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Let F be a non-Archimedean locally compact field, q be the cardinality of its residue field, and R be an algebraically closed field of characteristic not dividing q. We classify all irreducible smooth R-representations of GLnpFq having a nonzero GLn¡1pFq-invariant linear form, when q is not congruent to 1 mod . Partial results in the case when q is 1 mod show that, unlike the complex case, the space of GLn¡1pFq-invariant linear forms has dimension 2 for certain irreducible representations.

Let F be a non-Archimedean locally compact field of residual characteristic p, let G denote the F-points of a connected reductive group over F together with a closed subgroup H of G, and let R be an algebraically closed field of characteristic different from p. Given irreducible smooth representations π of G and σ of H with coefficients in R, it is a question of general interest in representation theory, known as the branching problem, to understand whether π restricted to H has σ as a quotient. If R is the field of complex numbers, this question is classical and well understood is many situations (see for instance [START_REF] Wee | Gross and Dipendra Prasad, Symplectic local root numbers, central critical L values, and restriction problems in the representation theory of classical groups, Sur les conjectures de Gross et Prasad[END_REF][START_REF]Restrictions of representations of classical groups: examples, Sur les conjectures de Gross et Prasad[END_REF]). A case of particular interest is when σ is the trivial representation. In this situation π is said to be H-distinguished if its restriction to H has the trivial representation as a quotient, that is, if π carries a nonzero H-invariant linear form.

1.2.

In this article, we are interested in the case where G is the general linear group GL n pFq, with n ¥ 2, and H is the group GL n¡1 pFq embedded in G via:

x Þ Ñ ¢ x 0 0 1 .
When R is the field of complex numbers, it is a consequence of a result of Waldspurger [START_REF] Waldspurger | Sur les valeurs de certaines fonctions L automorphes en leur centre de symétrie[END_REF] that, for n 2, any infinite dimensional irreducible representation of G is H-distinguished. The classification of all H-distinguished irreducible representations of G for n 3 is due to D. Prasad [START_REF] Prasad | On the decomposition of a representation of GLp3q restricted to GLp2q over a p-adic field[END_REF]. For any n ¥ 2, Prasad [START_REF] Prasad | On the decomposition of a representation of GLp3q restricted to GLp2q over a p-adic field[END_REF] has also proved that any generic representation of G has every generic representation of H as a quotient, and Flicker [START_REF] Flicker | A Fourier summation formula for the symmetric space GL n {GL n¡1[END_REF] classified all H-distinguished irreducible unitary representations of G. The classification of all H-distinguished irreducible representations of G for any n ¥ 3 has been obtained by Venketasubramanian [START_REF] Venketasubramanian | On representations of GLpnq distinguished by GLpn ¡ 1q over a p-adic field[END_REF], in terms of Langlands parameters.

Thus, when R is the field of complex numbers, the question is well understood. In this paper we investigate the case where the field R has positive characteristic different from p.

1.3.

The representation theory of smooth representations of GL n pFq with coefficients in any algebraically closed field R of characteristic $ 0, p has been initiated by Vignéras [START_REF] Vignéras | Représentations l-modulaires d'un groupe réductif p-adique avec l $ p[END_REF][START_REF]Induced R-representations of p-adic reductive groups[END_REF] in view to extend the local Langlands program to representations with coefficients in a field (or ring) as general as possible (see for instance [START_REF]Correspondance de Langlands semi-simple pour GL n pFq modulo $ p[END_REF]). It has then been pursued by Dat, Mínguez, Stevens and the first author [START_REF] Dat | Finitude pour les représentations lisses de groupes p-adiques[END_REF][START_REF] Mínguez | Représentations banales de GLpm[END_REF]13,14,[START_REF]Types modulo les formes intérieures de GL n sur un corps local non archimédien[END_REF][START_REF] Sécherre | Block decomposition of the category of -modular smooth representations of GL n pFq and its inner forms[END_REF]. In many aspects, it is similar to the theory of complex representations of this group: the fact that is different from p ensures that there is an R-valued Haar measure on G, the functors of parabolic induction and restriction are exact and preserve finite length, there is a theory of derivatives, there is a notion of cuspidal support for irreducible representations and a classification of these representations by mutisegments. However, there are also important differences: the measure of a compact open subgroup may be zero, and the notions of cuspidal and supercuspidal representations do not coincide, that is, a representation whose all proper Jacquet modules are zero may occur as a subquotient of a proper parabolically induced representation. The combinatorics of multisegments is also much more involved, since the cardinality q of the residue field of F has finite order in R ¢ .

1.4.

We now come to the main theorem of this article. Let R denote an algebraically closed field of characteristic different from p (possibly 0) and write e for the order (possibly infinite) of q in R ¢ . Write ν for the normalized absolute value of F giving value q ¡1 to any uniformizer. Let us fix a square root of q in R, denoted c q. Given integers k Z and n ¥ 1, we write:

ν k{2 n : g Þ Ñ p c qq ¡k¤valpdetpgqq
where val is the normalized valuation on F and det is the determinant from G to F ¢ . If π, σ are smooth representations of GL u pFq, GL v pFq respectively, with u v n, we denote by π ¢ σ the normalized parabolic induction of π σ to G along the standard (upper triangular) parabolic subgroup. When e ¡ 1, the induced representation:

(1.1)

V n ν 1{2 n¡1 ¢ ν pn 1q{2
has a unique irreducible quotient, denoted Λ n (see Example 4.3). Note that, when e divides n, this representation is the trivial character. Let us write 1 n for the trivial representation of G.

Theorem 1.1. -Suppose that n ¥ 2 and e ¡ 1. An irreducible representation of GL n pFq is GL n¡1 pFq-distinguished if and only if it belongs to the following list:

(1) the trivial representation 1 n ;

(2) an irreducible representation of the form ν ¨1{2

n¡1 ¢ χ with χ a character of GL 1 pFq;

(3) an irreducible representation of the form 1 n¡2 ¢τ with τ an infinite dimensional irreducible representation of GL 2 pFq;

(4) the representation Λ n and its contragredient.

As in the complex case, the proof of Theorem 1.1 is by induction on n. There are two parts to the proof of Theorem 1.1: proving that the representations in the list offered by the theorem are H-distinguished is the easier part. The more difficult part is to show the converse, namely that all irreducible representations which are H-distinguished are in the list.

1.5.

Since our proof is by induction, we first treat the case when n 2 and obtain a classification (see Theorem 3.8) of all the GL 1 pFq-distinguished irreducible representations of GL 2 pFq. When e is not 1, the result turns out to be the same as in the complex case: all infinite-dimensional irreducible representation of GL 2 pFq are distinguished and their space of GL 1 pFq-invariant linear forms has dimension 1. When the characteristic of R divides q ¡ 1 however, this dimension is 2 for certain representations.

1.6.

Assume now that n ¥ 3. As in the complex case, one can show by restricting to the mirabolic subgroup that none of the cuspidal representations of G are distinguished (Theorem 8.2). Since any non-cuspidal irreducible smooth representation of G is a quotient of a parabolically induced representation of the form σ ¢τ with σ, τ smooth irreducible representations of GL u pFq, GL v pFq for some integers u, v ¥ 1 such that u v n, it is natural to study the distinction of σ ¢τ. This was carried out in [START_REF] Venketasubramanian | On representations of GLpnq distinguished by GLpn ¡ 1q over a p-adic field[END_REF] in the complex case. In the modular case, it works as in the complex case: one gets a set of three necessary conditions for this induced representation to be distinguished by H, of which two are sufficient (see Lemma 8.9). This is attributed to the existence of three orbits for the action of H on the homogeneous space made of all subspaces of dimension u in F n , out of which two are closed. The induced representations in (2) and (3) of Theorem 1.1 are shown to satisfy one of the sufficiency conditions coming from Lemma 8.9 (see Corollary 8.13). The contragredient of Λ n , when non-trivial, is realized as a subrepresentation of a distinguished principal series of length 2, the quotient of which is a nontrivial character and is non-distinguished (see proof of Lemma 8.12).

1.7.

To prove the converse of Theorem 1.1, we first prove that any H-distinguished representation of G is a quotient of a representation of the form ρ ¢χ where ρ is an irreducible representation of GL n¡1 pFq and χ a character of F ¢ . In particular, when e ¡ 1, such a quotient is unique. Using the conditions of Lemma 8.9 mentioned above and the induction hypothesis, we can specify ρ and χ to be in a list (see Proposition 8.18). Then, when e ¡ 1, we analyze the unique irreducible quotient of all these ρ ¢ χ. We show that if the quotient is distinguished, then it must be in our list. The case when e 1 presents additional difficulties which we shall touch upon below.

