapitulate the approach in Section 4.

3.2 Positive Path Conditions

Figure 3 shows the second example illustrating a more complicated case of ap-
plicability condition where the navigation path c2− → c3 is a reflexive-transitive
closure of direct navigation links. Thus, this path might pass through nodes that
are not described explicitly in the rule but appear in the host graph where the
rule is applied. For example, when applying the rule on the graph in the lower
part of Figure 3, we can see that the nodes in the image of the morphism (the
dark-shaded area), namely n2 and n3, are connected by a path running through
the outside node n4.

Suppose that the transformation preserves the navigation path c2− → c3, this
example typifies transformation rules requiring the existence of transitive closure



c1 c2

c3

c1 c2

c3

n1 n2

n3 n4

n1 n2

n3 n4

Fig. 3. Positive path condition (n2  n3)

patterns in the rule’s applicability condition. We call such conditions “positive
path conditions”.

The first representation of the rule defined in Figure 2 is given in Figure 4a.
The applicability condition, which is restricted to positive path condition in this
example, is that there is an edge between c1 and c3 (written as ≪ c1, c3 ≫) and
a path between c2 and c3 (written as c2  c3).

Transfo Refactoring(c1, c2, c3)
Appcond ≪ c1, c3 ≫ ∧(c2  c3)

Action delete-edges: ≪ c1, c3 ≫
add-edges: ≪ c1, c2 ≫

(a) positive path condition

Transfo Refactoring(c1, c2, c3)
Appcond ≪ c1, c3 ≫ ∧(c2  c3)

∧¬(c2  c1)
Action delete-edges: ≪ c1, c3 ≫

add-edges: ≪ c1, c2 ≫

(b) positive and negative path conditions

Fig. 4. Definition of the rule Refactoring

The question here is how to reduce reasoning about the transitive closure
relation r∗ in the rule’s LHS to reasoning about the direct edge relation r.

In Section 5.1, we will propose a solution to eliminate positive path conditions
in order to enable a rule-level verification of reachability properties.

3.3 Negative Path Conditions

Unfortunately, defined as in Figure 2, an application of the rule might lead to an
incorrect result if the navigation path c2− → c3 is affected by the transformation.
Figure 5 shows an example of such situations. As one can see in this example, the
path between the images of c2 and c3, namely the navigation path n2− → n3,
runs through nodes n4 and n1. While n4 is outside the image of the rule in the
graph, n1 and n3 are inside the rule’s image. The transformation deletes the
image of edge (c1, c3) on the graph, i.e. the edge (n1, n3) and the navigation
path n2− → n3 is not preserved. Consequently, n1 is no more connected to n3

after application of the rule, contrary to the intention of the rule.
Specifically for this example, a (very strict) solution is to forbid a path between

c2 and c1: ¬(c2− → c1). This solution introduces a “negative path condition”
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Fig. 5. Positive path condition (n2  n3); Negative path condition ¬(n2  n1)

into the rule’s applicability condition besides the positive one and makes the
local reasoning about the rule more difficult to deal with.

Figure 4b shows the rule in Figure 2 reinforced by forbidding the path be-
tween c2 and c1 to guarantee its correct applications on any graph. This second
applicability contains then a negative path condition ¬(c2  c1).

In Section 5.1, we will outline where negative path conditions come into play
during elimination of positive path conditions.

4 Rule-level Verification Based on Graph Decomposition

In this section, first we formalize the problem of graph transformation verifi-
cation. Then, we briefly recapitulate our approach for reasoning about graph
transformation at rule-level.

The properties that we want to prove are properties of global preservation of
reachability or non-reachability (separation), formalized in the form
– (edges gr)∗ ⊆ (edges gr′)∗ for reachability or
– (edges gr′)∗ ⊆ (edges gr)∗ for non-reachability (separation).

where edges gr is the edge relation of the original graph and edges gr′ is the
edge relation of the transformed graph.

