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Model for the hyperfine structure of electronically-excited KCs molecules
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Technikerstrafle 25, 6020 Innsbruck, Austria
(Dated: July 20, 2015)

A model for determining the hyperfine structure of the excited electronic states of diatomic bialkali
heteronuclear molecules is formulated from the atomic hyperfine interactions, and is applied to the
case of bosonic **KCs and fermionic “°KCs molecules. The hyperfine structure of the potential
energy curves of the states correlated to the K(45251/2)+Cs(6p2P1/273/2) dissociation limits is
described in terms of different coupling schemes depending on the internuclear distance R. These
results provide the first step in the calculation of the hyperfine structure of rovibrational levels of
these excited molecular states in the perspective of the identification of efficient paths for creating

ultracold ground-state KCs molecules.

PACS numbers:
I. INTRODUCTION

The control of the evolution of atomic and molecu-
lar systems at the single quantum level is an opportu-
nity that is offered to fundamental physics by the amaz-
ing developments in the research on ultracold quantum
gases, i.e. where particles are moving with kinetic en-
ergies £ = kpT equivalent to temperatures 7' much
smaller than 1 millikelvin. Among the most spectacular
achievements are the observation of quantum degeneracy
in ultracold atomic gases of bosons [1-3] and fermions
[4]. Quantum degeneracy and even Bose-Einstein con-
densation of weakly-bound ultracold molecules created
by the association of pairs of atomic bosons or fermions
has also been achieved [5-10], with the major drawback
that dimer molecules are quite unstable against collisions
as they contain a lot of internal energy, unless they are
protected by the Pauli principle as in the case of fermion
pairs. Major progress towards the formation of a quan-
tum gases of ultracold molecules in their absolute ground
state has been reported since 2008 [11-16], and the ob-
servation of quantum degeneracy is now within reach.
In most cases this research relies on two main steps: (i)
the formation of weakly-bound molecules by association
of a pair of ultracold atoms via a Feshbach resonance
[17, 18], and (ii) the transfer of the population from this
so-called Feshbach state toward neighboring levels using
avoided crossings [19] or radiofrequency transitions [20],
or toward the absolute ground level of the molecule us-
ing a coherent optical process known as stimulated Ra-
man adiabatic passage (STIRAP) [21-23]. Alternative
methods to obtain molecular degenerate gases are also
under investigation starting from preexisting molecules,
like evaporative cooling [24], buffer gas cooling [25, 26],
Sisyphus cooling [27] or laser cooling [28-32].

All the above-mentioned methods require a precise
control of the internal state of the molecule of interest. In
particular the STIRAP technique has proven to be very
versatile for controlling the internal state in all degrees

of freedom (vibrational, rotational, and hyperfine) of ul-
tracold diatomic molecules composed of identical atoms
[13, 14] or of different alkali atoms [11, 15, 16]. This
has allowed the creation of polar molecules, which are
currently of great interest [33-36]. In brief, STIRAP is
based on a so-called Lambda scheme of energy levels: the
population is transferred from an initial level | i) toward
a final level | g) via two overlapping laser pulses involv-
ing an intermediate level |e) that is never populated.
For ultracold polar bialkali molecules, the scheme is im-
plemented as follows: the |i) level is a weakly-bound
level of the molecular ground state manifold (usually re-
ferred to as a Feshbach molecule) with mixed 3% and
I+ symmetries, the | g) is the absolute ground level of
the molecular ground state XX T and the | e) levels be-
longs to an electronically excited state chosen such that
it has noticeable dipole-allowed transition probabilities
with both |i) and |g).

The knowledge of the tiniest properties of the quan-
tum states involved in a STIRAP scheme - namely the
hyperfine structure (hfs)- is essential to ensure the op-
timal efficiency of the population transfer. The |i) hfs
is usually well-known for the alkali-atom pairs, at it is
mostly determined by the hfs of the separated ground
state 25 atoms involving only their electronic spin quan-
tum number s = 1/2 and their nuclear spin quantum
number 4,. It has been largely used for the modeling of
Fano-Feshbach resonances (FFR) in mixed alkali-metal
atom pairs (i.e. LiNa [37], LiK [38], LiRb [39, 40], LiCs
[41, 42], NaK [43], NaRb [44], KRb [45], KCs [46], RbCs
[47]). On the other hand very little is known on the hfs
of ground-state heteronuclear alkali dimers in their low-
est rovibrational levels (the |g) state above), with a few
remarkable exceptions [48-53].