1.8.

We now describe the contents of the article. In Section 2 we set some basic notation, and deal with the case n 2 in Section 3. The complete classification for n 2 is obtained in Theorem 3.8. We begin Section 4 by recalling some general results on -modular representations of GL n pFq from [START_REF] Vignéras | Représentations l-modulaires d'un groupe réductif p-adique avec l $ p[END_REF]14]. We get a complete description of the subquotients of representations of the form Zp∆q ¢Zp∆ I q where ∆, ∆ I are segments and ∆ I is of length at most 2 (see Propositions 4.10 and 4.13). In particular, Proposition 4.10 may be deemed to be a generalization of [START_REF] Vignéras | Représentations modulaires de GLp2, F q en caractéristique l, F corps p-adique, l $ p[END_REF]Théorème 3]. Moreover, comparing with [27, Proposition 4.6], Propositions 4.10 and 4.13 highlight one of the essential differences between principal series representations in the complex and modular cases: a product of two characters has length at most 2 in the complex case, a fact which does not hold as such in the modular case. The representation Λ n , which plays a essential role in the article, is defined in Example 4.3 for e ¡ 1, and in Definition 5.4 in general. More generally, Section 5 is devoted to the case where e 1. The avatar Π n of Λ n is defined in Example 4.11. In Section 6, we compute the derivatives of Λ n and Π n .

In Section 7, we prove a criterion for irreducibility of a product of the form Zp∆q¢Lp∆ I q where ∆ I has length 2. This is a modular version of a result known in the complex case (Theorem 3.1 in [START_REF] Badulescu | Une condition suffisante pour l'irréductibilité d'une induite parabolique de GL m pDq[END_REF]). We begin Section 8 with some basic results on H-distinguished representations of G. The first tool is to use Lemma 8.9, the conditions that we get from the three orbits that we mentioned above. This, along with some of its consequences, yields us Proposition 8.18 and we get a list of representations of the form ρ ¢ χ (see the list following Proposition 8.18): understanding the distinction of the quotients of representations in this list proves the difficult part of Theorem 1.1. The second tool in our proof is Proposition 8.8 using the Bernstein-Zelevinski filtration, which was available for the complex case [START_REF] Flicker | A Fourier summation formula for the symmetric space GL n {GL n¡1[END_REF][START_REF] Prasad | On the decomposition of a representation of GLp3q restricted to GLp2q over a p-adic field[END_REF] and holds for R. The computation of the quotients of ρ ¢ χ in the list obtained from Proposition 8.18 is the content of Sections 9-12.

1.9.

We now explain some of the subtler ideas behind the proof of Theorem 1.1 in this article. Our proof is different from the one in [START_REF] Venketasubramanian | On representations of GLpnq distinguished by GLpn ¡ 1q over a p-adic field[END_REF] proved for complex representations. In [START_REF] Venketasubramanian | On representations of GLpnq distinguished by GLpn ¡ 1q over a p-adic field[END_REF], the main tool in analyzing the existence of a unique irreducible quotient is the Langlands Quotient Theorem and certain results of Zelevinski [START_REF] Zelevinski | Induced representations of reductive p-adic groups. II. On irreducible representations of GLpnq[END_REF]. When these theorems fail to apply, [START_REF] Venketasubramanian | On representations of GLpnq distinguished by GLpn ¡ 1q over a p-adic field[END_REF] uses Theorem 7.1 of [START_REF] Zelevinski | Induced representations of reductive p-adic groups. II. On irreducible representations of GLpnq[END_REF]. In fact, we use Lemma 4.2 which is sufficient for us to analyze the representations coming from the Lemma 8.9 when e ¡ 1. Indeed, if one were to use Lemma 4.2 in the complex case, then the proof of Theorem 1.1 in [START_REF] Venketasubramanian | On representations of GLpnq distinguished by GLpn ¡ 1q over a p-adic field[END_REF] simplifies to some extent without having to resort to Theorem 7.1 of [START_REF] Zelevinski | Induced representations of reductive p-adic groups. II. On irreducible representations of GLpnq[END_REF], because there we have to analyze all subquotients of a certain induced representation.

1.10.

However, in the modular case, even if Proposition 4.2 guarantees the existence of a unique irreducible quotient for the representations ρ ¢ χ arising from Proposition 8.18, to explicitly find this quotient is more difficult. This is due to the fact that, in order to determine whether the unique irreducible quotient of ρ ¢χ is in the list offered by Theorem 1.1, we have to realize it as a quotient of a larger principal series and this larger principal series may not have a unique irreducible quotient. In such a situation, we had but no choice to use the analogue of Theorem 7.1 of [START_REF] Zelevinski | Induced representations of reductive p-adic groups. II. On irreducible representations of GLpnq[END_REF] for the larger principal series in hand. For our purposes, we reduce it to understand the subquotients of representations of the form Zp∆q ¢ Zp∆ I q where the segment ∆ I has length ¤ 2.

These subquotients have certain natural properties (see Section 4, P1 to P6) proved in [14] which enables us to describe the subquotients. This result is obtained in Propositions 4.10 and 4.13. We then use Proposition 8.8 to rule out the subquotients in the larger principal series which are not in the list of Theorem 1.1.

1.11.

Let us mention that, when e 1, the list in Theorem 1.1 is not exhaustive. The first problem is that the representation (1.1) need not have a unique irreducible quotient. In particular, all its irreducible subquotients are H-distinguished (see Lemma 8.15), which is different behavior when we compare with the case when e ¡ 1. This forces us to consider more representations in the list offered by Proposition 8.18 and the tools that we use do not seem to be sufficient to understand the distinction of the quotients.

1.12.

In this last paragraph, we give a few remarks. First, the theory of p-modular representations of p-adic reductive groups is very different from the -modular theory. This is why we chosed to focus on the case where R has characteristic different from p.

In the complex case, the pair pG, Hq is known to be a Gelfand pair [START_REF] Aizenbud | pGL n 1 , GL n q is a Gelfand pair for any local field F[END_REF], that is, the dimension:

dpπq dim Hom H pπ, 1q
of the space of H-invariant linear forms on π is at most 1 for all irreducible complex representations π of G. This is no longer true in the modular case: when e 1 we have dpπq 2 for certain irreducible representations (Theorem 3.5 and Remark 8.16). When e ¥ 3, it can be proved using the same methods as in [START_REF] Venketasubramanian | On representations of GLpnq distinguished by GLpn ¡ 1q over a p-adic field[END_REF] (see ibid. Remark 7.8) and our Theorem 1.1 that dpπq ¤ 1 for all irreducible -modular representations π of G. When e 2 we expect dpπq ¤ 1 still holds, but the proof in [START_REF] Venketasubramanian | On representations of GLpnq distinguished by GLpn ¡ 1q over a p-adic field[END_REF] fails (see Theorem 3.8 for n 2 and Remark 12.13 for more details).

When comparing the results in [START_REF] Venketasubramanian | On representations of GLpnq distinguished by GLpn ¡ 1q over a p-adic field[END_REF] with Mínguez [START_REF] Mínguez | Correspondance de Howe explicite : paires duales de type II[END_REF], the classification of all H-distinguished irreducible complex representations of G turns out to be easily expressed in terms of the local theta correspondence from GL 2 pFq to GL n pFq. It would be interesting to investigate this in the modular case, by developing an -modular theta correspondence (see [START_REF]Correspondance de Howe -modulaire : paires duales de type II[END_REF]).

Our last remark is about reduction mod . It is not difficult to see that the reduction mod of an H-distinguished integral irreducible -adic representation of G contains at least one distinguished irreducible component, by reducing mod a nonzero invariant linear form. However this fact is not of much use here, and we do not say more about it.

Notation and preliminaries

In all this article, we fix a locally compact non-Archimedean field F ; we write O for its ring of integers, p for the maximal ideal of O and q for the cardinality of its residue field. We also fix an algebraically closed field R of characteristic not dividing q.

We write e for the order (possibly infinite) of the image of q in R ¢ and define:

f 4 0 if R has characteristic 0,
the smallest positive integer k ¥ 2 such that 1 q ¤ ¤ ¤ q k¡1 0 in R otherwise. When R has characteristic ¡ 0, we have f e if e ¡ 1 and f if e 1.

Given a topological group G, a smooth R-representation (or representation for short) of G is a pair pπ, Vq made of an R-vector space V together with a group homomorphism π : G Ñ GLpVq such that, for all v V, there is an open subgroup of G fixing v. In this article, all representations will be supposed to be smooth R-representations.

A smooth R-character (or character for short) of G is a group homomorphism from G to R ¢ with open kernel.

