
HAL Id: hal-01178553
https://hal.science/hal-01178553v1

Submitted on 21 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Smart-TV security analysis: practical experiments
Yann Bachy, Frédéric Basse, Vincent Nicomette, Eric Alata, Mohamed

Kaâniche, Jean-Christophe Courrège, Pierre Lukjanenko

To cite this version:
Yann Bachy, Frédéric Basse, Vincent Nicomette, Eric Alata, Mohamed Kaâniche, et al.. Smart-
TV security analysis: practical experiments. International Conference on Dependable Systems and
Networks, Jun 2015, Rio de Janeiro, Brazil. �hal-01178553�

https://hal.science/hal-01178553v1
https://hal.archives-ouvertes.fr


Smart-TV security analysis: practical experiments

Yann Bachy∗†§, Frédéric Basse¶, Vincent Nicomette∗†, Eric Alata∗†,
Mohamed Kaâniche∗‡, Jean-Christophe Courrège§ and Pierre Lukjanenko∗

∗CNRS, LAAS, 7, Avenue du colonel Roche, F-31400 Toulouse, France
†Univ de Toulouse, INSA de Toulouse, LAAS F-31400 Toulouse, France

‡Univ de Toulouse, LAAS F-31400 Toulouse, France
§Thales Communications & Security, 3, avenue de l’Europe, 31400 Toulouse, France

¶Thales Communications & Security, 5, Rue Marcel Dassault, 78140 Vélizy-Villacoublay, France
∗ firstname.name@laas.fr, §¶ firstname.name@thalesgroup.com

Paper category: practical experience

Abstract—Modern home networks are becoming more and
more complex with the integration of various types of intercon-
nected smart devices, using heterogeneous networking technolo-
gies. Many of these devices are also connected to the Internet,
generally through an integrated access device. Those smart
devices are potentially vulnerable to several types of attacks. In
this practical experience report we investigate the specific case
of smart TVs. The main objective is to experimentally explore
possible attack vectors and identify practically exploitable vulner-
abilities and attack scenarios. In particular, the study covers local
and remote attacks using different entry points, including the
Digital Video Broadcasting (DVB) transmission channel and the
copper-pair local loop. Several methods, allowing to observe and
simulate service provider networks, are used to support several
experiments considering four types of commercially available
smart TVs for a comparative analysis. We also discuss several
methods allowing to extract and analyze the embedded firmware,
and obtain relevant information concerning target devices.

I. INTRODUCTION

Digital technologies have become widely used in home
networks. At their beginning, home Internet connections were
only considered as an access to the World Wide Web. More
services have been offered later to the users with the intro-
duction of triple-play offers and the possibility to watch TV
or initiate phone-calls using the Internet connection. The trend
toward making every day home equipment more “Smart” has
been strengthened during the recent years. As an example,
kitchens are being equipped with smart-refrigerators, hospital-
izations can be shortened by medical home equipment, and
more and more housework can be supported by different
smart automation systems. Many of these smart devices run
operating systems and are connected among each other, by
several networks, allowing them to interact and to be accessed
remotely through the Internet. As a consequence the security of
such devices has become a real concern[1]. As an example, the
French Network and Information Security Agency (ANSSI) [2]
is concerned by the possibility of Integrated Access Devices
(IAD) or other connected home devices getting compromised
and used to perform large scale attacks based e.g., on botnets.

A typical example concerns smart-TVs. Besides receiving
TV programs using an aerial antenna or a satellite dish, these
new-generation TVs integrate an operating system and an
Ethernet connection, allowing them to offer more features to

the users. Protocols, such as HbbTV1, allow TV stations to
combine interactive Internet content with their live TV shows.
From a security point of view, two important aspects must
be considered. Firstly, like any other embedded device, the
embedded operating system may contain vulnerabilities that
could be exploited by an attacker. Secondly, the simultaneous
connectivity of the TV to several networks makes it possible
for an attacker to use it as a gateway between these networks.
Clearly, smart-TVs could represent a real security threat for
home networks. Thus, it is important to analyze their security
and then investigate protection mechanisms to mitigate the
related security risks.

The main objective of paper is to experimentally explore
possible attack vectors and identify practically exploitable
vulnerabilities and attack scenarios. Our first contribution
addresses the possibility of compromising a smart-TV through
two public area networks: the ADSL network and the Digital
Video Broadcasting (DVB) network. Our second contribution
addresses the operating systems embedded in smart-TVs. We
discuss a set of methods allowing to extract and analyze the
firmware of smart-TVs. Indeed, the attack path explored in the
first part of this paper has seldomly been investigated by related
work in this area. We analyzed four types of commercially
available smart TVs and observed significant differences from
the security point of view. This attack path becomes even
more dangerous if one has sufficient knowledge of the target
device, and the embedded software. With this knowledge, far
more subtle attacks can be performed, allowing an attacker to
remotely alter the behavior of the firmware of any smart-TV or
to replace the firmware by another. Whereas these attacks are
usually performed using the local area network, they become
feasible remotely through the new attack path combined with
the knowledge of the firmware. Some examples of such attacks
are discussed at the end of this paper.

This paper is structured as follows. First, Section II
discusses attack entry points and related work. Section III
describes the different solutions we used during our exper-
iments. Then Section IV presents the different experiments
we conducted and their results. Section V explores several
techniques to retrieve firmwares. Section VI presents an attack
scenario combining our novel attack paths and specific knowl-
edge of target device firmware, leading to a dreadful attack.