The hfs of the |e) levels is intrinsically more compli-
cated as it involves one 2P atom, i.e. one more non-zero
angular momentum to be coupled. Its spectroscopic ob-
servation could also be hindered by the natural width of
the levels. Several studies have extended the long-range



analysis of the hfs of a pair of 2S ground-state alkali-
metal atoms to the particular case where pure long-range
potentials wells [54, 55] are present in the electronic states
dissociating to the lowest 2.5 +2 P asymptote of homonu-
clear alkali dimers [56-58]. Molecular spectroscopy has
allowed the investigation of deeply-bound vibrational lev-
els of excited states of NaRb [59] and NaK [60-62]. In
the ultracold regime high-resolution spectroscopy has al-
lowed observing and studying the hfs for low-lying vibra-
tional levels of one of the first excited states of Rby [63]
and RbCs [64], which have been modeled with a simple
effective Hamiltonian involving parameters fitted to the
measurements. Last but not least, ab initio molecular
hyperfine parameters have been computed for the lowest
3%+ states of homonuclear alkali dimers [65].

Despite all the achievements above, the complexity of
the problem may have prevented up to now the com-
plete description of the hfs of excited molecular states,
as a prerequisite is the determination of complete po-
tential energy curves (PECs) including hfs. In this
paper, we extend the asymptotic model developed in
Ref. [56] to all molecular states correlated to the two
lowest 25 +2 P asymptotes of polar alkali-metal diatomic
molecules. We illustrate it by deriving PECs includ-
ing fine and hyperfine structure for all internuclear dis-
tances R for the states of 2?KCs and “°KCs correlated
to K(4s251/2)+Cs(6p?P;) (with j = 1/2,3/2). We first
recall the expression of the full Hamiltonian for the atom
pair including spin-orbit and hyperfine couplings, and
we detail the data used for the calculation for both the
bosonic and the fermionic isotopologues. The variation
of coupling regime along the PECs when R varies is dis-
cussed in terms of ”good” quantum numbers, shedding
some light on the expected level structure depending on
its binding energy.

II. THE HAMILTONIAN FOR A PAIR OF K
AND CS ATOMS

Our goal is to compute Born-Oppenheimer (BO) PECs
including fine and hyperfine structure. Thus the rotation
of the molecule is not considered at that step. Within
the standard BO approximation we write the electronic
Hamiltonian of the system as

H=H 4+ H + A" (1)

where the electrostatic Hamiltonian HO containing the
kinetic energy of the electrons and the sum of the poten-
tial energies of charged particles is perturbed by the fine
structure Hf and the hyperfine structure H" Hamilton
operators. We assume the electrostatic problem solved
so that the matrix of H? is diagonal and contains the
R-dependent PECs in Hund’s case a (see Fig. 1 for the
KCs curves correlated to K(4s25)+Cs(6p2P)).

For H' we only consider the molecular spin-orbit (SO)
interaction, which is formally written as:

H = A(R)L.S (2)

where L and S are the total electronic orbital momen-
tum and spin. The R-varying coupling constant A(R)
depends on the considered molecular states and is taken
either from available spectroscopic data or from quantum
chemistry calculations, as discussed below.

Following Ref. [56], we apply here the main approx-
imation of our model: we express H" as the sum
of two atomic hyperfine Hamiltonian operators ﬁhf(k)
(k = 1,2), which characterize the experimental hyperfine
structure of the individual atoms. In other words, we
assume that the related coupling constants do not vary
with R, and we define them in order to reproduce the
experimental hf splitting of the atoms. In the absence
of published computations of the appropriate molecular
constants —which are outside the scope of the present
paper— this approximation is reasonable. For instance
the variation of these coupling constants is expected to
be limited to about ~15% in the case of RbSr ground
state [66]. A similar trend is also found for the hfs of
the 1°%f and 1°%] states of alkali-metal dimers [65].
Such an approximate Hamiltonian thus mimics the inter-
action between the electrons and the nucleus within each
atom usually expressed in terms of multipolar interac-
tions, with odd magnetic and even electronic multipoles
due to parity conservation inside the nucleus [67]:

h" = hhf, + b, = hYf + hlf + hic +h (3)
with the symbols ¢, s, and i referring to the atomic angu-
lar momenta. The two main terms are: (i) the magnetic
dipole interaction Hamiltonian hb! Vi ps Which incorporates
the interaction of the nuclear spin with the orbital an-
gular momenta of the electrons fli}f and with the spin of
completed by the Fermi contact term
hhc induced by the electrons passmg through the nuclei;

the electrons hbf

si?

