
PAXQuery: Parallel Analytical XML Processing

Jesús Camacho-Rodríguez∗
Hortonworks Inc.

USA
jcamachorodriguez
@hortonworks.com

Dario Colazzo∗
Université Paris-Dauphine

France
dario.colazzo@dauphine.fr

Ioana Manolescu
Juan A. M. Naranjo

INRIA & Université Paris-Sud
France

ioana.manolescu@inria.fr
juan-alvaro.munoz-

naranjo@inria.fr

ABSTRACT
XQuery is a general-purpose programming language for processing
semi-structured data, and as such, it is very expressive. As a con-
sequence, optimizing and parallelizing complex analytics XQuery
queries is still an open, challenging problem.

We demonstrate PAXQuery, a novel system that parallelizes the
execution of XQuery queries over large collections of XML doc-
uments. PAXQuery compiles a rich subset of XQuery into plans
expressed in the PArallelization ConTracts (PACT) programming
model. Thanks to this translation, the resulting plans are optimized
and executed in a massively parallel fashion by the Apache Flink
system. The result is a scalable system capable of querying massive
amounts of XML data very efficiently, as proved by the experimen-
tal results we outline.

1. INTRODUCTION
Over the last years, the Hadoop Distributed File System (HDFS)

has gained popularity as an inexpensive solution to store huge vol-
umes of heterogenous data. MapReduce [8] is arguably the most
widely adopted model to analyze data stored in HDFS; its main
advantage is that data processing is distributed across many sites
without the application having to explicitly handle data fragmenta-
tion, fragment placement, etc.

While the simplicity of MapReduce is an advantage, it is also
a limitation, since large data processing tasks are represented by
complex programs consisting of many Map and Reduce tasks. In
particular, since these tasks are conceptually very simple, one often
needs to write programs comprising many successive tasks, which
limits parallelism. To overcome this problem, recent efforts have
focused on proposing more expressive dataflow abstractions for
massively parallel analytics data processing [10, 22].

The PArallelization ConTracts programming model [3] (PACT,
in short) is one of the proposals that pushes the idea of MapReduce
further. In a nutshell, PACT generalizes MapReduce by (i) manip-
ulating records with any number of fields, instead of (key, value)
∗Part of this work was performed while the authors were with Uni-
versité Paris-Sud and INRIA. The work was partially supported by
the KIC EIT ICT Labs Europa activity 12115.

c© ACM, 2015. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in SIGMOD’15, May 31–June 4, 2015,
Melbourne, Victoria, Australia. http://dx.doi.org/10.1145/2723372.2735374

PAXQuery

Flink

XQuery
parser

Logical
plan

optimizer

Logical to
PACT

translator

Logical
plan

Optimized
logical
plan

Optimized
Flink plan

PACT planFlink
optimizer

Flink
runtime

XQuery

Figure 1: PAXQuery architecture overview.
pairs, (ii) enabling the definition of custom parallel operators by
means of second-order functions, and (iii) allowing one parallel
operator to receive as input the outputs of several other such op-
erators. Due to its declarative nature, a PACT program can have
multiple physical execution plans with varying performance. At
compile time, the compiler choses an optimal strategy (plan) that
maximizes parallelisation opportunities, and thus efficiency. The
PACT model is implemented within the open-source Apache Flink
data processing engine1 [10].

Optimizing and parallelizing complex analytics queries on semi-
structured data is extremely challenging and still a widely under-
explored topic. For instance, given a very large collection of XML
documents, evaluating a query that navigates over these documents
and also joins results from different documents raises performance
challenges, which may be addressed by parallelism.

Our demonstration features the PAXQuery system [6], a mas-
sively parallel processor of XML queries. Inspired by other high-
level data analytics languages that are compiled to MapReduce and
other dataflow abstractions (e.g. Pig [17] or Hive [23]), PAXQuery
proposes a layered architecture to efficiently translate XQuery [24]
into PACT plans. The main advantage of this approach is implicit
parallelism: neither the application nor the user need to partition
the XML input or the query across nodes. This contrasts with prior
work [4, 7, 13]. Thus, we can rely on the Flink platform for the op-
timization of the PACT plan and its automatic transformation into
a dataflow that is evaluated in parallel on top of HDFS; these steps
are explained in [3].