In [17], we have shown that if we restrict the applicability conditions to path
formulae that are essentially Boolean combinations of simple edge relations, it is
possible to reason about a graph transformation by just taking into account the
nodes appearing in the rule itself, without having to consider other nodes that
might exist in the graph where the rule is applied. We explain the main points
of our approach in the following.

In a transformation, nodes included in a rule, denoted as node set A, repre-
sent free variables of the transformation’s application condition, i.e. the possible
images of the transformation under a given graph morphism. Embedding these
conditions into a larger graph leads us to split the graph into an interior zone of
A which is involved in the transformation, and an exterior zone of A which is a
priori unaltered.



Since the properties of interest in this paper are mostly concerned with the
edge relations of a graph, we define the interior and exterior of a relation r with
respect to a node set A as follows:

definition interior A r = r ∩ (A×A)
definition exterior A r = r \ (A×A)

So an edge belongs to the interior if both of its endpoints are in A; otherwise it
belongs to the exterior.

An example is depicted in Figure 1: when choosing A = {n1, n2, n3} and
r = (edges gr), the interior zone is the dark-shaded part in Figure 1, i.e.
{(n1, n3), (n2, n3)}, and the exterior zone is the light-shaded part, i.e. {(n4, n1)}.

The interior and exterior of a relation are disjoint and add up to the whole
relation again:

interior A r ∩ exterior A r = ∅ (1)

interior A r ∪ exterior A r = r (2)

Similar lemmas hold for transitive closure and reflexive-transitive closure; in
the following we give those of reflexive-transitive closure:

((interior A r)∗ ∩ (exterior A r)∗)∗ = ∅ (3)

((interior A r)∗ ∪ (exterior A r)∗)∗ = r∗ (4)

The following two lemmas are at the heart of the decomposition method that
we propose. When applied from right to left, they split up a goal into an exterior
and an interior that can then be further simplified.

(interior A r ⊆ interior A s) ∧ (exterior A r ⊆ exterior A s) = (r ⊆ s) (5)

((interior A r)∗ ⊆ (interior A s)∗) ∧ ((exterior A r)∗ ⊆ (exterior A s)∗)

=⇒ (r∗ ⊆ s∗) (6)

However, the converse of the last lemma does not hold in general. In fact, we
will choose A to be the largest set of nodes i.e. nodes of the interior occurring
in both relations r and s. We call field this and so we have:

field s ⊆ A ∧ r∗ ⊆ s∗ =⇒ (interior A r)∗ ⊆ (interior A s)∗ (7)

field r ⊆ A ∧ r∗ ⊆ s∗ =⇒ (exterior A r)∗ ⊆ (exterior A s)∗ (8)

The detail proofs of the above lemmas are given in [16]. Examining the above
subset containments of interior and exterior enables us to have a sound and also
complete decomposition for a class of graphs where the region A has been chosen
large enough.

Concretely, considering the edge relation edges gr (or variants with transi-
tive closures (edges gr)∗) of a graph gr, to prove the preservation of reacha-



bility properties after the transformation on the graph gr′, we replace the goal
(edges gr) ⊆ (edges gr′) with two new goals:

(exterior A (edges gr)) ⊆ (exterior A (edges gr′))

and (interior A (edges gr)) ⊆ (interior A (edges gr′))

where in practice A will be the largest set of nodes whose existence is ascertained
in the actual proof goal.

If the rules only have preconditions that are Boolean combinations of edge
relations, it is sufficient to split the graph into an interior (the subgraph which lies
entirely within the image of the rule’s free variables under the graph morphism)
and an exterior (the rest of the graph). The exterior of the graph can henceforth
be disregarded; it is sufficient to verify the desired property on the interior of the
graph, which can be done by a Boolean satisfiability check or, in the simplest
case, by a symbolic computation.