(ii) the electric quadrupole term hEQ, which describes
the interaction between the electric quadrupole moment
of the nucleus with the gradient of the electric field cre-
ated by the electrons at the nucleus. In our model the
interaction of the electronic and nuclear momenta of one
atom with those of the other atom is neglected, so that
we do not consider the corresponding multipolar terms.
We apply the model to the first excited states of
39K133Cs and “°K™3Cs molecules, which tend to the
K(4%29)+Cs(62P) dissociation limit. Four electronic
states are defined in the Hund’s case a notation: A>T,
3+, B'I and bPI.  Their potential energy curves
(PECs) are presented on Fig. 1. They come either from
the spectroscopic study of Refs. [68, 69], or from our own
quantum chemical calculations based on effective core po-
tentials (ECPs) and core polarization potentials (CPPs)
implemented in a full configuration interaction approach
(FCI) built on a large Gaussian basis set [70-72]. More
details about the construction of the PECs can be found
n [73]. Note that three out of four PECs dissociating
to the next asymptote, K(42P)+Cs(62S) do not cross
the PECs connected to the K(4%25)+Cs(62P) lower limit.
The (3)! 31 and the BII PECs cross each other but these
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FIG. 1: (a) Hund’s case a potential energy curves of the

excited electronic states correlating to the K(4%5)4-Cs(62P)
(solid lines) and K(4?P)+Cs(6%S) (dashed lines) dissocia-
tion limits. The B and ¢ curves cross at RP¢ = 7.65 a.u.,
the b and A curves at R** = 9.55 a.u., and the b and ¢
states at R’ = 12.84 a.u.; (b) the relevant R-dependent spin-
orbit coupling terms associated to the curves dissociating to
K(4%8)+Cs(62P) (1 a.u. = ap = 0.0529177 nm).

states have no direct spin-orbit interaction, and we will
not include the former state in the present investigation.

The chosen model for the interaction Hamiltonians
above suggests to employ the well-known technique of
linear combination of atomic orbitals to derive the ex-
pressions of the coupling matrix elements of the spin-
orbit and hyperfine interactions. We thus consider the
basis |L, S, A, mg) where L and S are the total electronic
angular momentum and spin quantum numbers, and A
and mg the quantum numbers for their projection on the
molecular axis:

1L, S, A,ms) = = ( |lima )k [lama )2,

+(=1)% |lymy )i [loma )& ) [Smg) ™2

(4)

| —

The ket |Smg )2 is the coupled spin-function of the two
valence electrons, and |lym;) and |lamg) stand for the
s and p atomic orbitals with Iy = 0, m; = 0 and I, =
1, me = —1,0,1. For the present asymptotic limit we
have L = 1 and A = my, resulting in 12 basis functions
|L7 S, A7 ms>.

A. Spin-orbit coupling

In the |L,S,A,mg) basis the H' operator couples
states with the same A + mg = Q value, where Q is the
projection on the molecular axis of the total electronic
angular momenta jo = L + S. As in the next step the hf
interaction will couple most of the 12 states above, it is
worthwhile to display the structure of Hf operator in a
compact and global way, as given in Eq. (5):

1

0- o+ 2
smb,  swg| sml,  yp|cmg cm0, WO, 8w Swpt| I Smci
—1 V2 0 0] o0 0 0 0o 0 0 0
V2 0 0 0]l o0 o 0 0 0 0 0 0
0 0 1 V2[00 0 0 0 0 0
0 0 V2 0] 0 0 0 0o 0 0 0 0
0 0 0 0] 0 0 T 0 1 0 0 0|3
0 0 0 0| o0 o 0 -1 0 1 0
0 0 0 0| 1 o0 0 0 -1 0 0 0
0 0 0 0| 0 -1 0 0o 0 1 0 0
0 0 0 0| 1 o0 -1 0 0 0 0
0 0 0 0]l o0 1 0 1 0 0 0
0 0 0 0] 0 0 0 0 0 0 T 0
0 0 0 0] 0 o0 0 0 0 0 0 1

For simplicity, this expression exhibits the location of the
non-vanishing asymptotic (R — co) spin-orbit matrix el-
ements, which have to be multiplied by the Cs(6p) spin-
orbit splitting (AFy,/3 = 184.679 cm~1) [74]. The di-
agonalization of this matrix yields the energies of atomic
fine-structure levels. Each block is characterized by a
value of |Q| (first line header in Eq. (5), with the in-
dex + accounting for the reflection symmetry of Q = 0
states) and involves Hund’s case a states (second line
header), which are labeled as 25T1X7'S - and 25F1IS
with mg = 0,41. States with positive values of € are
written in boldface. The degeneracy of the states with
+Q # 0 is not removed by the spin-orbit interaction.