In the sequel, Section 2 describes the PAXQuery architecture,
and provides a beginning-to-end query translation example. Sec-
tion 3 presents experimental results confirming the interest of PAX-
Query’ parallel XQuery processing approach. Section 4 describes
the demonstration scenario and Section 5 concludes.

1Flink was known as Stratosphere prior to becoming an Apache
incubator project in July 2014.

http://dx.doi.org/10.1145/2723372.2735374

2. PAXQUERY ARCHITECTURE
Our approach for implicit parallel evaluation of XML queries is

to translate them into PACT plans as depicted in Figure 1. Then,
PAXQuery sends the PACT plan to the Flink platform, which opti-
mizes it, and turns it into a data flow that is evaluated in parallel, as
explained in [3].

The experiments we present in this work demonstrate not only
that PAXQuery (unlike competitor systems [4, 7, 13]) parallelizes
XQuery evaluation without any user intervention, but it is also more
efficient than comparable implementations based on single-site pro-
cessors running in parallel. This is because of its reliance on a
highly parallel back-end (Flink), which is enabled by our algebraic
translation methodology.

Below, we describe the steps taken by PAXQuery to translate an
input XQuery query into an efficient PACT plan.

2.1 XQuery parser
Query language PAXQuery supports a representative fragment of
XQuery [24], the W3C’s standard query language for XML data,
which has been recently enhanced with strongly requested features
geared towards XML analytics. In particular, our goal was to cover
(i) the main navigational mechanisms of XQuery, and (ii) its key
constructs to express analytical style queries e.g. aggregation, ex-
plicit grouping, and rich comparison predicates. The grammar of
the covered XQuery fragment can be found in [6].

Example. The following XQuery (over collections of documents
extracted from an XMark [21] document) lists the maximum price
per postal code of any item bought or sold in France:

let $pc := collection(‘ people ’),
$cc := collection(‘ auc t ions ’)

for $p in $pc//person[//country/text()= ‘FR ’],
$i in $p/@id, $z in $p/zipcode/text()

let $r :=
for $c in $cc//closed_auction, $b in $c/buyer/@person,

$s in $c/seller/@person, $pr in $c/price
where $i = $b or $i = $s
return $pr

group by $z
return <res zip={$z}>{max($r)}</res>

The above query shows some of the main features of our XQuery
fragment. It includes FLWR expressions, which are powerful enough
to express complex operations like iterating over sequences, join-
ing multiple documents, and performing grouping. XPath paths
start from the root of each document in a collection of XML doc-
uments, or from the bindings of a previously introduced variable;
the XPath fragment we support corresponds to XPath{/,//,[]} [15].
Our fragment supports rich predicates expressed in disjunctive nor-
mal form (DNF), including value- and node identity-based com-
parisons. Other XQuery constructs such as if or switch expressions
can be integrated into our proposal in a straightforward manner.

From XQuery to logical plans In a first step, PAXQuery repre-
sents the XQuery query as an equivalent algebraic expression [6].
XQuery translation into algebraic formalisms has been extensively
studied [1, 5, 9, 14, 20].

A significant source of XQuery complexity comes from nesting:
an XQuery expression can be nested in almost any position within
another. In particular, nested queries challenge the processor, as
straightforward translation into nested plans leads to poor perfor-
mance. Effective translation techniques represent nested XQuery as
unnested plans relying on joining and grouping. Depending on the
query shape, such decorrelating joins may be nested and/or outer
joins.

We introduce our algebraic representation of XQuery by means
of our running example, relying on the algebra of [14].

Example (continuation). The algebraic plan corresponding to the
XQuery introduced previously is shown in Figure 2.a.

The XML scan operators take as input the ‘people’ (respec-
tively ‘auctions’) collection of XML documents and create a
tuple out of each document in the collection.