Let us conclude this section by applying the above procedure to our example in
Figure 1 to prove the preservation of all the paths in gr′ after the transformation.
The operational description of the rule specifies the addition of the edge (n1, n2)
and the deletion of the edge (n1, n3) in the graph gr′. The injective morphism
injective-morphism maps the variables of the rule to the nodes of the target
graph gr. The initial goal is (edges gr)∗ ⊆ (edges gr′)∗. After expansion of
definitions and some tidying of the proof state, this goal is derived into:

[[ n1 ∈ nodes gr;n2 ∈ nodes gr;n3 ∈ nodes gr;
injective-morphism[c1 7→ n1, c2 7→ n2, c3 7→ n3];
(n1, n3) ∈ edges gr; (n2, n3) ∈ edges gr;
nodes gr′ = nodes gr; edges gr′ = {(n1, n2)} ∪ (edges gr − {(n1, n3)})]]
=⇒ (edges gr)∗ ⊆ ({(n1, n2)} ∪ (edges gr − {(n1, n3)}))∗

Since the variables n1, n2 and n3 are free in our goal, we choose A = {n1, n2, n3},
and obtain two new subgoals:

(exterior {n1, n2, n3} (edges gr))∗

⊆ (exterior {n1, n2, n3} ({(n1, n2)} ∪ (edges gr − {(n1, n3)})))∗

∧ (interior {n1, n2, n3} (edges gr))∗

⊆ (interior {n1, n2, n3} ({(n1, n2)} ∪ (edges gr − {(n1, n3)})))∗

We develop the first goal by using the definition of exterior and the distributive
property and get the refined goal:

(exterior {n1, n2, n3} (edges gr)) ⊆ ({(n1, n2)} \ ({n1, n2, n3} × {n1, n2, n3}))∪

(exterior {n1, n2, n3} (edges gr) \ ({(n1, n3)} \ ({n1, n2, n3} × {n1, n2, n3})))

In this first goal, we have ({(n1, n2)} \ ({n1, n2, n3} × {n1, n2, n3})) = ∅ and
({(n1, n3)} \ ({n1, n2, n3}×{n1, n2, n3})) = ∅. Thus, the goal can be eliminated.

The second goal, after reductions by using the definition of interior, becomes



{(n1, n3), (n2, n3)}∗ ⊆ {(n1, n2), (n2, n3)}∗ which can be verified by a simple
symbolic computation.

5 Local Reasoning about Path Conditions

The question about local reasoning becomes more complex in the presence of
transitive closures in the applicability conditions of a rule, as in the relation
c2− → c3 in Figure 2. Dealing with transitive closure is a difficult problem that
quickly becomes undecidable [8]. The existence of transitive closure patterns
might be in the form of positive path conditions (as in Figure 4a) or negative
path conditions (as in Figure 4b) that is considered as the adequate applicability
condition of the rule in Figure 2:

Appcond ≪ c1, c3 ≫ ∧ (c2  c3) ∧ ¬(c2  c1)

This applicability condition requires the presence of the edge (c1, c3), the
existence of a path between c2 and c3, but forbids a path between c2 and c1.

In the following, we outline:

– how to eliminate positive path conditions (Section 5.1);
– where negative path conditions come into play during elimination of positive

paths (Section 5.1);
– after the reductions of transitive closure patterns, how to reason about graph

transformations by applying the decomposition approach presented in Sec-
tion 4 (Section 5.2).

We recall that we are mainly interested in problems of preservation of reachability
of the form (edges gr)∗ ⊆ (edges gr′)∗. Slightly rewritten, this is the problem of
showing (x, y) ∈ (edges gr)∗ ⇒ (x, y) ∈ (edges gr′)∗, for arbitrary x, y.

Lastly, the problems of preservation of separation are symmetric and can be
handled with identical methods, so we only concentrate on the first kind of
problem. To simplify the discussion and avoid complicated case distinctions, we
furthermore make the assumption that graph morphisms are injective.

5.1 Materialization of Paths

The first step in our simplification procedure consists in replacing paths in our
applicability conditions by edges in order to reduce reasoning about paths to
reasoning about edges only. The following property justifies this step:

Lemma 1 (Path replacement)

(a, b) ∈ r∗ =⇒ ({(a, b)} ∪ r)∗ = r∗

and similarly for transitive closure (.)+ instead of reflexive-transitive closure (.)∗.