In order to obtain Hund’s case ¢ PECs including spin-
orbit, we have replaced the R-dependent spin-orbit ma-
trix elements displayed in Fig. 1(b) to the atomic con-
stant in Eq. (5). Note that all these functions indeed
converge to AFEg,/3 = 184.679 cm~! at large distances.
They are taken from various experimental and theoretical
papers [68, 75, 76], as explained in detail in Ref. [73]. The
PECs resulting from the diagonalization of the Hamilto-
nian matrix including this molecular spin-orbit couplings
are plotted in Fig. 2. To identify states with the same )
value we label them with a short notation expressing their
dissociation limit: 2(Ps/3), 1(Py)2), 1(Ps/2cr), 1(Ps/20),
0%/~ (Py/2) and 07/~ (Ps/3) notations. The two (Ps/s)
states with 2 = 1 are distinguished by the index « and
[ for the lowest and the upper one, respectively.

B. Hyperfine interaction

We build the hyperfine Hamiltonian upon the hyper-
fine structure of the K and Cs atoms, which is recalled
in Fig. 3 and in Table IV in the Appendix. The hyper-
fine splitting of the 349K (428 /) and the *3Cs(6 2Py 5)
state is determined only by the magnetic dipole term, the
electric quadrupole and magnetic octupole terms being
zero for j = 1/2. The latter terms give non-zero contri-
bution only for the 33Cs(6 2P3/2) state. In the following
we will omit the mass index of the Cs atom, for sim-
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FIG. 2: Hund’s case c¢ potential energy curves of ex-

cited molecular states correlating to the dissociation limits
K(4251/2)+Cs(62P1/273/2). The o and B indexes label the
two 2 = 1 states correlated to the upper dissociation limit.

plicity. The nuclear spins are 3/2, 4 and 7/2 for 39K,
40K, and Cs, respectively. We set up the molecular basis
by assembling the atomic states |((sxlk)jk, %) fr: My ),
where i, and fr denote the nuclear spin and the total
angular momentum of the atom k, respectively. We use
the simplified notation

|(f1, f2) fmyg) = [(((s1h)jrin) fr, ((s2l2)g2i2) f2) f my)
Yy AT

TMfy M fy

« <f1 fa  f )
myg Mg, —mMmy

X |((8111)j17i1)f17mf1 >
% |((s2l2)j2,i2) f2,my, ), (6)

where (...) denotes 3j-symbols. The quantum numbers
f and my are associated to the total angular momentum
(without the molecular rotation) of the molecule f = f; +
fa and its projection on the molecular axis. At infinite
separation we obviously have

((f1, fo) f g HM|(f1, fo) fmy) = EM(ir,j1, f1)
+ ng(i27j23f2)a(7)

E(iy, ji, fr,) denoting the energy of the (iy, ji, fx) hy-
perfine level of the atom k.

The matrices of H® and Hf in this basis are ob-
tained after a basis transformation between the asymp-
totic molecular basis above and the |L,S,A,mg) ba-
sis completed by the quantum numbers |I,m;) for the
total nuclear spin of the molecule and its projection

! | | £, =712

el 6p1, | 6py), .
fe2 — 3 N3 ]
i ’ "3
133CS 133Cg «
39K 40K

FIG. 3: Scheme of the asymptotic molecular hyperfine struc-
ture of the bosonic **KCs and fermionic *°KCs molecules
at the K(42Sl/2)+Cs(62P1/2,3/2) dissociation limit. Energy
spacings are not on scale, but the energy level order is mean-
ingful. Exact energy splittings are reported in the Appendix.

my = A+ mg + m; on the molecular axis

((f f2)fme) = > SLjgjlfifs
J,Iymg,my,
S,Lyms,mr,
myy,mi,
fm J M L,
ijmjf,fymlcsymjs,LmL l17’r:7flLl;l27m12
Ji i1 fi s1 v h
J2 i2 fo sz Iy jo
Jg I f S L j
|L,S,A,ms>|Im1>, (8)

where X = /2X + 1, the factors C are Clebsh-Gordan
coefficients, and {...} are 9j coefficients. We thus have
I=2,..5for ?KCs and I = %, . % for 40KCs.