XQuery may perform navigation, which, in a nutshell, binds
variables to the result of path traversals. Navigation is commonly
represented through tree patterns, whose nodes carry the labels ap-
pearing in the paths, and where some target nodes are also anno-
tated with names of variables to be bound, e.g. $pc, $i, etc. Our al-
gebra uses a navigation operator parameterized by an extended tree
pattern (ETP) supporting multiple returning nodes, child and de-
scendant axis, and nested and optional edges [6]. This allows con-
solidating as many navigation operations as possible in a query,
within a single navigation tree pattern; in particular in a navigation
performed outside of the for clauses, which leads to more efficient
matching against XML documents [1].

The operator navigation(e1) concatenates each input tuple suc-
cessively with all @id attributes (variable $i), and text values of
country ($x1) and zipcode ($z) elements resulting from the em-
beddings of e1 in the value bound to $pc. Observe that the vari-
able $x1 did not appear in the original query; in fact, it is created
by PAXQuery to hold the value needed for the selection operator
above it. The operator navigation(e2) is generated in a similar fash-
ion.

Above the previous operators, we find a nested left outer join
on a disjunctive predicate, which brings together people and the
auctions they participated in, either as buyers or sellers. Observe
that the join is outer, i.e., all people are kept in the output, even if
they did not participate in any auction.

Then, we group the tuples coming from the previous operator
by the value of their zipcode, and the result of the aggregation
function max is calculated and concatenated to each of these tuples.

Finally, the XML construction operator is responsible for trans-
forming a collection of tuples to XML. For each tuple in its input,
construct(L) builds one XML tree for each construction tree pat-
tern in the list L; more details can be found in [6].

2.2 Logical plan optimizer
After building a logical plan, PAXQuery optimizes it by using

rewriting rules that create semantically equivalent alternative plans.
The goal of these transformations is preparing the plan for the trans-
lation into a more efficient PACT plan. PAXQuery implements
well-studied plan transformation rules [19], e.g. push down projec-
tions, push down selections, etc. We illustrate some of them next.

Example (continuation). The plan obtained after applying our
transformation rules is shown in Figure 2.b (for readability reasons,
projection operators have been omitted). First, observe that the
navigation is integrated within the scan operator (NavScan), so the
tuples resulting from the embeddings of the ETPs can be extracted
as we read the XML documents. Further, note that the selection
on the people whose country is France has been pushed into the
ETP e1. Finally, the group-by and aggregation operators have been
rewritten into a single one that represents both operations.

2.3 Logical to PACT translator
The PACT model [3] is a generalization of MapReduce. A PACT
plan is a DAGs of implicitly parallel operators, that are optimized
and translated into explicit parallel data flows by Flink.

(c) PACT plan(b) Optimized
 logical plan

(a) Logical plan

Construct (L)

XMLSink

Scan
('people', $pc)

Scan
('auctions', $cc)

Group-by-value ($z)

Aggregate
(max, $r)

e1

e2

Group-by-value ($z) -
aggregate (max, $r)

Construct (L)

Nested left outer join
($i=$b or $i=$s)

NavScan
('people', e'1)

NavScan
('auctions', e'2)

e'2

e'1

$pc:*

$p: person

$i: @id zipcode

$z: text()

country

$x1: text()

$cc:*

$c: closed_auction

buyer $pr: priceseller

$s: @person$b: @person

*

person

$i: @id zipcode

$z: text()

country

text() = 'FR'

*

closed_auction

buyer $pr: priceseller

$s: @person$b: @person

Selection
($x1= 'FR ')

Navigation (e1) Navigation (e2)

Group-by-aggregate
(max, $r)
Reduce

Post-processing
nested left outer join

Reduce

Nested left outer join
($i=$s)

CoGroup

Nested left outer join
($i=$b)

CoGroup

Navigation (e'1)

XMLSource ('people')

Navigation (e'2)

XMLSource ('auctions')

Nested left outer join
($i=$b or $i=$s)

Construct (L)

Figure 2: Sample translation from a logical plan to PACT.