Given a representation π and a character χ of G, we write πχ for the twisted representation g Þ Ñ πpgqχpgq.

For n ¥ 1, we write G n GL n pFq, and p G n for the set of isomorphism classes of its irreducible representations. In particular, p G 1 will be identified with the group of characters of G 1 .

Given a representation π of G n , n ¥ 1 and µ p G 1 , we write π ¤ µ πpµ ¥ detq. If π has finite length, we write rπs for its semi-simplification.

The pair pGL 2 pFq, GL 1 pFqq

Write G GL 2 pFq and let: H

4¢ x 0 0 1 ; x F ¢ B G.
Let B denote the Borel subgroup of G made of upper triangular matrices, and write:

s ¢ 0 1 1 0 G.
If X is a locally compact topological space and A is a commutative ring, let C V c pX, Aq denote the space of all locally constant and compactly supported functions from X to A.

We write dx for the R-valued Haar measure on F ¢ giving measure 1 to the subgroup 1 p of principal units (see [22, I.2]).

The principal series

Let α 1 , α 2 be two smooth R-characters of F ¢ . Let:

V Vpα 1 , α 2 q denote the (non-normalized) parabolic R-induction Ind G B pα 1 α 2 q, that is the space of all locally constant R-valued functions f on G such that f pmngq α 1 pm 1 qα 2 pm 2 qfpgq for all:

m ¢ m 1 0 0 m 2 G, n ¢ 1 F 0 1 G, g G,
which is made into a smooth R-representation of G by making G act by right translations. Write W for the subspace of V made of all functions vanishing at 1 and s. The map:

W Ñ C V c pF ¢ , Rq which associates to f W the function: φ : x Þ Ñ f ¢ s ¢ 1 x 0 1
is an isomorphism of R-vector spaces, and becomes an isomorphism of representations of H if the right hand side is endowed with the action defined by:

a ¤ φ : x Þ Ñ α 2 paqφpxa ¡1 q, x, a F ¢ .
Up to a nonzero scalar, there is on W a unique nonzero H-invariant linear form, given by:

µ : f Þ Ñ » F ¢ f ¢ s ¢ 1 x 0 1 α 2 pxq ¡1 dx.
Let α denote the character of B extending α 1 α 2 . Fix an integer i ¥ 1 such that α 1 , α 2 are trivial on 1 p i , and let K i be the subgroup of GL 2 pOq made of matrices congruent to the identity mod p i . We define two functions f 0 and f V on G:

(1) f 0 is supported on BsK i and f 0 pbsxq αpbq for all b B, x

K i . (2) f V is supported on BK i and f V pbxq αpbq for all b B, x K i .
As α is trivial on B K i , these functions f 0 , f V are well defined. They are in V but not in W. Lemma 3.1. -Given f V, there is a unique function wpf q W such that: f f psqf 0 f p1qf V wpf q. This defines a projection w : V Ñ W with kernel spanned by f 0 and f V .

Proof. -This follows from the fact that s does not belong to BK i .

Let λ be an H-invariant linear form on V. It is characterized by λpf 0 q, λpf V q R and its restriction to W. As this restriction is H-invariant, it is of the form cµ for a unique scalar c R. Corollary 3.2. -The space V ¦H of H-invariant linear forms on V has dimension ¤ 3. Now let λ be a linear form on V extending µ. We search for a necessary and sufficient condition on λpf 0 q, λpf V q R for λ to be H-invariant. By definition, this linear form is H-invariant if and only if:

λ ¢¢ x 0 0 1 ¤ f λpf q
for all x F ¢ and f V, and it is enough to check this condition for all x of valuation 1 and f f 0 , f V . Let t F ¢ be of valuation 1. We have:

¢ t 0 0 1 ¤ f 0 α 2 ptqf 0 w ¢¢ t 0 0 1 ¤ f 0 , ¢ t 0 0 1 ¤ f V α 1 ptqf V w ¢¢ t 0 0 1 ¤ f V .
Thus the condition writes: p1 ¡ α 2 ptqqλpf 0 q µ 0 ptq and p1 ¡ α 1 ptqqλpf V q µ V ptq for all t F ¢ of valuation 1, where:

µ 0 ptq µ ¢ w ¢¢ t 0 0 1 ¤ f 0 and µ V ptq µ ¢ w ¢¢ t 0 0 1 ¤ f V . Lemma 3.3. -We have: µ 0 ptq ¡α 2 ptq 1¡i » O ¢ α 2 pxq ¡1 dx and µ V ptq α 1 p¡1qα 1 ptq i » O ¢ α 1 pxq ¡1 dx.
Proof. -Given x F ¢ , write m Z for the valuation of x (normalized in such a way that any uniformizer has valuation 1) and:

ιpxq ¢ 1 x 0 1 . We have: (3.1) sιpxq s ¢ 1 x 0 1 BsK i ô m ¥ i and: (3.2) sιpxq ¢ ¡x ¡1 1 0 x ¢ 1 0 x ¡1 1 BK i ô m ¤ ¡i.
Note that:

sιpxq ¢ t 0 0 1 s ¢ 1 x 0 1 ¢ t 0 0 1 s ¢ t 0 0 1 ¢ 1 xt ¡1 0 1 ¢ 1 0 0 t sιpxt ¡1 q.
We have:

µ 0 ptq » F ¢ f 0 ¢ sιpxq ¢ t 0 0 1 ¡ α 2 ptqf 0 psιpxqq & α 2 pxq ¡1 dx, µ V ptq » F ¢ f V ¢ sιpxq ¢ t 0 0 1 ¡ α 1 ptqf V psιpxqq & α 2 pxq ¡1 dx.
Let φ 0 px, tq and φ V px, tq denote the functions into brackets in the formulas above, respectively. We use formulas (3.1) and (3.2) above. For φ 0 px, tq we have the following:

(1) if m ¥ i 1, then φ 0 px, tq α 2 ptq ¡ α 2 ptq 0; (2) if m i, then φ 0 px, tq ¡α 2 ptq; (3) if m ¤ i ¡ 1, then φ 0 px, tq 0. For φ V px, tq we have: (1) if m ¥ ¡i 2, then φ V px, tq 0; (2) if m ¡i 1, then φ V px, tq α 1 p¡tx ¡1 qα 2 pxq; (3) if m ¤ ¡i, then φ V px, tq α 1 p¡tx ¡1 qα 2 pxq ¡ α 1 p¡tx ¡1 qα 2 pxq 0.
Therefore we have:

µ 0 ptq ¡α 2 ptq » O ¢ α 2 pt i xq ¡1 dx and µ V ptq » O ¢ α 1 p¡t 1¡p1¡iq x ¡1 q dx.
This ends the proof of the lemma.

We now have the following result.

Theorem 3.4.

-The linear form µ can be extended to an H-invariant linear form on V if and only if one of the two conditions below is satisfied:

(1) q $ 1 in R and α 1 , α 2 are nontrivial.

(2) q 1 in R.

Proof.

-If α 1 , α 2 are ramified (that is, nontrivial on O ¢ ), then:

» O ¢ α 1 pxq ¡1 dx » O ¢ α 2 pxq ¡1 dx 0.
Thus µ can be extended uniquely to an H-invariant linear form λ on V, by setting λpf 0 q λpf V q 0. If α i is unramified for some i t1, 2u, then:

» O ¢ α i pxq ¡1 dx q ¡ 1.
Fix a uniformizer of F and put z i α i p q. (1) If i 1, the condition on λpf V q writes:

(3.3) p1 ¡ z 1 qλpf V q z i 1 pq ¡ 1q. If z 1 $ 1, then (3.3) has a unique solution: λpf V q z i 1 ¤ q ¡ 1 1 ¡ z 1 . If z 1 1, then (3.
3) has a solution if and only if we have q 1 in R, and in that case any value of λpf V q in R is a solution.

(2) If i 2, the condition on λpf 0 q writes:

(3.4) p1 ¡ z 2 qλpf 0 q ¡z 1¡i 2 pq ¡ 1q. If z 2 $ 1, then (3.4) has a unique solution: λpf 0 q ¡z 1¡i 2 ¤ q ¡ 1 1 ¡ z 2 .
If z 2 1, then (3.4) has a solution if and only if we have q 1 in R, and in that case any value of λpf 0 q in R is a solution.

This ends the proof of the theorem.

Write dpVq for the dimension of V ¦H and epVq for that of the subspace of H-invariant linear forms which are trivial on W.

Theorem 3.5. -Let n denote the number of trivial characters among α 1 , α 2 .

(1) If n 0, then dpVq 1 and epVq 0.

(2) If n ¥ 1 and q $ 1 in R, then dpVq epVq n.