We have defined in Section ITA 12 |L, S, A, mg) states,
while 32 (resp. 72) nuclear spin states |I'mj) exist for
39KCs (resp. “°KCs), resulting in a total of 384 (resp.
864) |(f1, f2)fmys) hyperfine states. As states with op-
posite values of my are degenerate in energy in the ab-
sence of external field, it is sufficient to count states
with my; > 0 (Tables I and II). For instance, the num-
ber of 3°KCs states with my = 0 is 48, so that there
are (384-48)/2+48=216 different hyperfine states labeled
with my > 0. As the hf interaction is implemented as
a perturbation of Hund’s case c states, Tables I and II
also display the number of non-degenerate states for each
Q > 0 symmetry. These numbers will be of great help
to interpret the molecular PECs including hf interaction
obtained in the next Section.
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TABLE I: The number of my > 0 hyperfine states in 39KCs
spread over the various || symmetries.

Q 2 1 1« v Tof, 0, 03, 05, [Tot
myg
1/2 | 13 15 15 15 8 8 8 8 |90
3/2 | 13 14 14 14 7 7 7 7 |83
5/2 | 12 12 12 12 6 6 6 6 |72
7/2 | 10 10 10 10 5 5 5 5 |60
9/2 | 8 8 8 8 4 4 4 4 |48
11/2| 6 6 6 6 3 3 3 3 |36
13/2| 4 4 4 4 2 2 2 2 |24
15/2| 3 2 2 2 1 1 1 1 |13
17/2| 2 1 1 1 0 0 0 0 5
19/2 1 0 0 0 0 0 0 0 1
Total| 72 | 72 72 72 | 36 36 36 36 |432

TABLE II: Same as Table I for “°KCs.

III. RESULTS

We present our calculations for the hfs of the first ex-
cited states of the bosonic 3°KCs and fermonic “°KCs
molecules, correlated to the K(428S) /5, f1)+Cs(6° Py, f2)
dissociation limits displayed in Fig. 3.

The long-range PECs resulting from the diagonaliza-
tion of the total Hamiltonian (Eq. (1)) in the molecu-
lar basis of Eq. (6) are presented in Fig. 4. They are
displayed down to R =~ 100 a.u. where the long-range
van der Waals interaction is of the same magnitude than
the hyperfine splittings. All PECs are attractive, as ex-
pected from Fig. 2. Below 100 a.u. PECs correlated
to different (f1, f2) asymptotes strongly recouple among
each other, leaving f and m; as the only remaining good
quantum numbers. In this range the hfs is accurately
calculated and could thus be of relevance for instance for
photoassociation studies. Here we are mainly interested
in the hyperfine structure of deeply-bound vibrational
levels relevant for STIRAP, i.e. covering a range of lower
distances.

Below an internuclear distance of about 30 a.u., the
Hund’s case ¢ PECs are well separated in energy while
their hyperfine structure is much smaller than their mu-
tual spacing. Then it is convenient to plot the difference
between each of these PECs with the related pure Hund’s
case c ones. The global behavior of these difference PECs
(or DPECs in the following) in the range on internuclear
distances between 5 a.u. and 25 a.u. is displayed for both
isotopologues in Figs. 7 and 8 (2 = 2,1 states) and in
Figs. 5 and 8 (2 = 0 states). For a given  value, the
DPECs exhibit similar amplitudes of the manifold, with

K(42S1,2)+Cs(6%P3p2) K(42S1)2)+Cs(62P32)
(5,2)
(5.7/2) |
184.69
5 18468
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FIG. 4: Longrange potential energy curves (PECs) of

KCs including hyperfine interaction, correlated to the
K(4S1)2, f1)+Cs(6°Pj,, f2). (a) and (c): the 216 PECs of
39KCs. (b) and (d): the 432 PECs of *°KCs. Hyperfine dis-
sociation limits are labeled with (f1,f2)

zones of regularities and sharp transitions between them
along the R interval, for both isotopologues. Most of
such transitions result from the crossings between Hund’s
case ¢ PECs (see Table IIT) or Hund’s case a PECs (see
Fig. 1), which are then coupled by hf interaction so that
the DPECs cannot be rigorously defined anymore. This
pattern appears as more pronounced for the 2 = 0 states,
since the hyperfine splitting of these states are with 2 to
3 orders of magnitude smaller than for Q2 = 1,2 states.
Note that the peak around 23 a.u. in the DPECs for
07 (Py/2) and 0~ (P3/2) states, not reported in Table III,
is a consequence of the closeness (= 0.068 cm~1) of these
states at this location, so that their hyperfine structures
overlap each other.