1Hybrid Broadcast Broadband TV

1



Finally, Section VII concludes this work and outlines possible
countermeasures and some perspectives for future work.

II. ATTACK SURFACE AND RELATED WORKS

This section presents the different attack paths concerning
smart-TVs in a home network and their related works. Figure 1
illustrates a typical home network containing a Smart-TV with
its multiple connexions. The different attack paths analyzed in
this section are pointed out by green arrows.

Home

Smart-TV

TV Antenna

Integrated
Access Device Internet

TV Software Server

ADSL local loop

DVB
broadcast

(3) Remote software corruption attacks

(2) Remote network attacks

(1
a)

L
oc

al
at

ta
ck

s

(1b)

(4) DVB broadcast attacks

(5) ADSL network attacks

Fig. 1. Case Study: Smart-TV home network

A. Local and Remote attacks

Local attacks require a physical access to the target device
(1a), or an access to one of the local networks the target
device is connected to (1b). Therefore, these kinds of attacks
are executed by someone in or nearby the target device’s home.
These local attacks are commonly addressed in the literature
[3][4][5]. In [6] authors monitor the local home network traffic
in order to infer which TV program the user is watching. There
are many on-line forums centralizing information on how-to
compromise a specific device, or group of devices ([7] [8]),
e.g., by changing the firmware of the TV or enabling some
hidden features.

Anyway, remote attacks consist in exploiting, from the
Internet(2), some vulnerability included in a Smart-TV con-
nected to a home network. Remote network attacks are
often hampered by the presence of an IAD, using NAT
techniques. Indirect attacks, using corrupted firmwares or
malicious applications(3), are more common, since Smart-
TVs present almost the same attack vectors as a personal
computer[9][10][11].

B. DVB and ADSL network attacks

TV and ADSL2 networks, are traditionally not considered
as a source of threats. However, potential attacks exploiting
vulnerabilities of such service provider networks could have an
impact on the security of devices connected to these networks.
In Figure 1, these networks are highlighted in red. DVB
network attacks (4) were investigated recently, in particular
in [12] that explored HbbTV privacy related issues. The first
HbbTV attack scenarios are studied in [13]. To our knowledge,
ADSL network attacks from the local loop (5) have been
seldom addressed. These attacks could allow the attacker to

2Asymmetric Digital Subscriber Line

gain access to a smart-TV in a user’s home, compromise
privacy, install malicious software or carry out denial-of-
service attacks. In a more critical scenario, a smart-TV could
be used as a gateway to attack other devices connected to a
home network.

C. Discussion

We can notice that traditional attack paths (1a), (1b), (2)
and (3) are commonly covered in the related state of the
art research, unlike the other attack paths targeting DVB (4)
and ADSL networks (5) that have been seldom addressed.
There is also a lack of experimental results covering such
attack scenarios. Moreover, to our knowledge, no previous
study explored experimentally the potential security threats
related to the possible combination of these different attack
paths. The objective of this paper is to experimentally analyze
vulnerabilities related to the connection to these networks
and show how the exploitation of these vulnerabilities may
endanger the security of the whole home-network.

In the following, we first describe our experimental setup.
This setup includes, for both TV and ADSL networks practical
techniques: i) to observe legitimate traffic on the network and
identify related vulnerabilities, and ii) to simulate the service
provider and then check the feasibility of some attack scenar-
ios. Then in Section IV, we describe the different experiments
we conducted on both ADSL networks and terrestrial DVB
broadcasts and discuss the results.

III. EXPERIMENTAL SETUP

In this section, we describe the different solutions we have
used or developed in order to conduct our experiments. Some
of these solutions are based on existing software, others require
a specific hardware setup. These platforms allowed us to carry
out some comparative studies which are presented in section
IV. For each study (ADSL local loop, DVB), we proceed in
two steps 1) analyze and understand the legitimate traffic and
behavior of the network, and 2) simulate the service provider
on the other side of the network with whom the smart-TV
communicates.

A. Local loop

The first study that we have carried out focused on the
analysis of the local loop supporting the ADSL network.
This network was historically installed for public switched
telephone networks (PSTNs). Beside telephony, this network
transports other services such as Internet and TV. This implies
that many data communications, possibly critical, use this
network. Considering all this makes it legitimate to consider
the security of this network.

There are 4 main physical supports used for the local
loop: copper pair, coaxial, fibre optics and radio waves. We
hereinafter only consider copper pair local loops. The method
developed in our study can be applied to any kind of local loop
by using analogous hardware. This copper pair is terminated
by a MoDem (Modulator and Demodulator) on the user’s side,
and by a DSLAM (Digital subscriber Line Access Multiplexer)
on the provider’s side. These two equipments modulate and de-
modulate a digital signal into high-frequency analog signals
which are transmitted over the copper pair.

2



1) Traffic Observation setup: This setup is intended to
observe any traffic on a copper pair local loop and is composed
of a DSLAM and an ADSL modem.

IAD Modem DSLAM ISP

DSLAM Modem

copper pair copper pair

ethernet

Fig. 2. Local loop traffic capturing

The DSLAM and modem on each end of the copper pair
fulfil the exact opposite operation of each other. Indeed, the
modulation used on the up-stream differs from the one used
on the down-stream. Therefore, it is possible to physically
cut the line and insert a new DSLAM and a new ADSL
modem, while preserving the connectivity between the cus-
tomer and the provider. In fact, this modification changes the
way the IAD communicates with the provider’s DSLAM: it
synchronizes and communicates with the inserted DSLAM; the
inserted DSLAM communicates with the inserted ADSL mo-
dem which, in turn, synchronizes and communicates with the
provider’s DSLAM. As the local network interface included in
both modems and DSLAM are most of the time Ethernet, this
manipulation finally consists in transforming one copper line
into two copper lines interconnected by an Ethernet LAN (see
Figure 2). As sniffing on an Ethernet LAN is very easy, the
communications sent and received by the IAD during setup
can be observed.