(3) If n ¥ 1 and q 1 in R, then dpVq n 1 and epVq n. Proof. -If q $ 1 in R, the result is as in the complex case. If q 1 in R, then µ can always be extended to an H-invariant linear form on V, that is, we have an exact sequence: 0 Ñ pV{Wq ¦H Ñ V ¦H Ñ W ¦H Ñ 0 of R-vector spaces and the dimension of W ¦H is 1. One easily checks that epVq n. The result follows.

The classification of GL 1 pFq-distinguished irreducible representations of GL 2 pFq

For the definition of an H-distinguished representation of G, we refer to Definition 8.1. For any irreducible (smooth) representation π of G, let dpπq denote the dimension of its space of H-invariant linear forms.

Recall that f denotes the quantum characteristic:

f 4 0 if R has characteristic 0,
the smallest positive integer k ¥ 2 such that 1 q ¤ ¤ ¤ q k¡1 0 in R otherwise. An irreducible representation of G is said to be cuspidal if it does not embed in any Vpα 1 , α 2 q with α 1 , α 2 p G 1 . Just as in the complex case, we have the following result for cuspidal representations. For the following lemma, see [14, §6].

Lemma 3.7. -If f 2, then St ¤ χ is cuspidal for all χ p G 1 .
If f 2, then Proposition 3.6 implies that St ¤ χ is H-distinguished with dpSt ¤ χq 1 for all χ p G 1 . Assume now that f $ 2. Thus V has length 2 and we have an exact sequence:

0 Ñ χ ¥ det Ñ V ¤ χ Ind G B pχ χq Ñ St ¤ χ Ñ 0 of representations of G. If χ is nontrivial, then any H-invariant linear form on V ¤ χ is trivial on χ ¥ det. We thus have dpSt ¤ χq dpV ¤ χq 1. If χ 1, we have: dpStq ¤ dpVq ¤ dpStq 1.
As λ 0 and λ V are H-invariant linear form on V which are nonzero on the subspace of constant functions, we get dpStq dpVq ¡ 1. Finally, we have the following result.

Theorem 3.8. - (1) An irreducible representation of G is H-distinguished if and only if it is not a nontrivial 1-dimensional representation.
(2) Let π be an H-distinguished irreducible representation of G. Then dpπq ¤ 2, with equality if and only if q 1 in R and we are in one of the following cases:

(a) π is the Steinberg representation St and R has characteristic ¡ 2 ;

(b) π is a principal series representation Vp1, χq Ind G B p1 χq with χ p G 1 nontrivial.

General results on modulo representations of G n

More notation

Let α pn 1 , . . . , n r q be a composition of n, that is, a family of positive integer whose sum is n. We denote by M α the subgroup of G n of invertible matrices which are diagonal by blocks of size n 1 , . . . , n r respectively (it is isomorphic to G n 1 ¢ ¤ ¤ ¤ ¢ G nr ) and by P α the subgroup of G n generated by M α and the upper triangular matrices.

We choose once and for all a square root of q in R. We write r α for the normalized Jacquet functor associated to pM α , P α q and i α for its right adjoint functor, that is, normalized parabolic induction. If π 1 , . . . , π r are smooth R-representations of G n 1 , . . . , G nr respectively, we write:

(4.1)

π 1 ¢ π 2 ¢ ¤ ¤ ¤ ¢ π r i α pπ 1 π 2 ¤ ¤ ¤ π r q.
Given a smooth representation π of finite length, we write rπs for its semi-simplification and π ¦ for its contragredient.

We write ν for the normalized absolute value of F, giving value q ¡1 to any uniformizer. More generally, given integers k Z and n ¥ 1, we write:

ν k{2 n : g Þ Ñ p c qq
¡k¤valpdetpgqq where c q is the square root of q in R that has been fixed above, val is the normalized valuation on F and det is the determinant map from G n to F ¢ . We also write 1 n for the trivial character of G n , n ¥ 1, and 1 for 1 1 .

The Geometric Lemma

We give here a combinatorial version of Bernstein-Zelevinski's Geometric Lemma [START_REF] Bernstein | Induced representations of reductive p-adic groups. I[END_REF] (see also [START_REF] Vignéras | Représentations l-modulaires d'un groupe réductif p-adique avec l $ p[END_REF]II.2.19]). Let α pn 1 , . . . , n r q and β pm 1 , . . . , m s q be two compositions of n ¥ 1. For each i t1, . . . , ru, let π i p G n i . Let B α,β be the set of all matrices B pb i,j q whose coefficients are non-negative integers such that:

s j1 b i,j n i , i t1, . . . , ru, r i1
b i,j m j , j t1, . . . , su.

Fix B B α,β and write α i pb i,1 , . . . , b i,s q and β j pb 1,j , . . . , b r,j q which are compositions of n i and m j respectively. For all i t1, . . . , ru, the semi-simplification of r α i pπ i q writes: rr α i pπ i qs

r i ķ1 σ pkq i,1 ¤ ¤ ¤ σ pkq i,s , σ pkq i,j p G b i,j , r i ¥ 1.
For all j t1, . . . , su and all r-tuples k pk 1 , . . . , k r q with 1 ¤ k i ¤ r i , we write:

σ pkq j σ pk 1 q 1,j ¢ ¤ ¤ ¤ ¢ σ pkrq r,j
, which is a representation of G m j . Then we have: 

rr β pπ 1 ¢ ¤ ¤ ¤ ¢ π r qs B ķ σ pkq 1 ¤ ¤ ¤ σ pkq

Cuspidal support

An irreducible representation of G n with n ¥ 1 is said to be cuspidal if it does not embed in any representation of the form (4.1) with r ¡ 1.

By [14, Theorem 2.1], for any irreducible representation π p G n with n ¥ 1, there are positive integers n 1 , . . . , n r and cuspidal irreducible representations ρ i p G n i with i t1, . . . , ru such that n n 1 ¤ ¤ ¤ n r and π embeds in ρ 1 ¢ ¤ ¤ ¤ ¢ ρ r . Moreover, there is a permutation w of the set t1, 2, . . . , ru such that π is a quotient of ρ wp1q ¢ ¤ ¤ ¤ ¢ ρ wprq .

The family pρ 1 , . . . , ρ r q, which depends on the choice of c q, is unique up to permutation. Its class up to permutation, denoted rρ 1 s ¤ ¤ ¤ rρ r s, is called the cuspidal support of π. and G m , respectively. Write rπ 1 s ¤ ¤ ¤ rπ r s and rσ 1 s ¤ ¤ ¤ rσ s s for the cuspidal supports of π and σ, respectively. Assume that for all i t1, . . . , ru, j t1, . . . , su and k Z, the representations π i ¤ ν k and σ j are not isomorphic. Then π ¢ σ is irreducible.

Three lemmas about irreducibility

The following lemma is a particular case of [13, Lemma 6.1], which will be of crucial importance to us. Recall that e is the order (possibly infinite) of q in R ¢ . There is also a similar result for τ χ ¢ ρ and we have: Qpτ q Spπq, Spτ q Qpπq.

Note that, by passing to the contragredient, we have:

Qpρ ¢ χq ¦ Spρ ¦ ¢ χ ¡1 q, Spρ ¢ χq ¦ Qpρ ¦ ¢ χ ¡1 q.
From this lemma we deduce the following example. V n ν 1{2 n¡1 ¢ ν pn 1q{2 . If e ¡ 1, Lemma 4.2 implies that V n has a unique irreducible quotient, denoted Λ n . We write:

(4.3) Λ n QpV n q Qpν 1{2 n¡1 ¢ ν pn 1q{2 q, for e ¡ 1.
When e divides n, then Λ n is the trivial character (see Proposition 4.10). By taking the contragredient, Λ ¦ n is the unique irreducible subrepresentation of ν ¡1{2

n¡1 ¢ ν ¡pn 1q{2 .

The following irreducibility criterion will also be very useful to us. (1) π is a subrepresentation of σ ¢ τ and a quotient of τ ¢ σ;

(2) the multiplicity of σ τ in r pa,bq pσ ¢ τ q is 1.

Then the representation π is irreducible.

Finally, we will use the following lemma (which follows from [14, Proposition 2.2]).

Lemma 4.5. -Assume the induced representation (4.1) is irreducible. Then, for all permutation w of t1, 2, . . . , nu, there is an isomorphism

π wp1q ¢ π wp2q ¢ ¤ ¤ ¤ ¢ π wprq π 1 ¢ π 2 ¢ ¤ ¤ ¤ ¢ π r .