In between these peaks, the DPECs may reflect the lo-
cal Hund’s case a character of the hyperfine states, which
is an important information for the future interpretation
of the hyperfine structure of molecular levels. While our
model does not explicitly treat the individual terms of
the hfs Hamiltonian of Eq.3, one can discuss their influ-



1 (Pg2)[07 (P35)[0~ (Psys)
2(Ps2) | 12.82 9.54 12.81
(P, 2) - 9.73 -
12.66
1(P3/2 a) - - 12.80
23.36

TABLE III: Internuclear distances (in a.u.) where the KCs
Hund’s case ¢ PECs cross each other. Values in italics corre-
sponds to the location of the sharp peaks in the corresponding
difference PECs for (see text).
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FIG. 5: (Color online) Difference potential energy curves for
Q = 0 states in **KCs, for every value of |m| indicated by
the color code. Each panel contains 18 curves (see Table I).
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FIG. 6: (Color online) Difference potential energy curves for
Q = 0 states in “°KCs, for every value of |m| indicated by
the color code. Each panel contains 36 curves (see Table II).

ence by formally rewriting in an effective manner for the
molecule, so that the amplitude of the hfs manifolds are
easily interpreted:
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FIG. 7: (Color online) Difference potential energy curves for
Q = 2,1 states in *°KCs, for every value of |m;| indicated by
the color code. Each panel contains 36 curves (see Table I).
When appropriate, the dominant Hund’s case a state is re-
ported at the top of the panels for each interval between two
crossings of Hund’s case a potential energy curves (indicated
by solid vertical lines). The dashed lines at large R roughly
locates the distance beyond which Hund’s case a states are
strongly mixed by spin-orbit interaction.
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FIG. 8: (Color online) Same as Fig. 7 for “°KCs. Each panel
contains 72 curves (see Table I).

where the symbols L, S and I now refer to the angular
momenta of the molecule.

The 2(P3/2) DPECs are solely built on the b*II state, so
that the resulting hfs is monotonous with R and is spread
over about 0.8 GHz for 3°KCs (Fig. 7a) and 1.4 GHz for
40K Cs (Fig. 8a). The order of the |my| curves is con-
trasted between the two isotopologues: they are arranged
in a somewhat disordered way in “°KCs, while they ap-
pears symmetrically around the my = 0 ones in 3°KCs,
except for the largest |my| values. This simple exam-
ple illustrates the tight competition between the various
terms of the hyperfine Hamiltonian, thus preventing from
a uniform hfs pattern. In the b3II state, the projection of
the total electronic angular momentum as well as of the
spin can not be zero. All of the three terms Hlﬁfl, Hgfl,

and ﬂlﬁfc of the magnetic dipole Hamiltonian do con-



tribute to the hfs; yielding a manifold with the largest
amplitude of all the excited states.

The variations of the 1(P;) DPECs display several
regimes related to the local Hund’s case a character of
the states. The |my| curves are spread symmetrically
around the my = 0 for the 1(P;/5) and 1(Ps/5 o) mani-
folds in 3°KCs, and for the 1(Ps/2 3) manifold in 40KCs.
In contrast, the DPECs are not structured according to
|my| values for the 1(P;/3) and 1(P;/, &) manifolds in
40K (s, and for the 1(Ps/5 3) manifold in 39K(Cs. The en-
ergy amplitude spanned by the DPECs strongly depends
on their local character, the largest one occurring when
the states are mostly of ¢ T type. The smallest hfs is
found for the DPECs of B!l character for which the HE|
vanishes. A slightly larger hfs is visible for the DPECs of
311 character for which the projection of the electronic
spin on the molecular axis vanishes in H]fslfI The largest
hfs is found for the DPECSs of ¢>$* character as the three
terms of the magnetic dipole interaction contribute to the
interaction.