2) Simulation setup: This platform simulates a service
provider based on the knowledge of our target system ac-
quired using the traffic observation platform or other reverse
engineering techniques such as those described in Section V.
Here, instead of connecting our DSLAM to the provider’s
network using a modem, we connect it to a computer capable
of simulating the behaviour of a service provider (cf. Figure 3).
The installation of this server is accomplished step by step
following an iterative method. We cyclically reboot the target
system, observe any request coming from the target system
and answer it by installing corresponding software based on
the knowledge we have of the target system.

IAD Modem DSLAM ISP

DSLAM Simulator ISP Simulator

copper pair

ethernet

Fig. 3. Emulating an Internet Provider

B. DVB Broadcasts

The second service provider network we have tested is the
aerial DVB-T system used for digital Television. TV broad-
casts are the same for everybody and are generally considered
as trustworthy. Classical television is a one-way system, which
implies that consumers do not have to worry about privacy in
any way. With Digital TV and smart-TVs, these assumptions
are no longer valid, which makes it interesting to analyze their
security. DVB Broadcast security concerns have already been

addressed[13] using some relevant aspects of modern Smart-
TVs. However, we consider some interesting experiments that
have not been carried out so far, and we hereinafter present the
solutions we have used to conduct some comparative studies
on different types of smart-TVs available on the market.

1) DVB: DVB is a suite of standards for digital television
transmission[14]. It allows transmission of MPEG-2 Transport
Streams, containing multiple video, audio or data streams, over
several supports such as satellite, aerial or cable connections.
Hereinafter we only consider aerial connections, also known
as terrestrial transmissions, which is the most used support
over the world[15]. Such aerial transmissions are terminated
by a DVB-T demodulator on the user’s side, and by a DVB-T
modulator on the provider’s side.

2) Traffic observation setup: The objective is to observe
every stream received by a TV tuned into a specific frequency.
As listening to a DVB-T broadcast signal is the everyday
task of any TV, this solution does not require any specific
hardware. Any off the shelf DVB-T demodulator can be used.
Open-source software such as DVBSnoop3 allows DVB MPEG
stream analysis. We use tzap software4 to tune the demodulator
into a specific frequency.

3) Simulation solution: This solution is intended to simu-
late a legitimate DVB broadcast. In order to broadcast a valid
DVB channel, we need a DVB valid MPEG TS and a DVB-
T modulator. Many popular open-source applications such as
ffmpeg5 and vlc6, are capable of generating and modulating
MPEG TSs. However, these applications cannot be used to
obtain a DVB valid MPEG TS as they are not able to create
DVB-required signalling tables. This can be achieved by the
opensource application: Avalpa OpenCaster7. This task can be
initiated by capturing a legitimate signal (cf. Figure 4 - traffic
observation setup).

Since broadcasting TV without a licence is prohibited in
most countries, DVB modulators are generally not available
off-the-shelf. During our experiments, we have used two so-
lutions. The first one uses hardware suggested by OpenCaster,
which can be purchased online. This DVB modulator functions
“out-of-the-box” with OpenCaster, but is limited in some
modulation parameters, i.e., it only supports QPSK or QAM16
constellations, considerably reducing the available bandwidth.
Since many countries use the QAM64 constellation, this
hardware is unable to entirely simulate a DVB Multiplex.
The second platform we have experimented requires more
expensive SDR (Software Defined Radio) hardware. In our
case, we used the Ettus N210 with the WBX daughterboard.
Using GNU-Radio8 makes it possible to turn such a device into
any kind of radio modulator, including a DVB-T modulator.
The popularity of GNU-Radio allowed us to find an entire
DVB-T modulation scheme[16] online. Combining one of
these two hardware solutions with OpenCaster allowed us to
set up a fully functional DVB-T modulator (cf. Figure 4 -
simulation solution).

3http://dvbsnoop.sourceforge.net/
4http://www.linuxtv.org/wiki/index.php/LinuxTV dvb-apps
5https://www.ffmpeg.org/
6http://www.videolan.org/vlc/
7http://www.avalpa.com/the-key-values/15-free-software/33-opencaster
8http://gnuradio.org/

3



Video

Sound

Data

MUX TV Antenna (1) DVB-T receiver DEMUX

Video

Sound

Data
Malicious

data generator

MUX SDR (2)

Traffic observation setup Simulation solution

f

P(1)

Legitimate signal

f

P(1)+(2)

Signal crushing

Fig. 4. DVB experimental setup

When considering wired networks, physically connecting
the end user to the simulation platform forces the end users
terminal to communicate with this platform. In our case, using
aerial transmission, we can’t just plug out the legitimate service
provider and plug in our simulation platform instead. We
need to crush the legitimate signal, which can be done by
transmitting with significantly more power. The International
Telecommunication Union defines [17] safety ratios, to make
sure a weaker signal won’t interfere. Thus, if one transmits
above these safety ratios, the emitted signal crushes the legiti-
mate one, and any TV around considers this signal rather than
the legitimate one (cf. Figure 4).