Figure 3: (a) Map, (b) Reduce, (c) Cross, (d) Match, and (e) CoGroup parallelization contracts.2

Data model. PACT plans manipulate records of the form r =
((f1, f2, . . . , fn), (i1, i2, . . . , ik)) where 1 ≤ k ≤ n. The first
component (f1, f2, . . . , fn) is an ordered sequence of fields fi;
in turn, a field fi is either an atomic value (string) or a ordered
sequence (r′1, . . . , r

′
m) of records. On the other hand, the sec-

ond component (i1, i2, . . . , ik) is an ordered, possibly empty, se-
quence of record positions in [1 . . . n] indicating the key fields for
the record. The key of a record r, denoted by r.key , is the list of all
the key fields (fi1 , fi2 , . . . , fik).
Processing model. Data sources and sinks are, respectively, the
starting and terminal nodes of a PACT plan. The input data is stored
in files, e.g. in HDFS; a function parameterizing data source opera-
tors specifies how to structure the data into records. In turn, results
can be output to files, with the destination and format similarly con-
trolled by an output function.

The rest of data processing nodes in a PACT plan are opera-
tors. An operator manipulates bags of records. Its semantics is
defined by (i) a parallelization contract, which determines how in-
put records are organized into groups; (ii) a user function (or UF)
that is executed independently over each bag (group) of records cre-
ated by the parallelization contract (these executions can take place
in parallel); and (iii) optional annotations that may enable further
optimizations by Flink.

A set of the most common parallelization contracts is built in
Flink: Map, Reduce, Cross, Match, and CoGroup (see Figure 3).
The Map contract forms an individual group for every input record.
The Reduce contract forms a group for every unique value of the
key attribute in the input data set, and the group contains all records
with that particular key value. The Cross contract builds the Carte-
sian product of the two input bags. The Match contract forms

2Figure reproduced from [12] with authorization.

Table 1: Algebra to PACT overview.
Algebra operators PACT operators (#)
Scan / NavScan Source (1)
Construct Sink (1)
Navigation Map (1)
Group-by / Group-by-aggregate Reduce (1)
Flatten Map (1)
Selection Map (1)
Projection Map (1)
Aggregation (on nested field) Map (1)
Aggregation (on top-level field) Reduce (1)
Duplicate elimination Reduce (1)
Cartesian product Cross (1)

Conjunctive equi-join

Inner Match (1)
Outer CoGroup (1)
Nested outer / CoGroup (1)Nested outer-aggr.

Disjunctive equi-join
(n conjunctions)

Inner Match (n)
Outer CoGroup (n) & Reduce (1)
Nested outer / CoGroup (n) & Reduce (1)Nested outer-aggr.

Inequi-join

Inner Cross (1)
Outer Cross (1) & Reduce (1)
Nested outer Cross (1) & Reduce (1)Nested outer-aggr.

a group from every pair of records in its two inputs, only if the
records have the same value for the key attribute. Finally, the
CoGroup contract forms a group for every value of the key attribute
(from the domains of both inputs), and places each record in the
appropriate group.

From logical plans to PACT plans XQuery algebraic plans are
translated into PACT plans recursively, operator by operator; for
each XQuery operator, the translation outputs one or several PACT
operators for which we need to choose the parallelization contract
(and possibly its corresponding key fields), and the user function,
which together determine the PACT behavior. Further, we annotate
the PACT operators to take fully advantage of Flink’s optimizer.
More details about these steps can be found in [6].

Table 1 provides an overview on the algebra operators and the
contracts used by the PACT operators resulting from our transla-
tion. Observe that the translation of the binary operators is the most
complex, as it has to deal efficiently with the nested and/or outer
nature of some joins, which may result in multiple operators at the
PACT level. We illustrate PAXQuery translation to PACT with the
following example.

Example (continuation). For the algebra plan in Figure 2.b, PAX-
Query generates the PACT program shown in Figure 2.c; the key
fields for each operator are omitted for readability. The XML source
operators scan (in parallel) the respective collections and apply the
navigation UF over each document to create records. The nested
outer join is translated into two CoGroup operators and a post-
processing Reduce. The core difficulty to address by our translation
is to correctly express (i) the disjunction in the where clause of the
query, and (ii) the outerjoin semantics (recall that in this example
a <res> element must be output even for people with no auctions).
The main feature of the nested left outer join UF associated to each
CoGroup is to guarantee that no erroneous duplicates are generated
when the parallel evaluation of more than one conjunctive predi-
cate is true for a certain record. The Reduce operator groups all
the results of the previous CoGroup operators having the same left
hand-side record, and then the post-processing UF associated to it
is applied to produce the final result for the join. The following Re-
duce groups together the records with the same zipcode and cal-
culates the aggregation function over the price in each of them.
Finally, the XML sink builds and returns XML results.