Classification of p G n by multisegments

In [14] Mínguez and Sécherre give a classification of the union of all p G n 's in terms of multisegments, that generalizes [START_REF] Zelevinski | Induced representations of reductive p-adic groups. II. On irreducible representations of GLpnq[END_REF][START_REF] Tadić | Induced representations of GLpn, Aq for p-adic division algebras A[END_REF][START_REF]Induced R-representations of p-adic reductive groups[END_REF]. We will need some properties of this classification, that we recall below.

Given two half-integers a, b 1 2 Z, we write:

a b if 4 a ¡ b eZ if R has positive characteristic, a b otherwise.
We write N for the set of nonnegative integers. (3) A multisegment is a formal finite sum of classes of segments, that is a element in the free semigroup generated by classes of segments.

Let λ pλ 1 , λ 2 , . . . q and µ pµ 1 , µ 2 , . . . q be two partitions of a given integer n. We say that λ dominates µ, denoted λ µ, if:

λ 1 ¤ ¤ ¤ λ k ¥ µ 1 ¤ ¤ ¤ µ k for all integers k ¥ 1.
We write λ µ if we have in addition λ $ µ.

Given a nonzero multisegment m ra 1 , b 1 s ¤ ¤ ¤ ra r , b r s, write n i b i ¡a i 1 for all integer i t1, . . . , ru and let λpmq denote the partition associated with pn 1 , n 2 , . . . , n r q. The length of m is the sum n n 1 n 2 ¤ ¤ ¤ n r .

One of the main results of [14] is the construction of a map m Þ Ñ Zpmq that associates to any multisegment m a class of irreducible representation Zpmq with the following properties: 

P1 If m is a segment ra, bs of length n ¥ 1, then Zpra, bsq is the character ν a pn¡1q{2 n p G n . P2 If m ra 1 , b 1 s ¤ ¤ ¤ ra
s i1 prc i s ¤ ¤ ¤ rd i sq r i1 pra i s ¤ ¤ ¤ rb i sq. P4 If k is a half-integer, then Zpra 1 k, b 1 ks ¤ ¤ ¤ ra r k, b r ksq Zpmq ¤ ν k . P5
The contragredient of Zpmq is Zpm ¦ q with m ¦ r¡b 1 , ¡a 1 s ¤ ¤ ¤ r¡b r , ¡a r s.

We finally have the following definition and result.

Definition 4.7. -Two segments ra, bs and rc, ds are linked if c ¡ a Z and at least one of the following two conditions holds:

(1) the length of ra, bs is greater than or equal to that of rc, ds, and there exists a half-integer k such that c ¤ k ¤ d, and either k b 1 or k a ¡ 1;

(2) the length of rc, ds is greater than or equal to that of ra, bs, and there exists a half-integer k such that a ¤ k ¤ b, and either k d 1 or k c ¡ 1.

Proposition 4.8 ([14], Théorème 7.26). -Let ∆ 1 , . . . , ∆ r be segments. The representation Zp∆ 1 q¢¤ ¤ ¤¢Zp∆ r q is irreducible if and only if for all i $ j, the segments ∆ i , ∆ j are not linked.

Product of two characters

Here are some useful properties of the representation Zpra, bsq for a segment ra, bs. Proposition 4.9. -Let ra, bs be a segment of length n ¥ 2, and let k t1, . . . , n ¡ 1u.

(1) We have r pk,n¡kq pZpra, bsqq Zpra, a k ¡ 1sq Zpra k, bsq.

(2) We have rpk,n¡kq pZpra, bsqq Zpra n ¡k, bsq Zpra, a n ¡k¡1sq where rpk,n¡kq denotes the Jacquet functor associated to M pk,n¡kq and the parabolic subgroup opposite to P pk,n¡kq .

(3) Assume that e ¡ 1. Then Zpra, b ¡1sq¢ν b has a unique irreducible subrepresentation and Zpra 1, bsq ¢ ν a has a unique irreducible quotient, both isomorphic to Zpra, bsq.

Proof. -See [14], Propositions 7.16 and 7.17. (1) If a % 1 and b % ¡1, then πpa, bq is irreducible.

(2) If a 1 and b % ¡1, then πpa, bq has length 2 and we have an exact sequence: 0 Ñ Zpra, bs r0sq Ñ πpa, bq Ñ Zpra ¡ 1, bsq Ñ 0. (3) If a % 1 and b ¡1, then πpa, bq has length 2 and we have an exact sequence: 0 Ñ Zpra, b 1sq Ñ πpa, bq Ñ Zpra, bs r0sq Ñ 0. (4) If a 1 and b ¡1, then πpa, bq has length 3 with irreducible subquotients Zpra ¡ 1, bsq, Zpra, b 1sq and Zpra, bs r0sq. Proof. -Case 1 follows from Proposition 4.8. Moreover, the representation Zpra, bs r0sq always occurs as a subquotient with multiplicity 1 and the other irreducible subquotients of πpa, bq are of the form Zpnq with λpnq pn¡1, 1q, where n b ¡a 2. Therefore we have λpnq pnq, which implies that n is a segment. Moreover, such an n must be of the form ra, b 1s with b ¡1 or ra ¡ 1, bs with a 1.

Assume that a % 1 and b ¡1. By the geometric lemma, the Jacquet module r pn¡1,1q pπpa, bqq is made of the subquotients Zpra, bsq 1 and πpa, b ¡1qν b , and both are irreducible. Thus the representation πpa, bq has length ¤ 2. But Proposition 4.9 shows that Zpra, b 1sq occurs as a subrepresentation of πpa, bq. The result follows.

The case where a 1 and b % ¡1 is treated in a similar way. Thus it remains to study the case where a 1 and b ¡1. In this case, πpa, b ¡ 1q has length 2, thus πpa, bq has length ¤ 3. By Proposition 4.9 we see that the length is actually 3 and we get the expected result. Π n if e does not divide n,

1 n if e divides n.
We also get:

Λ ¦ n 4 Π ¦ n Zpr¡ n¡1 2 , n¡3 2 s r¡ n 1
2 sq if e does not divide n,

1 n if e divides n.
If we want to go further, we need more properties of the representation Zpmq for a multisegment m. Given χ 1 , χ 2 p G 1 , we write Stpχ 1 , χ 2 q for the unique nondegenerate irreducible subquotient of χ 1 ¢ χ 2 (see [14, §8]). If St 2 is the Steinberg representation of G 2 as in Paragraph 3.2, then: 

Stpχ 1 , χ 2 q 6 8 7 χ 1 ¢ χ 2 if χ 1 ¢ χ 2 is irreducible, St 2 ¤ χ 1 ν 1{2 if χ 2 χ 1 ν, St 2 ¤ χ 2 ν 1{2 if χ 1 χ 2 ν. Note that we have Stpχ 2 , χ 1 q Stpχ 1 , χ 2 q.
¤ ¤ ¤ ν a n¡2k¡1 Stpν a n¡2k , ν c q ¤ ¤ ¤ Stpν b , ν d q.
Then Zpmq has the following property:

P6 Zpmq is the unique irreducible subquotient of Zpra, bsq¢Zprc, dsq whose Jacquet module with respect to r µpmq contains Stpmq as a subquotient.

By using the geometric lemma, the semi-simplification of r pn¡2,2q pπpa, bqq is equal to: Zpra, bsq Zpr0, 1sq pZpra, b ¡ 1sq ¢ 1q pν b ¢ νq πpa, b ¡ 2q Zprb ¡ 1, bsq. If Zpnq occurs as a subquotient of πpa, bq, then Stpnq occurs in r µpnq ppZpra, b ¡1sq¢1qpν b ¢νqq and Stpν d , ν h q occurs in ν b ¢ν with multiplicity 1, which implies that Stpν d , ν h q Stpν b , νq and that Zpnq occurs in πpa, bq with multiplicity 1. By the geometric lemma, we get:

r p1,...,1q pZpra, b ¡ 1sq ¢ 1q n¡3 ķ0 ν a ¤ ¤ ¤ ν a k¡1 1 ν a k ¤ ¤ ¤ ν b¡1 .
Thus there is a k t0, . . . , nu such that:

ν c ν c 1 ¤ ¤ ¤ ν d¡1 ν a ¤ ¤ ¤ ν a k¡1 1 ν a k ¤ ¤ ¤ ν b¡1
. Since e ¡ 1, comparing the exponents in the left hand side and the right hand side shows that k must be either 0 or n ¡ 3 b ¡ a. If k 0, then:

ν c ν c 1 ¤ ¤ ¤ ν d¡1 1 ν a ¤ ¤ ¤ ν b¡1 . Thus we have c 0, a 1, d b and h 1. It follows that n ra ¡ 1, bs r1s. If k n ¡ 3, then: ν c ν c 1 ¤ ¤ ¤ ν d¡1 ν a ¤ ¤ ¤ ν b¡1 1.
Thus we have c a, b 0, d 1 and h 0. It follows that n ra, b 1s r0s.