It is important to note that we did not carry out such large-
scale experiments. Instead, we limited our experiments to our
research lab making sure that our experiments did not interfere
with any legitimate signal.

IV. EXPERIMENTAL RESULTS

We used the traffic observation and service provider sim-
ulation platforms described in Section III to carry out several
experiments on a panel of 4 2013 main-brand midrange Smart-
TVs, which were the most sold smart-TVs in Europe for 2013,
and are therefore representative of the average domestic smart-
TV. Hereinafter, these TVs are anonymously referenced as A,
B, C and D.

A first set of experiments uses the local loop setups in order
to analyze and compare communications between a Smart-
TV and its smart-content service provider. As the smart TV
firmware update procedure is critical, a first experiment focuses
on potential vulnerabilities of this update procedure. A second
experiment focuses on the smart-TV’s integrated Web browser
and its compliance to the same-origin security policy9.
A second set of experiments uses our DVB Broadcasting
platforms, allowing us to analyze and compare the behaviour
of each Smart-TV when receiving a legitimate and a compro-
mised signal. A first experiment shows another interesting way
of compromising a DVB-T Broadcast. A second experiment
analyzes again the compliance to the same-origin security
policy, but now using the embedded HbbTV browser.
The result of this last experiment allows us to illustrate a
combined attack scenario, compromising a home network due
to lack of security in Smart-TVs and their respective networks.

Table I summarises the experiments that we have carried
out considering local loop and DVB broadcast attacks. The
results are detailed in the following subsections.

9The same-origin security policy defines that the local execution of a code
(i.e. javascript), downloaded from a remote Web site, cannot send data to a
Web site who’s origin (URL) differs from the one of the original Web site.

TABLE I. EXPERIMENTS SUMMARY

1st experiment 2nd experiment
Local loop Firmware update Web-Browser &

Setup procedure analysis same-origin policy

DVB Setup DVB Broadcast HbbTV Browser &
authentication same-origin policy

A. Local loop experiments

The first two experiments are carried out using our local
loop observation and service provider simulation platforms.
These experiments could easily have been carried out on the
local area network if the attacker was inside the target home.
By operating on the local loop, these experiments demonstrate
the possibility to compromise someone else’s TV. Operating
directly on the copper pair local loop is technically more
complicated as it requires a specific hardware setup. However,
operating directly on the local loop presents a higher security
impact, as it possibly allows to compromise any home.

1) Smart-TV firmware update procedures: The first ex-
periment carried out on our panel of smart-TVs intends
to analyze whether the communication durign the firmware
update procedure are protected. Our local loop observation
platform (cf. III-A1) was placed behind the IAD, allowing us
to observe any communication between the smart-TV and its
smart-content provider10. The results of this experiment are
presented in table II.

TABLE II. SMART-TV FIRMWARE UPDATE PROCEDURES

A B C D

Negotiation protocol HTTP HTTP + HTTPS HTTPS HTTP
content unknown XML + – – XML

Transfer protocol HTTP n/a HTTP HTTP
content Binary n/a Binary Binary

In each firmware update procedure two phases are distin-
guished. First, a “negotiation” phase that checks if a more
recent firmware version is available for this Smart-TV. Sec-
ondly, if a newer version is available, a “transfer” phase
wherein the actual firmware is transferred. For each phase, we
observed the protocols that are used, and the type of content.
Negotiation phases of A, B and C are very similar, they
either use the secured HTTPS protocol, in which case the
content is ciphered, or, when a non-secured protocol such as
HTTP is used, the content uses an unknown encoding and is
therefore also ciphered. The negotiation phase of D uses the
non-secured HTTP protocol and its content is human readable

10In this particular case, the smart-content provider of a smart-TV is
considered as the servers belonging to the corresponding brand of the TV.

4



XML. This allows a classic “man-in-the-middle” attack to
substitute the URL leading to the new firmware and force the
TV to download a different firmware.
All observed firmware transfer phases use the non-secured
HTTP protocol. For each of these TVs, we carried out a “man-
in-the-middle” attack simulating the update server during this
phase, proposing legitimate but outdated firmware11. Smart-
TVs A and B refused our outdated firmware without specify-
ing any reason. It is likely that some signature is exchanged
during the negotiation phase. Smart-TV D on the contrary
accepted our outdated firmware. This security breach allows
any attacker to exploit previously corrected security flaws on
this TV.

2) Smart-TVs and the same-origin security policy: The
second experiment on our panel of smart-TVs intends to verify
the compliance of the integrated Web browser of each Smart-
TV to the same-origin security policy. During this experiment,
we connected each TV to our ISP simulator (cf. III-A2). On
our ISP simulator, we hosted a Web site containing malicious
JavaScript code vulnerable to an XSS attack. This JavaScript
simply attempts to perform a HTTP POST request on a
different12 Web site. When a Web browser fully complies to
the same-origin security policy, it must first either send out an
“OPTIONS” request as shown in fig. 5, or in the worst case
simply ignore the request.

1) TV
GET javascript

Domain A

2) TV
Javascript

Domain A

3) TV
OPTIONS

Domain B

4) TV
NOK

Domain B

Fig. 5. Same-origin security compliant browser

TABLE III. SMART-TV WEB BROWSER AND THE SAME-ORIGIN POLICY

TV A B C D
Behaviour Ignore OPTIONS OPTIONS POST

Table III reports the behaviour of our four Smart-TVs. A,
B and C are compliant to the same-origin security policy.
D does not implement this security policy and sends out the
malicious POST request. This security breach can be exploited
by any phishing attack, i.e., by imitating a popular Web site.