3. PAXQUERY SCALABILITY AND ALTER-
NATIVES

PAXQuery is implemented in Java 1.6, and runs on top of the
Flink platform [10] supporting PACT. We describe an extended ex-
perimental evaluation in [6]; below, we borrow from that article the
two most significant experiments, related on one hand to the plat-
form scalability, and on the other to the comparison between PAX-
Query and alternative massively parallel XQuery architectures.
Experimental setup. The experiments run in a cluster of 8 nodes
on an 1GB Ethernet. Each node has 2 × 2.93GHz Quad Core
Xeon CPUs, 16GB RAM and two 600GB SATA hard disks and
runs Linux CentOS 6.4. PAXQuery is built on top of Flink 0.2.1; it
stores the XML data in HDFS 1.1.2.
XML data. We used XMark [21] data; to study queries joining
several documents, we used the split option of the XMark gener-
ator to create four collections of XML documents, each containing
a specific type of XMark subtrees: users (10% of the dataset size),
items (50%), open auctions (25%) and closed auctions (15%). We
used datasets of up to 272GB as detailed below. All documents are
stored into HDFS, which replicates them three times and distributes
them across the nodes.
XML queries. We used a subset of XMark queries from our XQuery
fragment, and added queries with features from our dialect but ab-
sent from the original XMark, e.g. joins on disjunctive predicates.

Table 2 outlines the queries: the collection(s) that each query
carries over, the corresponding XML algebraic operators and their

Table 2: Query details.
Query Collections Algebra operators (#) Parallelization

contracts (#)
q1 users Navigation (1) Map (1)
q2 items Navigation (1) Map (1)
q3 items Navigation (1) Map (1)
q4 closed auctions Navigation (1) Map (1)
q5 closed auctions Navigation (1) Map (1)
q6 users Navigation (1) Map (1)
q7 closed auctions Navigation (1) Map (2)

Aggregation (2) Reduce (1)
q8 items Navigation (1) Map (2)

Aggregation (2) Reduce (1)
q9 users Navigation (2) Map (3)

closed auctions Projection (1) Reduce (1)
Group-by/aggregation (1) Match (1)
Conjunctive equi-join (1)

q10 users Navigation (3) Map (5)
items Projection (2) CoGroup (2)
closed auctions NLO conjunctive equi-join (2)

q11 users Navigation (2) Map (3)
Projection (1) Reduce (1)
Dup. elim. (1) CoGroup (1)
NLO conjunctive equi-join (1)

q12 users Navigation (2) Map (3)
closed auctions Projection (1) CoGroup (1)

NLO conjunctive equi-join/
aggregation (1)

q13 users Navigation (2) Map (3)
closed auctions Projection (1) Reduce (2)

NLO disjunctive equi-join (1) CoGroup (2)
q14 users Navigation (2) Map (3)

open auctions Projection (1) Reduce (2)
NLO inequi-join (1) Cross (1)

0!

100!

200!

300!

400!

500!

600!

700!

q1! q2! q3! q4! q5! q6! q7! q8! q9! q10!q11!q12!q13!q14!

Ex
ec

ut
io

n
tim

e
(s

)!

1 node, 34 GB!
2 nodes, 68 GB!
4 nodes, 136 GB!
8 nodes, 272 GB!

Figure 4: PAXQuery scalability evaluation.

numbers of occurrences, and the parallelization contracts used in
the plan generated by our translation framework. Queries q9-q14
all involve value joins, which carry over thousands of documents
arbitrarily distributed across the HDFS nodes.

3.1 PAXQuery scalability
Our first goal is to check that PAXQuery brings to XQuery evalu-

ation the desired benefits of implicit parallelism. For this, we fixed
a set of queries, generated 11,000 documents (34GB) per node, and
varied the number of nodes from 1 to 2, 4, 8 respectively; the total
dataset size increases accordingly in a linear fashion, up to 272GB.