Assume now that n rc, ds is a segment. Thus: µpnq p1, . . . , 1q, Stpnq

ν c ν c 1 ¤ ¤ ¤ ν d .
By using the geometric lemma, we get:

r µpnq pπpa, bqq 0¤r¤s¤n ν a ¤ ¤ ¤ ν a r¡1 1 ν a r ¤ ¤ ¤ ν a s¡1 ν ν a s ¤ ¤ ¤ ν b .
If Zpnq occurs as a subquotient of πpa, bq, there are integers r ¤ s in t0, . . . , nu such that: In all these cases, Stpnq occurs with multiplicity 1.

ν c ¤ ¤ ¤ ν d ν a ¤ ¤ ¤ ν a r¡1 1 ν a r ¤ ¤ ¤ ν a s¡1 ν ν a s ¤ ¤ ¤ ν b . If e ¡ 2,
If e 2, there are more possible values for r, s (the condition is that s ¡ r is even) and Stpnq may occur with multiplicity greater than 1.

Derivatives

By [22, III.1], there is a theory of derivatives for mod representations of G n , n ¥ 1 just as in the complex case. Given a smooth representation π of G n , n ¥ 1 and an integer k t0, . . . , nu, we will write π pkq for its k th derivative, which is a smooth representation of G n¡k (where G 0 stands for the trivial group in the case k n.)

The k th derivative functor is exact from the category of smooth -modular representations of G n to that of smooth -modular representations of G n¡k , for all k t0, . . . , nu. It is compatible with twisting by a character, that is, we have pπ ¤ χq pkq π pkq ¤ χ for any representation π of G n , any character χ p G 1 and any k t0, . . . , nu. Recall that rπs denotes the semi-simplification of a finite length representation π. (2) Given a segment ra, bs, the first derivative of Zpra, bsq is Zpra, b¡1sq, and its k th derivative is zero for all k t2, . . . , nu.

(3) Let π, σ be finite length representations of G n , G m respectively, with m ¥ n ¥ 1. Then : rpπ ¢ σq pkq s rπ ¢ σ pkq s rπ p1q ¢ σ pk¡1q s ¤ ¤ ¤ rπ piq ¢ σ pk¡iq s for all k t0, . . . , n mu, where i minpn, kq.

Proof. -Points ( 1) and ( 2) follows from V.9.1 (a) and (b) in [START_REF]Induced R-representations of p-adic reductive groups[END_REF]. For [START_REF] Badulescu | Une condition suffisante pour l'irréductibilité d'une induite parabolique de GL m pDq[END_REF], see [START_REF] Vignéras | Représentations l-modulaires d'un groupe réductif p-adique avec l $ p[END_REF]III.1.10].

On the e 1 case

In this section, we assume that e 1 and n ¥ 2. Write K n GL n pOq and let K n p1q be the normal subgroup of K n made of all matrices that are congruent to 1 mod p. Both are compact open subgroups of G n , and the quotient K n {K n p1q is canonically isomorphic to the finite group GL n pqq of n ¢ n invertible matrices with entries in the residue field of O.

Given a smooth representation pπ, Wq of G n , write W for the space of K n p1q-fixed vectors of W and write π for the representation of GL n pqq on W.

This defines an exact functor from the category of smooth R-representations of G n to that of R-representations of GL n pqq.

We have defined two representations V n and Π n in (4.2) and (4.4). Note that V n C V c pX, Rq with X P pn¡1,1q zG n . Its contains Π n as a subquotient with multiplicity one, 1 n with some multiplicity and no other irreducible subquotient. It is a selfdual representation of G n .

Thanks to the Iwasawa decomposition G

n P pn¡1,1q K n , the restriction of V n to K n is W n C V
c pY, Rq with Y pK n P pn¡1,1q qzK n . Therefore we have:

V n C V c pY{K n p1q, Rq, which identifies with the space of R-valued functions on X P pn¡1,1q pqqzGL n pqq, where we write P pn¡1,1q pqq for the standard maximal parabolic subgroup of GL n pqq corresponding to pn ¡ 1, 1q. Lemma 5.1. -For n ¥ 2, there exists a unique irreducible representation π n of GL n pqq having the following properties:

(1) If does not divide n, then V n is semisimple of length 2, with irreducible subquotients 1n and π n .

(2) If divides n, then V n is indecomposable of length 3, with irreducible subquotients 1n (with multiplicity 2) and π n .

Proof. -Note that 1n occurs as a subrepresentation of V n (the space of R-valued constant functions on X). Write ψ for the GL n pqq-invariant linear form on V n that associates to a function the sum of its values on X. The set X has cardinality:

pGL n pqq : P pn¡1,1q pqqq

q n ¡ 1 q ¡ 1 1 q ¤ ¤ ¤ q n¡1
which is 0 in R if and only if divides n. Thus the constant functions belong to the kernel of ψ if and only if divides n. According to [START_REF] James | Representations of general linear groups[END_REF][START_REF]Correspondance de Howe -modulaire : paires duales de type II[END_REF], we have the following properties:

(1) The kernel S n of ψ (denoted S pn¡1,1q in [9], whereas V n is denoted M pn¡1,1q ) has a unique irreducible quotient π n .

(2) The semi-simplification of V n contains π n with multiplicity 1 and 1n with some multiplicity ¥ 1, and no other irreducible subquotient.

By [9, 20.7], the multiplicity of 1n in V n is 1 if does not divide n, and 2 otherwise. It remains to prove that V n has the expected structure. We first assume that does not divide n. Since 1n occurs as a subrepresentation of V n , π n must be a quotient of V n . Since V n is selfdual, it follows that π n is selfdual, thus it also occurs as a subrepresentation of V n . We thus have two nonzero maps π n Ñ V n and V n Ñ π n , whose composition is nonzero (or else it would contradict the fact that π n occurs with multiplicity 1). Therefore V n is semisimple.

Assume now that divides n. By [START_REF] James | Representations of general linear groups[END_REF], the representation S n is indecomposable (it has length 2 and a unique irreducible quotient). Since V n is selfdual, it implies that V n is indecomposable.

Proposition 5.2. - (1)
The representation Π n is irreducible and isomorphic to π n . (2) If does not divide n, the representation V n is semisimple of length 2.

(3) If divides n, the representation V n is indecomposable of length 3, with irreducible subquotients 1 n (with multiplicity 2) and Π n .

Proof. -By [START_REF] Vignéras | Représentations l-modulaires d'un groupe réductif p-adique avec l $ p[END_REF], II.5.8 and II.5.12, all irreducible subquotients of V n have level 0, thus they are not killed by the functor π Þ Ñ π.

We first assume that does not divide n. By Lemma 5.1, the representation V n has length 2, with irreducible subquotients Π n and 1 n , thus Π n must be irreducible and isomorphic to π n . The same argument as in the proof of Lemma 5.1 shows that V n is semisimple.

Assume now that divides n. By Lemma 5.1 the representation V n has length ¤ 3. Assume it has length 2. Then the argument of the proof of Lemma 5.1 implies that V n 1 n Π n . Thus the one-dimensional space Hom Gn pV n , 1 n q is generated by a linear form λ which is nonzero on the subspace of constant functions. Since K n p1q is a pro-p-group, K n p1q-invariant and K n p1q-coinvariant vectors of V n are canonically identified. The K n -invariant linear form λ thus induces a GL n pqq-invariant linear form on V n , which is equal to ψ upto a nonzero scalar. But ψ is zero on constant functions, which contradicts the fact that λ is nonzero. This gives us a contradiction, and thus V n has length 3. Now since V n is indecomposable, it follows that V n is indecomposable. We also get that Π n must be irreducible and isomorphic to π n .

(1) We have:

Λ p1q n 5 1 n¡2 ¢ ν pn 1q{2 if f does not divide n, ν ¡1{2 n¡1 if f divides n.
(2) The second derivative Λ p2q n is equal to 1 n¡2 if f does not divide n, and is zero otherwise.

(3) The k th derivative Λ pkq n is zero for all k ¥ 3. (2) Let St 3 denote the nondegenerate irreducible subquotient of ν ¡1 ¢ 1 ¢ ν, that is: St 3 Zpr¡1s r0s r1sq (see [14, §8]). If f 3, then St 3 is cuspidal ([14, §6]) thus its first and second derivatives are zero. If f $ 3, then:

rν ¡1 ¢ 1 ¢ νs 1 3 Λ 3 ¤ ν ¡1 pΛ 3 q ¦ ¤ ν St 3 in the Grothendieck group of finite length representations of G 3 . We thus get pSt 3 q p1q St 2 ¤ν 1{2 and pSt 3 q p2q ν.