B. DVB broadcast experiments

This set of experiments was carried out using our DVB ob-
servation and broadcast simulation platforms. They are aimed
at investigating if the content of a TV channel is authenticated
by a TV set.
DVB basically consists in broadcasting an MPEG TS, which
is a multiplex of multiple Video, Audio and Data streams.
DVB stipulates[18] that an MPEG TS can contain multiple
channels of different quality. Oren and Keromytis [13] propose
a solution similar to our DVB broadcast simulation solution
(cf. III-B3). Their solution intends to compromise a stream

11We downloaded and archived legitimate firmware from the constructors
Web sites.

12In XSS, we consider a different Web site as one having a different Fully
Qualified Domain Name (FQDN).

in real-time and therefore requires directional antennas. Our
experiments use a pre-recorded part of the target multiplex.
We then use the same techniques to modify the content of a
sub-stream in the multiplex. This technique is more visible to
the end user as it will necessarily notice a flash-back in the
TV program it is watching, but it requires less hardware.

1) Compromising a DVB Broadcast: This first experiment
intends to demonstrate that none of the content of a DVB
Broadcast is authenticated. In this experiment, we replace one
of the video streams by a live webcam video feed. All the
TVs of the test-panel ignore the legitimate signal when our
platform is activated, and instead, show the live webcam feed.
This experiment is achieved by recording a short duration of
a legitimate DVB broadcast. Using our platform, we extracted
some of the video streams out of the multiplex and then
inserted our own video source instead.

2) HbbTV and the same-origin security policy: Similarly
to the experiment described in subsection IV-A2, we tested
the same-origin security policy compliance using the HbbTV
protocol. HbbTV allows DVB to include Internet content in a
multiplex, either by multiplexing the entire Web page into the
broadcast, or by supplying the URL allowing the smart-TV
to access the Web page using its Internet connection. Same-
origin policy issues are discussed in [13], where authors are
concerned about the possibility to define the origin when
the Web page is entirely multiplexed into the broadcast.
In this case no origin is defined and a specific property,
simple_application_boundary_descriptor[19,
S6.3] allows the malicious broadcaster to define it’s own
origin. We tested the same-origin security policy on our 4
smart-TVs with and without specifying this property. Results
of these experiments are reported in Table IV.

TABLE IV. SMART-TV HBBTV AND THE SAME-ORIGIN POLICY

boundary descriptor A B C D
With POST ignore OPTIONS OPTIONS
Without POST ignore OPTIONS OPTIONS

These results are surprising and point out some in-
teresting facts. First, there is no difference whether the
simple_application_boundary_descriptor prop-
erty is defined or not. This can be explained by the
TV introducing a FQDN13 when the Web page is em-
bedded in the DVB broadcast, this FQDN appears in
the origin headers as dvb://1.1.1.b. Therefore the
simple_application_boundary_descriptor prop-
erty is ignored because the application boundary can only con-
tain one FQDN[19, S6.3]. Secondly, where the Web browser
of A would respect the same origin security policy by ignoring
the XSS attack, it now accepts to execute the attack and thereby
ignores the security policy. On the other hand, D now fully
respects the same-origin security policy while it did not in our
previous experiment. Also B, even though it still complies
with the security policy, behaves differently by ignoring the
attack. This could mean that at least A, B and D don’t use the
same rendering software engine for the normal Web browser
as for HbbTV. We exploited this security flaw on TV A by
multiplexing a Web page, containing malicious JavaScript,

13Fully Qualified Domain Name

5



directly into our malicious DVB signal14. This JavaScript code
sends out a UPNP request to the local IAD, asking it to open
specific ports to TV A. Doing so allowed us to conduct attacks
which were, up to now, only feasible from the local area
network.

All these experiments allowed us to demonstrate the perti-
nence of the attack paths highlighted in our study. Using these
methods opens more attack possibilities, and allows an attacker
to compromise remote locations using existing attacks which
were up to now limited to local area networks. As an example
our experiments allowed us to 1) replace the firmware of a
TV and 2) access specific services of a TV over the Internet.
However, all these experiments have been conducted without
any particular knowledge of the firmware. These attacks can be
far more dangerous with this knowledge, just like spear phish-
ing is far more dangerous than classic phishing. Therefore, a
second part of our research, is focussed on firmware analysis,
in order to complete these works. The next section describes
several techniques and some experimental results allowing to
analyze such firmware.

V. FIRMWARE ANALYSIS

This section describes several techniques to retrieve
firmware of smart-TVs. Obtaining these firmwares allows us to
analyze them in order to discover possibly important security
flaws. Many smart-TV manufacturers make firmware updates
available on their Web site. These updates usually contain a full
firmware image that could allow us to start our analysis right
away, even without owning the corresponding TV. However,
the format and structure of a firmware image can be highly
different from one TV to another. Moreover, these updates
are often compressed or encrypted and therefore not directly
useful. Hereinafter we discuss different techniques which may
be used in case a firmware is encrypted in any way or not
publicly available.

A. Firmware updates analysis

In many cases, firmwares are directly available from the
corresponding manufacturers Web site. These firmware images
can be packaged into an update application. By executing this
application on a computer, it connects to the smart-TV using
network, USB or other available interfaces, and upgrades its
firmware. While reverse engineering the update application
is a possible option, another solution is to impersonate the
TV, provided knowledge of the protocol. A common and
standardized protocol is DFU, a USB device class specification
for Device Firmware Upgrading (DFU) over USB. Some
studies, detailed in [20] demonstrate how to capture a firmware
upgrade by emulating a DFU device.