Figure 4 shows the response times for each query. Queries q1-q6
navigate in the input document according to a given navigation pat-
tern of 5 to 14 nodes. The response time of these queries follows
the size of the input, as each of them translates into a Map PACT.
In Figure 4 we can see that these queries scale up well, with a mod-
erate overhead as the data volume and number of nodes increases.

a)
filewriter | R3

Map | R3=BaseX(q3,f1,f2)

filereader | f1,f2

filewriter | f1,f2

Reduce | f1=union(R1 . . . Rn),f2=union(S1 . . . Sm)

Map | R1=BaseX(q1,x1),. . .,Rn=BaseX(q1,xn),
S1=BaseX(q2,y1),. . .,Sm=BaseX(q2,ym)

filereader | x1=read(‘people’,1),. . .,xn=read(‘people’,n),
y1=read(‘closed_auctions’,1),. . .,ym=read(‘closed_auctions’,m)

Job 2 (nested outer join)

Job 1 (navigation)

b) filewriter | R3

Map | R3=BaseX(q3,f1,f2)

Reduce | f1=union(R1 . . . Rn),f2=union(S1 . . . Sm)

Map | R1=BaseX(q1,x1),. . .,
Rn=BaseX(q1,xn)

Map | S1=BaseX(q2,y1),. . .
Sm=BaseX(q2,ym)

filereader | x1=read(‘people’,1),. . .,
xn=read(‘people’,n)

filereader | y1=read(‘closed_auctions’,1),. . .,
ym=read(‘closed_auctions’,m)

Figure 5: Execution of XQuery using alternative architectures
based on MapReduce (a) and PACT (b) for comparison with
PAXQuery.

Queries q7 and q8 apply an aggregation over all the records gen-
erated by a navigation. For both queries, the navigation generates
nested records and the aggregation consists on two steps. The first
step goes over the nested fields in each input record, and thus it uses
a Map contract. The second step is executed over the results of the
first. Therefore, a Reduce contract that groups together all records
coming from the previous operator is used. Since the running time
is dominated by the Map PACTs which parallelize very well, q7 and
q8 also scale up well.

Queries q9-q12 involve conjunctive equi-joins over the collec-
tions. Query q13 executes a NLO disjunctive equi-join, while q14
applies a NLO inequi-join. We notice a very good scaleup for q9-
q13, whose joins are translated in many PACTs (recall Table 1). In
contrast, q14, which translates into a Cross PACT, scales notice-
ably less well. This validates the interest of translating disjunctive
equi-joins into many PACTs (as our rules do), rather than into a
single Cross, since, despite parallelization, it fundamentally does
not scale.

3.2 Comparison against other alternatives
We next compare our system with other alternatives for implic-

itly parallel evaluation of XQuery. As explained in the Introduc-
tion, no comparable system is available yet. Therefore, for our
comparison, we picked the BaseX 7.7 [2] centralized processor
and used Hadoop-MapReduce on one hand, and Flink-PACT on
the other hand, to parallelize its execution.

Table 3: Query evaluation time (8 nodes, 272GB).

Query
Evaluation time (seconds)

BaseX BaseX PAXQueryHadoop-MR Flink-PACT
q1 465 66 70
q2 773 282 189
q3 762 243 172
q4 244 72 58
q5 237 72 57
q6 488 70 73
q7 245 74 62
q8 576 237 206
q9 OOM OOM 114
q10 OOM OOM 299
q11 OOM OOM 334
q12 OOM OOM 132
q13 OOM OOM 456
q14 OOM OOM 683

We compare PAXQuery, relying on the XML algebra-to-PACT
translation we described, with the following alternative architec-
ture. We deployed BaseX on each node, and parallelized XQuery
execution as follows:

1. Manually decompose each query into a set of leaf subqueries
performing just tree pattern navigation, followed by a re-
composition subquery which applies (possibly nested, outer)
joins over the results of the leaf subqueries;

2. Parallelize the evaluation of the leaf subqueries through one
Map over all the documents, followed by one Reduce to union
all the results. Moreover, if the recomposition query is not
empty, start a new MapReduce job running the recomposi-
tion XQuery query over all the results thus obtained, in order
to compute complete query results.