A modular version of Badulescu-Lapid-Mínguez's juxtaposition criterion

In Paragraph 4.5 we have defined Zp∆q for ∆ a segment. In [14] an irreducible representation Lp∆q is also introduced. We will need it only for segments of length ¤ 2. Definition 7.1. -Let a be a half-integer. Then Lprasq Zprasq ν a and:

Lpra, a 1sq

4 Qpν a ¢ ν a 1 q if e ¡ 1, Λ 2 ¤ ν a 1{2 if e 1. Remark 7.2.
-Note that we have r p1,1q pLpra, a 1sqq ν a 1 ν a for all a 1 2 Z. If we write St 2 for the Steinberg representation of G 2 as in Paragraph 3.2, then we have:

Lpra, a 1sq 4 St 2 ¤ ν a 1{2 if f $ 2, ν a¡1{2 if f 2. Note that Λ 2 St 2 ¤ ν if f $ 2. Lemma 7.3 ([14], Théorème 7.26).
-Let ∆, ∆ I be two segments of length ¤ 2. Then the representation Lp∆q ¢ Lp∆ I q is irreducible if and only if ∆ and ∆ I are not linked.

Following [3, Définition 2.1], say that two segments ra, bs and rc, ds are juxtaposed if we have c b 1 or a d 1 (see the notation of Paragraph 4.5). Proposition 7.4. -Assume that e ¡ 2. Let ∆, ∆ I be two segments, with ∆ I of length 2. Then Zp∆q ¢ Lp∆ I q is reducible if and only if ∆ and ∆ I are juxtaposed. Remark 7.5. -If e ¤ 2, we have Lpra, a 1sq Zpra ¡ 1, asq for any half-integer a. It follows from Proposition 4.8 that Zp∆q ¢ Lp∆ I q is always reducible when e ¤ 2.

Proof. -By twisting by a character, we may and will assume that ∆ I r0, 1s. We first assume that ∆ and r0, 1s are juxtaposed. We thus have ∆ ra, bs with a ¤ b integers such that b ¡1 or a 2. Let us prove that π Zp∆q ¢ Lpr0, 1sq is reducible.

First note that π is a subquotient of ξ Zpra, bsq ¢1¢ν. Since e ¡ 2 the representation 1 ¢ν has length 2, with irreducible subquotients Zpr0, 1sq and Lpr0, 1sq. By P2 and Proposition 4.13, the irreducible representation Zpra, bs r0s r1sq occurs in ξ but not in Zpra, bsq ¢Zpr0, 1sq, thus it occurs in π.

Let us assume that a % 2 and b ¡1. Since Lpr0, 1sq is the unique irreducible subrepresentation of ν ¢1, it follows that π embeds in ξ I Zpra, bsq ¢ν ¢1. Since Zpra, bsq ¢ν is irreducible, ξ I is isomorphic to ν ¢ Zpra, bsq ¢ 1 and has a unique irreducible subrepresentation by Lemma 4.2. By Proposition 4.9 (3), the unique irreducible subrepresentation of Zpra, bsq ¢ 1 is Zpra, b 1sq.

Thus we have:

Spξ I q Spν ¢ Zpra, b 1sqq Zpra, b 1s r1sq by Proposition 4.10. Since π embeds in ξ I , it follows that π contains Zpra, b 1s r1sq. Since it also contains Zpra, bs r0s r1sq, it cannot be irreducible.

The case where a 2 and b % ¡1 is similar, using ξ instead of ξ I . It remains to treat the case where a 2 and b ¡1. In that case, it follows from Proposition 4.13 that Zpra, bsq ¢ Zpr0, 1sq has length 3, with irreducible subquotients: Zpra, bs r0, 1sq, Zpra, b 2sq, Zpra ¡ 2, bsq. But ξ also contains Zpra, bs r0s r1sq and Zpra ¡ 1, b 1sq, thus π has length at least 2. Thus, in any case, π is reducible when ra, bs and r0, 1s are juxtaposed.

We now have to prove that π is irreducible when ∆ and r0, 1s are not juxtaposed. Let us write ∆ ra, bs with a ¤ b and 2a Z. If a Z, then Zp∆q ¢Lpr0, 1sq is irreducible by Proposition 5.9 of [14]. We thus may assume that a, b are integers such that b % ¡1 and a % 2. The proof is by induction on n b ¡ a 1.

If n 1 then π ν a ¢ Lpr0, 1sq and the result follows from Lemma 7.3 since the segments ras and r0, 1s are not linked.

Assume now that n ¥ 2. Our goal is to find irreducible representations σ, τ , of degree u, v respectively, such that π occurs as a subrepresentation of σ ¢τ and as a quotient of τ ¢σ, and such that σ τ occurs with multiplicity 1 in r pu,vq pσ ¢ τ q. We will distinguish the following cases:

(1) a % ¡1, 1

(3) a 1 and b % 0, 2 (4) a 1 and b 0, 2 and e ¡ 3 (5) a 1 and b 0 and e 3 In Case 1, since a % 1 and thanks to the inductive hypothesis, π embeds in:

(7.1)

ν a ¢ Zpra 1, bsq ¢ Lpr0, 1sq ν a ¢ Lpr0, 1sq
¢ Zpra 1, bsq and ν a ¢Lpr0, 1sq is irreducible because a % ¡1. Since Zpra, bsq is a quotient of Zpra 1, bsq ¢ν a , we can choose σ ν a ¢ Lpr0, 1sq and τ Zpra 1, bsq. We compute the multiplicity of σ τ in r p3,n¡1q pσ ¢ τ q by applying the geometric lemma. For this multiplicity to be 1, it is enough to prove that σ does not occur as a subquotient of the following representations:

(1.1) ν a ¢ 1 ¢ ν a 1 ; (1.2) Lpr0, 1sq ¢ ν a 1 ;

Cuspidal representations

Just as in the complex case (see [START_REF] Prasad | On the decomposition of a representation of GLp3q restricted to GLp2q over a p-adic field[END_REF]), we have the following result. G n be a cuspidal representation. Then ρ is distinguished if and only if n 2. When it is the case, we have dpρq 1.

Proof. -Write P n for the mirabolic subgroup of G n , that is the subgroup made of all matrices with last row p0, . . . , 0, 1q. By [22, III,Theorem 1.1], the restriction of ρ to P n is isomorphic, just as in the complex case, to the compact R-induction: ind Pn Un pψ n q of a generic character ψ n of the standard maximal unipotent subgroup U n of G n . As P n H n U n , the restriction of ρ to H n is isomorphic to the compact R-induction ind Hn HnUn pψ n q, which carries a nonzero H n -fixed R-linear form if and only if ψ n is trivial on H n U n . This happens if and only if n 2, in which case we have dpρq dim Hom H 2 U 2 pψ 2 , 1q 1.

Distinction and contragredient

We have the very useful following result. Assume n ¥ 2. Proposition 8.3. -Let π p G n . Then π is H n -distinguished if and only π ¦ is. This proposition will follow from the following one. G n . Then π ¦ is isomorphic to π ¥ σ.

Proof. -In the complex case, this is well-known and due to Gelfand and Kazhdan. When R has characteristic not 2, their argument still holds (see [14,Remarque 2.7]). We will need Proposition 8.4 when R has characteristic not 2 only, but we give below a proof in the general case, provided to us by the anonymous referee (whom we thank for this).

Let us write for the characteristic of R, and suppose that ¡ 0. It is enough to prove the proposition when R is an algebraic closure of a finite field with elements, denoted F . We thus have a reduction mod homomorphism: r : RpG, Q q int Ñ RpG, F q where RpG, F q is the Grothendieck group of finite length F -representations of G and RpG, Q q int is the subgroup generated by integral representations in the Grothendieck group of finite length Q -representations of G (see [START_REF] Vignéras | Représentations l-modulaires d'un groupe réductif p-adique avec l $ p[END_REF]). Let us define an involutive group homomorphism π Þ Ñ π ¦ ¥σ on RpG, F q, denoted α. Write r α for its analogue on RpG, Q q. Since passing to the contragredient preserves integral representations and is compatible with reduction mod , we have:

α ¥ r r ¥ r α.
Since r α is trivial by Gelfand-Kazhdan, and since r is surjective by [START_REF]Un cas simple de correspondance de Jacquet-Langlands modulo[END_REF] 

G n i for i 1, 2. Then π 1 ¢ π 2 is H n -distinguished if and only if π ¦ 2 ¢ π ¦ 1 is.
Proof. -As in [27, 1.9] we define a group automorphism s of G n by:

g Þ Ñ J n ¤ t g ¡1 ¤ J ¡1
n where t g is the transpose of g and J n is the matrix whose pi, jq th entry is p¡1q i δ i,n 1¡j . As in the complex case, s maps P pn 1 ,n 2 q to P pn 2 ,n 1 q and π 1 ¢π 2 to spπ 2 q¢spπ 1 q, and we have spπq π ¦ for all irreducible representations π of G n by Proposition 8.4. Since s maps H n to a conjugate of H n , we get:

Hom Hn pπ 1 ¢ π 2 , Rq Hom Hn pπ ¦ 2 ¢ π ¦
1 , Rq and our claim follows.