The lemma expresses that a path a  b known to exist in a graph can be
materialized by adding the edge ≪ a, b ≫ without changing the path relation.



Proof. In the following, we show the property for transitive closure only; reflexive-
transitive closure is similar, but slightly more involved.

One direction of this equation is trivial by using monotonicity of the transitive
closure relation:

r ⊆ r ∪ {(a, b)} =⇒ r+ ⊆ (r ∪ {(a, b)})+

The direction ({(a, b)}∪r)+ ⊆ r+ can be seen by expanding (v, w) ∈ ({(a, b)}∪
r)+ into (v, w) ∈ r+ ∨ ((v = a ∨ (v, a) ∈ r+) ∧ (b = w ∨ (b, w) ∈ r+)) and then
showing (v, w) ∈ r+ by case distinction. These steps lead to four situations
automatically resolved:

[[(a, b) ∈ r+; v = a; b = w]] =⇒ (v, w) ∈ r+,
[[(a, b) ∈ r+; v = a; (b, w) ∈ r+]] =⇒ (v, w) ∈ r+,
[[(a, b) ∈ r+; (v, a) ∈ r+; b = w]] =⇒ (v, w) ∈ r+,
[[(a, b) ∈ r+; (v, a) ∈ r+; (b, w) ∈ r+]] =⇒ (v, w) ∈ r+. ⊓⊔

In Lemma 1, we have dealt with the addition of a new edge; we need a related
lemma for removal of an edge, as the edge ≪ c1, c3 ≫ in the rule presented in
Figure 4.

Lemma 2 (Deletion of unreachable edge)

(v, a) /∈ r∗ =⇒ ((v, w) ∈ (r − {(a, b)}))∗ ⇔ ((v, w) ∈ r∗)

This lemma expresses that if a node a is not reachable from a node v in a graph,
then any edge (a, b) starting from a can be removed without influencing the
reachability from v.

Proof. The left to right direction is trivial: as (r−{(a, b)}) ⊆ r, so (r−{(a, b)})∗ ⊆
r∗ by monotonicity of transitive closure.

To prove the other direction, we define the set reach v r of nodes reachable
from node v under relation r: reach v r = {w/(v, w) ∈ r∗}.
– The definition of reach allows us to conclude :

(v, w) ∈ r∗ =⇒ (v, w) ∈ (r ∩ (reach v r) × (reach v r))∗ (a)

– By assumption we have (v, a) /∈ r∗ which means a /∈ reach v r and implies:

(a, b) /∈ ((reach v r)× (reach v r))∗ (b)

– From (a) and (b) we can conclude that (r ∩ (reach v r) × (reach v r))∗ ⊆
(r − {(a, b)})∗ and therefore (v, w) ∈ (r − {(a, b)})∗. ⊓⊔

5.2 Proving Preservation of Paths

Lemma 1 and Lemma 2 are used as conditional rewrite rules in the process of
materialization. The starting point is to show that ({(a, b)} ∪ r)∗ = r∗, if there
is a path a b in the applicability condition of a rule. During simplification, we
may obtain subgoals of the form (x, y) ∈ r∗, which may be simplified by

– recursive use of Lemma 1,
– recursive use of Lemma 2,
– monotonicity rules of the form (x, y) ∈ r∗ =⇒ (x, y) ∈ s∗, for r ⊆ s.



To ensure termination, we do not try to simplify or to prove goals of the form
(x, y) /∈ r∗. Rather, these negative path conditions have to be directly given as
hypotheses.

(x, y) ∈ (edges gr)∗ =⇒ (x, y) ∈ (edges gr′)∗

where edges gr is the edge relation of the original graph and edges gr′ is the
edge relation of the transformed graph, possibly after addition of some edges
that materialize paths.