Another common case is the use of raw binary firmware
blobs15 with a not-so-obvious file format at first glance.
Although the main file header and structure may be proprietary,
common file formats are quite often found inside by carving
the entire file. These parts of the firmware can be extracted

14This attack can be achieved either by including the JavaScript in a data
carousel multiplexed into the DVB signal, or by supplying an URL pointing
to an external Web page containing this malicious code.

15Firmware containing small amounts of source-closed binary code.

and analyzed with popular tools such are Binwalk16 and
firmware-mod-kit17. These tools are able to analyze and extract
compressed streams, known file types or binary machine code.
Kernel and filesystem images are commonly extracted at this
step. Otherwise, an entropy analysis may help to determine
if a part or the entire file is compressed and/or encrypted.
Encrypted firmware images are quite common, but most of
the time, the chosen ciphers are vulnerable. For instance,
encryptions based on a XOR operation, using a weak key, have
been found and defeated multiple times[21][22]. Nevertheless,
well designed update processes, ensuring confidentiality, exist.
In these cases, it is necessary to explore other attack vectors
with physical access to the target TV.

B. Physical access

A majority of smart-TVs use flash memories to store their
firmware. There are two main types of flash memories. Firstly,
NOR memories allow random access to the data (at byte level).
This kind of interface allows processors to execute-in-place
(XIP) code stored on the chip. Secondly, NAND memories,
that were introduced later, offer better erase and write speeds
so as greater density and therefore are cheaper. However, they
do not allow random access to the data, but only on page (or
block) basis. Also, NAND memories need to store additional
information named OOB data, used for error correction codes
(ECC) and bad block management.

Some TVs rely on internal bootROM or NOR chip to store
XIP bootstrap code, which copies the bootloader from the
NAND memory into RAM. Newer processors may integrate
a NAND flash interface to support direct boot from NAND
memory. If the target TV can be pulled apart allowing to
desolder these memory chips, it is possible to directly interface
to the flash chip and extract a raw dump[23][24]. After that,
specific software can check ECC and strip out OOB data.
Finally, Binwalk can be used to figure out the memory layout
and extract interesting data. The counterpart of this type of
attack is the necessity of hardware modification, which may
potentially be destructive. Moreover, this attack fails if data is
correctly encrypted or stored in the locked area (RPMB) of
the flash memory. This leads us to explore live attacks.

C. Debugging interfaces

Popular attack vectors on embedded devices are debugging
ports such as serial ports and JTAG. Serial ports usually output
bootloader & operating system messages. They can be used
to interrupt boot at bootloader stage. This gives access to
the bootloader prompt, which may permit to read and write
flash memory. This prompt may also be used to modify OS
parameters. For instance, on a Linux kernel, it can be used to
enable the serial console which activates a shell prompt once
booted. Another common interface is JTAG. JTAG interfaces
are designed for CPU debugging, and therefore allow flash
memory reading and writing. However, interfacing with JTAG
requires specific hardware specification knowledge of the tar-
get board and its CPU. Ultimately, depending on the device,
each debugging interface can be restricted, locked, or even
disabled.

16http://binwalk.org/
17https://code.google.com/p/firmware-mod-kit/

6



D. Vulnerability exploitation

Smart-TVs usually embed several communication buses
that could be targeted by attacks, like network, storage or
other peripheral interfaces. Successfully exploiting a software
vulnerability to gain arbitrary code execution on a TV could
lead to firmware extraction. But finding and exploiting these
vulnerabilities is a quite complex task, without access to the
firmware code. Nevertheless, in this context, it is possible first
to focus on vulnerabilities that do not rely on memory corrup-
tion (because the memory layout and content are unknown).
From the network interface, embedded Web services are ideal
to conduct this kind of attacks. Web servers are commonly
found vulnerable to path traversals and shell injections. One
can also attack Web clients that run on the target device by im-
personating the server or altering its responses. When initiating
a TLS connection, some devices don’t check server certificate
and thus are exposed to TLS Man in the Middle attacks. By
injecting arbitrary JavaScript coreferences by asde into a HTTP
response, one can explore the JavaScript execution context (if
any) and collect information for further attacks.
By using more advanced techniques, certain memory corrup-
tion bugs can be turned into exploitable vulnerabilities. As an
example[25], describes a Blind Return Oriented Programming
technique to write exploits without possessing the target’s
binary.

E. Experimental results

We were able to conduct several experiments on one Smart
TV of our test panel. These experiments were performed using
a mix of ”Firmware updates analysis”, ”Debugging interfaces”
and ”Vulnerability exploitation” techniques.

The first experiment consisted in the analysis of firmware
updates, that can be automatically uploaded on each Smart
TV. In the case of our Smart TV, this firmware is encrypted,
using AES encryption in ECB mode. Thanks to 1) information
displayed on the debugging interfaces and 2) vulnerability
exploitation of a service network of the TV (directory path
traversals vulnerability), we were able to extract the MIPS
binary program that processes these updates of our Smart
TV. Thanks to reverse engineering tools, we were able to
understand the part of this program that checks the signature
of the firmware and decrypts it. The analysis revealed that this
decryption operation uses a key that is locally stored on the
TV itself. Thanks to the directory path traversals vulnerability
again, we were able to extract this key and then decipher the
update. This allowed us to extract the firmware of the TV from
the update. Let us note that this allows us to extract any future
firmware that is encrypted in the same way.