The analysis of the structure of the DPECs for vari-
ous ranges of distance reveals information on the main
coupling regimes. In several cases, we observe that the
DPECs are arranged in eight groups, corresponding to
the possible values of the projection of the Cs nuclear
spin m;,, = —7/2,...,7/2: the 1(P;/,) DPECs in the re-
gion with b3II character (Fig. 7b, Fig. 8b) and the 1(Ps)2)
DPECs in the region with BII character (Fig. 7c, d
and Fig. 8c, d). Each of these eight groups exhibits a
finer structure with DPECs arranged in either in four
groups (Fig. 9) for 3KCs or nine groups (Fig. 10) for
40K(Cs molecule. This pattern correspond to the four
values of mi,, = —3/2,...,3/2 and to the nine values
of mj,,, = —4,...,4, respectively. This indicates that in
the related R domains the nuclear spins of the two atoms
do not couple each other. In **KCs, the 1(P;/5) DPECs
between 13.8 a.u. and 16 a.u. and the 1(P;/5 o) DPECS
at 14.5 a.u., mostly of ¢3S+ character are grouped in 11
subsets corresponding to the projections of the total nu-
clear spin m; = —5, ..., 5. These subsets are equidistantly
located around the m; = 0 one, revealing the dominant
first order magnetic dipole interactions yielding energies
proportional to my [67].

60 T T T T B e L s mf
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5 6 7 8 910 55 6 65 7 8 9

FIG. 9: Zooms on the R-intervals for which the 3*°KCs 1(P;)
DPECs of Fig. 7 are grouped according to the projection of
the nuclear spin of the cesium and potassium atoms. The
figure displays the four curves miy, . = —3/2,...,3/2 associ-
ated to the 4th pack (counting from the top) in case of the
39K133(Cs molecule.

The coupling of the nuclear spins appears in other

R), 1 [ 0Q=1(Psa) | [o=1(Ppp 2
55 6 65 7 8 9 10 1192
11/2

Energy MHz)

R(a.u.)

FIG. 10: Same as Fig. 9 for the “°KCs 1(P;) DPECs of Fig. 8,
with nine curves mq,, , = —4,...,4.

cases. In 3°KCs, the 1P/, DPECs between 13.8 a.u.
and 16 a.u. and the 1(Ps;o ) DPECS at 14.5 a.u.,
mostly of ¢3$+ character are grouped in 11 subsets cor-
responding to the projections of the total nuclear spin
my = —5,...,5. These subsets are equidistantly located
around the m; = 0 one, revealing the dominant first
order magnetic dipole interactions yielding energies pro-
portional to my [67]. Furthermore, Fig. 8b illustrates the
coupling of nuclear spins for R > 16 a.u. in the 1(P; ;)
DPECS of “°KCs with sixteen groups corresponding to
the possible projections of the total nuclear spin 15/2.
This is easily understood as unlike 3°KCs, the hfs of the
39K (4s) is larger than the Cs(6p;/2,3/2) ones, so that the
grouping of DPECs is different.

In contrast with the cases above, the hyperfine energy
splittings for the 2 = 0 DPECs have a magnitude in the
MHz range for both isotopologues, which can be inter-
preted with Eq. 9. The first-order magnetic dipole inter-
action vanishes, but not the second-order magnetic dipole
and higher-order multipole interactions, which give small
corrections to the energy [67].
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FIG. 11: Zooms of the **KCs 0" (P3,2) DPECs of Fig. 5b for
ranges of R in between the peaks marking the transition from
one Hund’s case a character to the other.
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FIG. 12: Zooms of the *?’KCs 0~ (P3,2) DPECs of Fig. 5d for
ranges of R in between the peaks marking the transition from
one Hund’s case a character to the other.
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FIG. 13: Zooms of the “°KCs 0" (Ps/,) DPECs of Fig. 6b for
ranges of R in between the peaks marking the transition from
one Hund’s case a character to the other.
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FIG. 14: Zooms of the “°’KCs 07 (Ps/5) DPECs of Fig. 6d for
ranges of R in between the peaks marking the transition from
one Hund’s case a character to the other.

IV. DISCUSSION: TOWARDS A FULL MODEL
OF THE FORMATION OF ULTRACOLD KCS
MOLECULES

We have extended the asymptotic model of Ref. [56]
down to small internuclear distances in order to deter-
mine the potential energy curves of electronically excited
molecular states of 3*KCs and *°KCs including hyperfine
structure. The hyperfine splittings of the 2 = 1,2 molec-
ular states have an amplitude in the GHz range, and
typically three orders of magnitude less for the @ = 0
states, as expected from Ref.[67]. These calculations
must be complemented by introducing molecular rotation
and thus evaluate the hyperfine structure of the rovibra-

tional levels of the molecules, which will be the purpose of
a forthcoming paper. Nevertheless, the present calcula-
tions are already relevant for various aspects of ultracold
molecule research.