To get rid of the abstract set edges gr and edges gr′, we perform the graph
decomposition presented in Section 4. By choosing A is the set of all nodes found
in the transformation rule, (interior A (edges gr))∗ is the image of the rule LHS
and (exterior A (edges gr))∗ = ∅. Consequently, this process leaves us with the
only goal:

(interiorA (edges gr))∗ ⊆ (interiorA (edges gr′))∗

We can therefore reduce the global reasoning on gr and gr′ to the local reasoning
on the images of LHS and RHS.

With these observations, we can verify the transformation in our example in
Figure 4b. In this example, we have the preconditions: (x, y) ∈ (edges gr)∗;
(n1, n3) ∈ edges gr and (n2, n3) ∈ (edges gr)∗. We furthermore have (n2, n1) /∈
(edges gr)∗. Under these preconditions, we have to show

(x, y) ∈ ({(n1, n2)} ∪ (edges gr − {(n1, n3)}))
∗

We now materialized the path n2  n3 by the edge (n2, n3), then showing
that this goal is equivalent to

((x, y) ∈ ({(n2, n3), (n1, n2)} ∪ (edges gr − {(n1, n3)}))
∗

Proof. Indeed,
– By assumption we have (n2, n1) /∈ (edges gr)∗. By Lemma 2 we can write:

(n2, n3) ∈ (edges gr − {(n1, n3)})
∗ ⇔ (n2, n3) ∈ (edges gr)∗ (a)

– Then by monotonicity of reflexive-transitive closure we have:

(n2, n3) ∈ (edges gr − {(n1, n3)})
∗ =⇒

(n2, n3) ∈ ({(n1, n2)} ∪ (edges gr − {(n1, n3)}))
∗

(b)

– From (b) and using Lemma 1 to add the edge (n2, n3) to the set in (b), we
have (n2, n3) ∈ ({(n1, n2)} ∪ (edges gr − {(n1, n3)}))∗ =⇒

({(n2, n3), (n1, n2)} ∪ (edges gr − {(n1, n3)}))
∗

= ({(n1, n2)} ∪ (edges gr − {(n1, n3)}))
∗

(c)

Thanks to (c), we have the new equivalent proof goal ((x, y) ∈ ({(n2, n3), (n1, n2)}
∪ (edges gr − {(n1, n3)}))∗ which can then be tackled with the methods of Sec-
tion 4.



Choosing A = {n1, n2, n3}, after decomposing the graph, we get the goal

{(n1, n3)}
∗ ⊆ {(n2, n3), (n1, n2)}

∗

which can be verified by a simple symbolic computation. ⊓⊔

6 Related Work

There are two main approaches in formal verification of graph transformations:
solutions based on category theory and solutions based on a logical framework.
The first one uses an underlying algebraic formalism as a framework for speci-
fying and executing transformations. The second one defines a suitable logical
framework to encode graphs and their properties, then uses inference methods
to verify the properties on graphs as logical structures. While the category ap-
proach can propose efficient solutions, its level of generalization is rather low.
Logical frameworks present general solutions but have to dealt with the problem
of decidability and computational complexity. Some recent work on verification
of graph transformations tries to take advantage of both of the above approaches.

In this paper we have followed the logical approach, however without defin-
ing a new logic, and focus on the verification of global properties. In the same
spirit, Basil Becker et al. [1,2] proposed an automatic verification of invariants
by creating symbolic representations for possible violations of the rule’s proper-
ties. Then every transformation rule is inspected with respect to well-formedness
constraints expressed either as a forbidden or a conditional forbidden pattern
of the modeling language’s meta-model. This work encodes graph patterns as
first-order predicates, therefore it has to define additional maintenance rules in
order to ensure global properties which cannot be expressed by forbidden or
conditional forbidden patterns. In comparison with [2], we try to encapsulate
global properties at the rule level by replacing paths with edges (see Lemma 1
and Lemma 2) without adding extra-predicates on nodes and edges which have
to be analyzed during the verification process.