The second experimentation allowed us to gain a live SSH
access to the Smart TV, and revealed the whole file system
of the firmware, letting us extract and analyze any file of this
system. This attack was performed using the ”Vulnerability
exploitation” technique. More precisely, by sniffing the net-
work communications of our Smart-TV, we discovered that the
UPNP service was activated and that the version of libupnp
(open source library) included a documented vulnerability.
We gathered enough information on target architecture, OS,
vulnerable code and used a compiler to predict the behavior
and memory layout of the vulnerable process. With this infor-
mation, we managed to remotely execute arbitrary code on the

target and finally extract its firmware. More precisely, thanks to
the successful exploitation of this vulnerability (a stack buffer
overflow attack), we were able to execute commands on the
Smart TV. These commands allowed us to start an SSH server
on the TV. Using this access, it then becomes possible to access
and analyze the contents of the file system of the firmware.
These experiments, summarized in this section, are described
in detail (in French) in [26][27].

VI. COMBINED EXPLOITATION

Using one of the techniques described in the previous
section allows one to retrieve almost any firmware from
embedded devices, or at least from any smart-TV. Analyzing
the firmware allows an attacker to gain precious information
about the target device and develop more specific and harmful
attacks. This section shows how it is possible to combine the
attack paths discussed in Sections III & IV with the knowledge
obtained by analyzing a Smart-TV firmware, and perform a
more dreadful attack.

In the previous section, we described a vulnerability ex-
ploitation allowing us to obtain the firmware of one of our
smart-TVs. By analyzing this firmware we discovered other
vulnerabilities in different services activated on this TV. Even
if the exploitation of these vulnerabilities is particularly inter-
esting for an attacker, their scope is limited, due to massive
use of NAT techniques on home networks. The usage of NAT
limits direct access from the Internet to devices connected
through a local area network. Therefore these attacks can only
be executed from machines connected to the LAN, i.e, from
inside the house. The scope and the scale of these attacks may
drastically change if they could be carried out from outside
the house, i.e., from the Internet. This is where the attack path
described in section IV-B2 comes in. Indeed, in this section,
we presented a first exploitation on a smart-TV using an attack
path combining the usage of a DVB broadcast and a home
Internet connection. One part of this attack consisted in forging
a UPNP request asking the local IAD to open a specific port
to the target device. This operation can be repeated in order
to open any other port. If we repeat this operation until we
have opened all the available services on a smart-TV to the
Internet, the TV is no longer protected by NAT. Attacks which
would up to now require a direct access to the local area
network, are now fully functional through the Internet. This
means that 1) thanks to our attack paths, it is possible to
exploit software vulnerabilities remotely on a TV and 2) thanks
to the knowledge of the smart-TV firmware, it is possible to
remotely perform quite complex and particularly dangerous
attacks. This combined attack is described in figure 6. From
there on, it is possible to imagine any other attack on a home
network. Indeed, once the attacker gains control over the TV,
he may use it as a gateway in order to exploit vulnerabilities
in any other smart device inside the home. As a consequence,
the corruption of a Smart TV from the Internet may possibly
endanger other devices connected to the home network.

VII. CONCLUSION

In this paper, we have first presented a new attack path that
allows remote vulnerability exploitation on Smart devices in
a home network. This new attack path was instantiated on
a panel of different types of commercially available Smart

7



Home

Smart-TV

Legitimate TV Antenna

Malicious TV Antenna

Integrated
Access Device Internet

Attacker

PC

(1) Malicious HbbTV

(2
)

Fo
rg

ed
U

PN
P

re
qu

es
t

(3) Open
ports

(4) Remote attacks on TV

(5) Remote attacks on LAN

Fig. 6. Combined attack

TVs. Our experiments allowed us to successfully 1) modify
the firmware of some models of Smart TVs and 2) exploit a
cross-site vulnerability in HbbTV browsers of some models,
which in turn can be used to modify the UPNP configuration
of the home network IAD, opening a new remote access from
the Internet to the Smart TV. These attacks were performed
without any particular knowledge of the smart-TV firmwares.
In the second part of this paper, we presented a set of
techniques that can be used to extract and analyze the firmware
of a Smart TV. These techniques allow to point out some
interesting vulnerabilities that can remotely be exploited thanks
to the new attack path proposed in the first part of this paper.
The combination of this attack path and the precise knowledge
of vulnerabilities in the firmware can lead to more subtle and
dangerous attacks. An example of such an attack was presented
at the end of this paper.

Several countermeasures to address the weaknesses pointed
out in this paper deserve to be analyzed. These include: 1)
Generalizing the use of cryptographic methods during critical
exchanges. In this study we can see that many Smart-TV
manufacturers have already chosen to use the secure HTTPS
protocol or other proprietary encryptions in order to secure
their firmware update process. 2) Measuring variation of
signal attenuation on the ADSL line, since this value should
drastically change when one inserts our platform on the local
loop. 3) Measuring variation of TV Signal strength, since
this value should drastically change when one activates our
DVB simulation solution. 4) Correctly implementing cross-site
policy in Smart-TV browsers, as any other standard security
policy. The browser used by a Smart-TV should be at least as
secure as those used on PCs. 5) Implementing encryption or
authentication techniques in DVB signals.

As future work, we plan to extend our experiments to other
families of home networks, smart devices and analyze potential
attack propagation possibilities.