First, the implementation of optical shielding in ul-
tracold gases, i.e. the suppression of inelastic collisions
between ultracold atoms, relies on the modification of
long-range interactions between ground-state and excited
atoms by laser light [77]. The experimental proof-of-
principle was first achieved in trap-loss experiments in-
duced by inelastic collisions of cold alkali atoms [78-81].
The suppression of ionizing (Penning) collisions was ob-
served with Xe [82] and Kr atoms [83], as well as the sup-
pression of reactive collisions like photoassociative colli-
sions of sodium atoms [84]. These experiments have been
achieved for gases with temperature in the 10-100 pK
range, too large to allow for selecting a single repulsive
channel so that the suppression effect is partial. A full
description of this process at even lower temperatures
must include the hyperfine structure of the related elec-
tronic states as determined in the present work. Here all
the electronic states are attractive at large distances, but
a few electronic states correlating to the K(4p)+Cs(6s)
dissociation limit are indeed repulsive (see Fig. 1) and
thus suitable for optical shielding.

Second, the most advanced achievements toward the
creation of dense gases of cold molecules in their ground
state rely on two main steps [11, 12, 15, 16, 20, 85]. First
a pair of ultracold atoms is associated into a loosely-
bound vibrational level of the ground molecular state
manifold using magnetic or laser field. Then a con-
trolled population transfer from this well-defined level
to the absolute ground state level can be coherently per-
formed by the method of stimulated rapid adiabatic pas-
sage (STIRAP), involving an intermediate excited molec-
ular state. The theoretical modeling of such a multistep
process without taking in account the hyperfine struc-
ture of the molecular levels yields an efficient guiding
procedure for experimental work [73, 86]. However, the
optimal efficiency of the transfer imposes the control of
the population at the single quantum state level, namely
including the hyperfine structure. The present results de-
liver some hints for choosing a convenient intermediate
state for STIRAP. This is exemplified by Fig. 15 show-
ing the hyperfine structure of all the 3*KCs and °KCs
PECs dissociating into K(4s251/2)+Cs(6p2P1/273/2) at
R; = 10.5 a.u.. This particular distance is chosen after
the theoretical study of Ref.[73], which proposes various
options for achieving STIRAP in KCs involving interme-
diate levels with radial wavefunctions located around R;.
The corresponding rotational energy estimated from the
rotational constant B = h?/(2uR?) amounts for about
500 MHz. The Q = 0 vibrational levels will exhibit a
well-defined rotational structure with each sublevel com-
posed of a tiny hyperfine manifold, which may be te-
dious to resolve experimentally. On the other hand, the
Q = 1 vibrational levels will be characterized by a com-
plex structure resulting from the competition of the hy-



perfine interaction and the molecular rotation of compa-
rable magnitude. As already demonstrated experimen-
tally, such levels can be addressed individually, but their
characterization in terms of quantum numbers is more
involved. For an individual level, it is possible to set up
an effective Hamiltonian whose parameters are fitted on
the recorded spectrum [15]. In our forthcoming work, we
will model the structure of all levels starting from the
atomic hyperfine parameters, and we will adjust them in
order to match the observations.

Appendix

We present in Table IV the values of the hyperfine
energy splittings of the 3°K and “°K 4s level, and of the
Cs 6p2P; /2,3/2 levels in terms of the related molecular
dissociation limits.
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K(45)+Cs(6p) | K(4si, ) +Cs(6pjc.) K (48,0 )+ 2 Cs(6pic, ) || K (43 )+ Cs(6pjc, )
(Ix,les) (Jxsjos) Ef(em™)|| Ens(em™)  (fosfx) || Eng(em™)  (fes,fx)
184.7498 (5,2) 184.712 (5,7/2)
184.7415 (4,2) 184.704 4,7/2)
184.7345 (3,2) 184.697 (3,7/2)
(1/2,3/2) 184.7351 || 184.7341 (5,1) 184.692 (2,7/2)
184.7294 (2,2) 184.67 (5,9/2)
184.7258 1,1) 184.661 (4,9/2)
184.7191 (3,1) 184.654 (3,9/2)
(0,1) 1847141 2,1) 184.649 (2,9/2)
-369.4463 (4,2) -369.319 (4,7/2)
(1/2,1/2) -369.4696 -369.4629 (4,1) -369.358 (3,7/2)
-369.4863 (3,2) -369.362 (4,9/2)
~369.5030 (3,1) ~369.401 (3,9/2)
TABLE 1IV: Asymptotic molecular hyperfine ener-

gies of the 3°K!33Cs and “°K'*3Cs molecules for the
K(452S1/2)+Cs(6p>Py 2 3/2) dissociation limits, see fig. 3.
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