In [3] the authors analyzed global graph properties as connectivity, acyclicity
and the Eulerian and Hamiltonian properties which are not definable in a basic
modal logic. Then they proposed using a basic hybrid logic for some of these
properties, a hybrid logic with a specific operator for Hamiltonian property and
a hybrid logic together with a graded modal logic in order to handle numerical
conditions for Eulerian property.

The work in [12] adds proposition graphs to transformation rules in order to
compactly described feature connectivity patterns required during the transfor-
mation. The invariants to be verified are expressed in Computation Tree Logic
(CTL). The main result of this paper states a satisfaction condition theorem
for a transformation rule which preserves a given property. Close to us, [10] in-
troduced the *-labelled edge notation as a replacement for a set of paths, each
representing a possible sequence of edges. On the opposite, forbidden paths using
regular expressions is proposed in the tool Augur2 [11].



In [9], the authors verified graph transformations written in Core UnCAL
against the specified input/output graph structural constraints (schemes) in
Monadic Second-Order logic (MSO). They first represented both Core UnCAL
transformations and schemes by MSO formulas and then developed an algorithm
to reduce the graph transformation verification problem to the validity of MSO
over trees. The efficiency of this work relies on the algorithm to map the type-
annotated Core UnCAL to a MSO-definable graph transduction, in conjunction
with the decision procedure to verify MSO formulas.

The traditional algebraic approach has been also explored for reasoning on
graph transformations. In this context, graph structures and properties are log-
ically interpreted [13,5]. In [14,6] Pennemann et al. introduced the notion of
nested graph conditions to describe structural properties. Since these conditions
are first-order logic on graphs with a graphical representation of the nodes and
edges, they cannot describe non-local graph properties. This approach extracts
graph conditions and feeds them into SAT solvers or first-order theorem provers.
However, there is no tight coupling between the semantics (expressed in categor-
ical terms) and the proof obligation generator, and thus there is a dependency
on a larger trusted code base.

In [7], the authors generalized the concept of nested graph conditions to Hy-
peredge Replacement conditions (HR) as conditions over graphs with variables.
HR+ [15], the extension of HR, have been proposed as counterpart to MSO for-
mulas to deal with global properties. The authors investigated the expressiveness
of HR+ conditions and show that graphs with variables and replacement mor-
phisms form a weak adhesive HLR category. Their conditions allow to express
non-local properties of graphs.

In [4] the authors generalized Courcelle’s notion of recognizable graph lan-
guages. They defined the logic on subobjects together with a procedure for
translating MSO graph formulas into automaton functors for a class of categories
including the category of graphs. This work allows defining complex properties
such as “a subgraph is closed under reachability”, or “there exists a path from
x to y”. However, this theoretical approach has practical consequences: graph
decomposition into smaller units leads to a complex translation of graph formu-
las and more troublesome is the explosion of the state sets of automata which is
still an open problem.

7 Conclusion

Expressive transformation patterns (such as transitive closure) that go beyond
what is commonly used in graph rewriting systems are useful in some applica-
tion domains, and they are amenable to a formal analysis. In this sense, we have
presented simplification strategies that reduce reasoning about paths to rea-
soning about edges. These strategies can be understood as preprocessing steps
carried out before verification procedures applicable to more restricted graph
transformations.

The simplification method we have presented is sound, but not complete. Also,
our approach is currently geared towards the preservation of particular properties



(reachability and separation). However, for dealing with the challenge of transi-
tive closures, we think that our heuristic approach is a good compromise that
we try to extend to other common reasoning patterns. We will also investigate
more systematic sound and complete procedures, but for weaker logics.

As witnessed by our examples, it is difficult to get rules right; in particular, this
means that some preconditions covering unsuspected special cases are usually
missing. Another interesting line of research is therefore to help developers of
rules find the right applicability patterns for transformations that are supposed
to satisfy particular correctness conditions.
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H., Rensink, A., Rozenberg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol. 6372,
pp. 410–412. Springer, Heidelberg (2010)

16. Strecker, M.: Interactive and automated proofs for graph transformations. Techni-
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