This alternative architecture is in-between ChuQL [13], where
the query writer explicitly controls the choice of Map and Reduce
keys, i.e., MapReduce is visible at the query level, and PAXQuery
where parallelism is completely hidden. In this architecture, q1-
q8 translate to one Map and one Reduce, whereas q9-q14 feature
joins which translates into a recomposition query and thus a second
job. As we will illustrate with the following example, the manual
decomposition takes a considerable effort.

Example (continuation). The MapReduce and PACT plans that
execute the XQuery introduced in our example are depicted in Fig-
ure 5.

Observe that the MapReduce workflow contains two jobs. The
first job creates a key/value pair out of each document in each col-
lection, which contains the document’s content. The pairs are cor-
respondingly labeled so that they can be identified in the following
steps. The Map user function uses BaseX to execute a navigation
query on the content of each input pair; q1 is equivalent to the tree
pattern e′1 in Figure 2.b, while q2 is equivalent to e′2. In turn, the
Reduce gathers the pairs that originated from the same collection in
a group, and applies a user function that unions the results for each
of these collections, thus creating files f1 and f2 for collections
‘people’ and ‘closed_auctions’, respectively. Note that the Reduce
operation is necessary because we execute a nested outer join be-
tween the results from both collections in the subsequent step. In
the absence of our parallelization algorithms, BaseX needs a global
view over the results from each collection.

The second job is Map-only. It reads the inputs from the first job,
and then it uses BaseX to execute the nested outer join between the
inputs. The result is then written to disk.

Figure 6: PAXQuery demonstration GUI.

The PACT plan is similar to the previous one, except for the fact
that instead of being a linear workflow, it is a DAG of operators.

Table 3 shows the response times when running the query on
the 8 nodes and 272GB; the shortest time is shown in bold, while
OOM stands for out of memory. First, we notice that BaseX runs 2
to 5 times faster on Flink than on Hadoop. This is due to Hadoop’s
checkpoints (writing intermediary results to disk) while Flink cur-
rently does not, trading reliability for speed. For queries without
joins (q1-q8), PAXQuery is faster for most queries than BaseX on
Hadoop or Flink; this simply points out that our in-house tree pat-
tern matching operator (physical implementation of nav) is more
efficient than the one of BaseX. Queries with joins (q9-q14) fail in
the competitor architecture. The reason is that intermediary join
results grow too large and this leads to an out-of-memory error.
PAXQuery evaluates such queries well, based on its massively par-
allel (outer) joins.

Our experiments demonstrate the efficiency of an XQuery pro-
cessor built on top of PACT. First, our scalability evaluation has
shown that the translation to PACT allows PAXQuery to parallelize
every query execution step with no effort required to partition, re-
distribute data etc., and thus to scale out with the number of ma-
chines in a cluster. The only case where scale-up was not so good
is q14 where we used a Cross (cartesian product) to translate an
inequality join; an orthogonal optimization here would be to use a
smarter dedicated join operator for such predicates, e.g. [16].

Second, PAXQuery outperformed an alternative architecture in
which an XQuery processor runs on each node and Hadoop or
Flink/Pact are used to parallelize XPath navigation only across the
input. In such an architecture, the queries with joins across docu-
ments on the data volumes we considered could not complete, high-
lighting the need for parallel platforms supporting all XQuery pro-
cessing steps, through an algebraic translation, such as PAXQuery.

4. DEMONSTRATION SCENARIO
For our demonstration, we upload multiple collections of XML

datasets [11, 18] to our cluster, and we provide a selection of ana-
lytical queries that cover the most important aspects of the transla-
tion, e.g. rich tree pattern navigation, nested queries, aggregation,
complex joins. The audience may also formulate their own queries.

Then, we showcase the different steps that PAXQuery takes to
transform any input XQuery query into a PACT plan. Thus, for a
given query, attendees are shown (i) the initial algebraic plan re-
sulting from query parsing, (ii) an optimized algebraic plan as a re-
sult of applying rule-based optimization to the initial plan, (iii) the
equivalent PACT plan, including the annotations over each PACT
operator, and (iv) the final XML output. We have implemented a
Web client for PAXQuery that visualizes all this information (see
Figure 6). Further, we use the Flink monitoring tools to provide
real-time information about the parallel execution in the cluster.