REFERENCES

[1] N. Feamster, “Outsourcing home network security,” in Proceedings
of the 2010 ACM SIGCOMM Workshop on Home Networks, ser.
HomeNets ’10. New York, NY, USA: ACM, 2010, pp. 37–42.
[Online]. Available: http://doi.acm.org/10.1145/1851307.1851317

[2] “Défense et sécurité nationale.” Paris, France
http://www.elysee.fr/assets/pdf/Livre-Blanc.pdf: Direction de
l’information légale et administrive, 2013, pp. 44–45.

[3] N. Ruff, “Sécurité de l’adsl en france,” in proc. of Symposium sur
la sécurité des technologies de l’information et des communications
(SSTIC), Rennes, France, June 1st 2006.

[4] N. Sidiropoulos and P. Stefopoulos, “Smart tv hacking,” in Research
project 1, Amsterdam, Netherlands, January 2013. [Online]. Available:
http://delaat.net/rp/2012-2013/p39/report.pdf

[5] Proofpoint, “Samygo.” http://www.proofpoint.com/threatinsight/posts/your-
fridge-is-full-of-spam-proof-of-a-Iot-driven-attack.php: Proofpoint.

[6] M. Ghiglieri and E. Tews, “A privacy protection system for hbbtv in
smart tvs,” in Consumer Communications and Networking Conference
(CCNC), 2014 IEEE 11th, Jan 2014, pp. 357–362.

[7] E. U. Altinyurt, “Samygo.” http://www.samygo.tv: SamyGO.
[8] “Openlgtv,” http://openlgtv.org.ru/wiki/index.php/Wiki index.
[9] S. Lee, “Hacking, surveilling, and deceiving victims on smart tv,”

2013. [Online]. Available: http://blackhat.com/us-13/briefings.html#Lee
[10] J. Y. Aaron Grattafiori, “The outer limits: Hacking the

samsung smart tv,” 2013. [Online]. Available: http://blackhat.com/us-
13/briefings.html#Grattafiori

[11] B. Michele and A. Karpow, “Watch and be watched: Compromising all
smart tv generations,” in Consumer Communications and Networking
Conference (CCNC), 2014 IEEE 11th, Jan 2014, pp. 351–356.

[12] M. Herfurt, “Hbbtv security,” 2013. [Online]. Available:
https://events.ccc.de/congress/2013/Fahrplan/events/5398.html

[13] Y. Oren and A. D. Keromytis, “From the aether to the
ethernet—attacking the internet using broadcast digital television,” in
23rd USENIX Security Symposium (USENIX Security 14). San Diego,
CA: USENIX Association, Aug. 2014, pp. 353–368. [Online]. Avail-
able: https://www.usenix.org/conference/usenixsecurity14/technical-
sessions/presentation/oren

[14] J. Stott, “The dvb terrestrial (dvb-t) specification and its implementation
in a practical modem,” in Broadcasting Convention, International (Conf.
Publ. No. 428), Sep 1996, pp. 255–260.

[15] European Commission, “Special eurobarometer 396 - e-communications
household survey,” http://ec.europa.eu/digital-agenda/en/news/special-
eurobarometer-396-e-communications-household-survey, 2013.

[16] Bogdan, “Dvb-t implementation in gnuradio part 2.”
http://yo3iiu.ro/blog/?p=1220: YO3IIU.

[17] I. T. Union, “Itu r-rec-bt.1368-11 year=2014,” in Planning criteria,
including protection ratios, for digital terrestrial television services in
the VHF/UHF bands.

[18] U. Reimers, “The dvb project-digital television for europe,” in DVB
(Digital Video Broadcasting): The Future for Television Broadcasting?),
IEE Colloquium on (Digest No.1995/142), Jun 1995, pp. 1/1–1/7.

[19] European Broadcasting Union, “Etsi ts 102 796 v1.2.1,” in Hybrid
Broadcast Broadband TV, November 2012.

[20] T. Goodspeed, “Emulating usb dfu to capture firmware,” 2012. [Online].
Available: http://travisgoodspeed.blogspot.com/2012/10/emulating-usb-
dfu-to-capture-firmware.html

[21] M. Jordon, “Hacking canon pixma printers - doomed encryption,” 2014.
[Online]. Available: http://www.contextis.co.uk/resources/blog/hacking-
canon-pixma-printers-doomed-encryption/

[22] “Sitecom firmware encryption and wireless keys,” 2014.
[Online]. Available: http://blog.emaze.net/2014/04/sitecom-firmware-
and-wifi.html

[23] M. Oh, “Reverse engineering nand flash memory,” 2014. [Online].
Available: http://h30499.www3.hp.com/t5/HP-Security-Research-
Blog/Reverse-Engineering-NAND-Flash-Memory-POS-device-case-
study-part/ba-p/6581528

[24] J.-M. Picod, “From nand chip to files,” 2014. [Online]. Available:
http://blog.j-michel.org/post/86992432269/from-nand-chip-to-files

[25] “Hacking blind,” 2014. [Online]. Available:
http://www.scs.stanford.edu/brop/

[26] F. Basse, “Sécurité des ordivisions,” 2014. [Online].
Available: https://www.sstic.org/media/SSTIC2014/SSTIC-
actes/securite des ordivisions/SSTIC2014-Article-
securite des ordivisions-basse.pdf

[27] ——, “Télévisions connectées : Des objets branchés sécurité?” in MISC,
September / October 2014.

8