5. CONCLUSION
We demonstrate PAXQuery, a system that enables the paralleliza-

tion of the execution of XML queries over large collections of XML
documents. PAXQuery transforms an input XQuery query into an
efficient PACT plan whose execution can be easily parallelized by
the Flink platform; the feasability and performance improvements
of this approach are proven by the experimental results provided.
While PAXQuery’s implementation is specific to XQuery, the con-
cepts shown in this demonstration are applicable to other program-
ming languages for semi-structured data, e.g. Jaql or JSONiq.

6. REFERENCES
[1] A. Arion, V. Benzaken, I. Manolescu, Y. Papakonstantinou, and R. Vijay.

Algebra-Based identification of tree patterns in XQuery. In FQAS, 2006.
[2] BaseX. http://basex.org/products/xquery/.
[3] D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, and D. Warneke.

Nephele/PACTs: a programming model and execution framework for web-scale
analytical processing. In SoCC, 2010.

[4] N. Bidoit, D. Colazzo, N. Malla, F. Ulliana, M. Nolè, and C. Sartiani.
Processing XML queries and updates on map/reduce clusters. In EDBT, 2013.

[5] P. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and J. Teubner.
MonetDB/XQuery: a fast XQuery processor powered by a relational engine. In
SIGMOD, 2006.

[6] J. Camacho-Rodríguez, D. Colazzo, and I. Manolescu. PAXQuery: Efficient
Parallel Processing of Complex XQuery. IEEE TKDE, 2015.

[7] H. Choi, K.-H. Lee, S.-H. Kim, Y.-J. Lee, and B. Moon. HadoopXML: A suite
for parallel processing of massive XML data with multiple twig pattern queries.
In CIKM, 2012.

[8] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. In OSDI, 2004.

[9] A. Deutsch, Y. Papakonstantinou, and Y. Xu. The NEXT Logical Framework
for XQuery. In VLDB, 2004.

[10] Apache Flink. http://flink.incubator.apache.org/.
[11] GeoNames. http://www.geonames.org/.
[12] F. Hueske, M. Peters, M. J. Sax, A. Rheinländer, R. Bergmann, A. Krettek, and

K. Tzoumas. Opening the Black Boxes in Data Flow Optimization. PVLDB,
2012.

[13] S. Khatchadourian, M. P. Consens, and J. Siméon. Having a ChuQL at XML on
the cloud. In AMW, 2011.

[14] I. Manolescu, Y. Papakonstantinou, and V. Vassalos. XML Tuple Algebra. In
Encyclopedia of Database Systems. 2009.

[15] G. Miklau and D. Suciu. Containment and equivalence for an XPath fragment.
In PODS, 2002.

[16] A. Okcan and M. Riedewald. Processing theta-joins using MapReduce. In
SIGMOD, 2011.

[17] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig Latin: A
Not-So-Foreign Language for Data Processing. In SIGMOD, 2008.

[18] Open Weather Map. http://openweathermap.org/.
[19] R. Ramakrishnan and J. Gehrke. Database Management Systems.

McGraw-Hill, Inc., New York, NY, USA, 3 edition, 2003.
[20] C. Re, J. Siméon, and M. F. Fernández. A Complete and Efficient Algebraic

Compiler for XQuery. In ICDE, 2006.
[21] A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I. Manolescu, and R. Busse.

XMark: A benchmark for XML data management. In VLDB, 2002.
[22] Apache Tez. http://tez.apache.org/.
[23] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Anthony,

H. Liu, and R. Murthy. Hive - a PB scale data warehouse using Hadoop. In
ICDE, 2010.

[24] XQuery 3.0: An XML Query Language, April 2014.

http://basex.org/products/xquery/
http://flink.incubator.apache.org/
http://www.geonames.org/
http://openweathermap.org/
http://tez.apache.org/

	Introduction
	PAXQuery architecture
	XQuery parser
	Logical plan optimizer
	Logical to PACT translator

	PAXQuery scalability and alternatives
	PAXQuery scalability
	Comparison against other alternatives

	Demonstration scenario
	Conclusion
	References