The Bernstein-Zelevinski filtration

For i t0, 1, . . . , nu, we write R i,n for the subgroup of matrices of G n of the form:

¢ g ¦ 0 h
such that g G i and h is an upper triangular and unipotent matrix of G n¡i . In particular, R 0,n is the standard maximal unipotent subgroup U n of G n and R n¡1,n is the mirabolic subgroup P n of G n . Fix a nontrivial smooth character ψ : F Ñ R ¢ and, for i t0, 1, . . . , n ¡ 1u, write ψ i for the generic character of U i defined by: [START_REF] Vignéras | Représentations l-modulaires d'un groupe réductif p-adique avec l $ p[END_REF]III.1.3], we have the following result. Theorem 8.7. -Let V be a representation of G n . There are P n -stable subspaces V 0 , . . . , V n of V such that t0u V 0 V 1 ¤ ¤ ¤ V n V and:

ψ i phq ψph 1,2 ¤ ¤ ¤ h i¡1,i q for all h U i . From
V i 1 {V i ind Pn R i,n pV pn¡iq ν 1{2 i ψ n¡i q for all i t0, ..., n ¡ 1u.

As in the complex case (see page 54 of [START_REF] Flicker | A Fourier summation formula for the symmetric space GL n {GL n¡1[END_REF] and [16, Proposition 1]), we get the following result by using the Bernstein-Zelevinski filtration. Lemma 8.8. -Let π be a smooth representation of G n with n ¥ 3, and assume that:

(1) π p1q does not have any quotient isomorphic to ν ¡1{2 n¡1 ;

(2) π p2q does not have any quotient isomorphic to 1 n¡2 . Then π is not distinguished.

The Three Orbits Lemma

As in the complex case [START_REF] Venketasubramanian | On representations of GLpnq distinguished by GLpn ¡ 1q over a p-adic field[END_REF], we have the following very useful lemma. Lemma 8.9. -Let n ¥ 2 and k t1, . . . , n ¡ 1u be integers, and let ρ p G k and τ p G n¡k .

Assumme ρ ¢ τ is H n -distinguished. Then at least one of the following conditions is satisfied: G k and τ p G n¡k satisfy pAq or pBq, then ρ ¢ τ is H n -distinguished.

(A) ρ ν pn¡2¡kq{2 k and τ ¤ ν k{2 is H n¡k -distinguished. (B) ρ ¤ ν ¡pn¡kq{2 is H k -distinguished
Remark 8.16.

-Suppose e 1 and does not divide n. It follows from the proof of Lemma 8.15 that dpV n q is at least 3. On the other hand, the conditions of Lemma 8.9 implies that there is at most one H n -invariant linear form upto scalars on each of three orbits A, B and U. Thus, G k be such that ρ p1q ¤ ν ¡pn¡1¡kq{2 has a trivial quotient. Then ρ is one of the following representations:

dpV n q 3. Since V n 1 n Π n ,
(1) ν pn¡k¡1q{2 k¡1 ¢ µ with µ p G 1 ¡ tν pn¡2k¡1q{2 , ν pn¡1q{2 u; (2) ν pn¡kq{2 k ; (3) Λ ¦ k ¤ ν pn¡kq{2 .
Proof. -We follow the proof given in the complex case in [START_REF] Venketasubramanian | On representations of GLpnq distinguished by GLpn ¡ 1q over a p-adic field[END_REF]Lemma 6.2]. The condition on ρ is equivalent to saying that ρ embeds into a representation of the form:

Vpµq ν pn¡1¡kq{2 k¡1 ¢ µ, µ p G 1 .
If µ tν pn¡2k¡1q{2 , ν pn¡1q{2 u, this representation is irreducible (see Proposition 4.1) thus ρ is as in Case 1. Assume that e ¡ 1. Thanks to Lemma 4.2, Proposition 4.10 and (5.2), we have:

(1) Vpν pn¡1q{2 q has a unique irreducible subrepresentation, which is ν pn¡kq{2 k . Thus ρ is as in Case 2.

(2) Vpν pn¡2k¡1q{2 q has a unique irreducible subrepresentation, which is Λ ¦ k ¤ ν pn¡kq{2 . Thus ρ is as in Cases 2 or 3.

Assume now that e 1. Then, by Proposition 5.2, any subrepresentation ρ of Vpν pn¡1q{2 q is as in Case 2 or 3. Note that, in the case where f divides k, the representation V k is indecomposable, thus ρ must be the character ν pn¡kq{2 k . This finishes the proof of Lemma 8.17.

In conclusion, we have the following result.

Proposition 8.18. -Assume n ¥ 3. Let π p G n be H n -distinguished. Then there are ρ p G n¡1 and χ p G 1 such that π is an irreducible quotient of ρ ¢ χ and at least one of the following conditions holds:

(1) One has ρ ν ¡1{2 n¡1 or ρ ν 1{2 n¡1 .

(

) One has ρ Λ ¦ n¡1 ¤ ν 1{2 . (3) One has ρ 1 n¡2 ¢ µ for some µ p G 1 ¡ tν ¡pn¡1q{2 , ν pn¡1q{2 u. (4) The representation ρ ¤ ν ¡1{2 is H n¡1 -distinguished and χ ν ¡pn¡3q{2 . Moreover, if e ¡ 1, then π is the unique irreducible quotient of ρ ¢ χ. 2 
In order to prove our main theorem 1.1, our strategy is to study, by induction on n ¥ 2, the irreducible quotients of ρ ¢ χ in all these cases when e ¡ 1, and to prove that they are either in the list of Theorem 1.1 or non-distinguished.

Assuming that Theorem 1.1 holds for G n¡1 with n ¥ 3, we thus have to study the distinction of the following representations: We reduce Case 2 to studying Qpµ ¢Λ n¡1 ¤ν ¡1{2 q for µ p G 1 ¡tν ¡pn¡1q{2 , ν pn¡1q{2 u in Section 10, when e ¡ 1.

In Section 12, we do the remaining cases when e ¡ 1.

Computing the irreducible quotients of ν

1{2 n¡1 ¢ χ for χ p G 1 Lemma 9.1. -Assume e ¡ 1. Let a, b Z with a ¤ b. For χ p G 1 , write Vpχq Zpra, bsq ¢χ. (1) If χ tν a¡1 , ν b 1 u, then Vpχq is irreducible.
(2) Assume that χ ν b 1 and e does not divide n. Then Vpν b 1 q has length 2 and we have the following exact sequence: 0 Ñ Zpra, b 1sq Ñ Vpν b 1 q Ñ Zpra, bs rb 1sq Ñ 0.

(3) Assume that χ ν a¡1 and e does not divide n. Then Vpν a¡1 q has length 2 and we have the following exact sequence: From Lemma 9.1 we get the following proposition.

0 Ñ Zpra, bs ra ¡ 1sq Ñ Vpν a¡1 q Ñ Zpra ¡ 1, bsq Ñ 0. ( 4 
Proposition 9.2.

-Assume e ¡ 1. For all n ¥ 1, we have:

Qpν 1{2 n¡1 ¢ χq 6 8 7 ν 1{2 n¡1 ¢ χ if χ tν ¡pn¡1q{2 , ν pn 1q{2 u, 1 n if χ ν ¡pn¡1q{2 , Λ n if χ ν pn 1q{2 .
Twisting by ν ¡1 , we get the following.

10. Computing Qp1 n¡2 ¢ µ ¢ χq for µ p G 1 ¡ tν ¡pn¡1q{2 , ν pn¡1q{2 u and χ p G 1

In this section, we fix a character µ p G 1 different from ν ¡pn¡1q{2 and ν pn¡1q{2 , and we assume that e ¡ 1. Note that this implies that 1 n¡2 ¢ µ µ ¢ 1 n¡2 is irreducible. For χ p G 1 , write:

Wpχq 1 n¡2 ¢ µ ¢ χ.
We record below two facts in the form of the following lemma which will be used repeatedly in what follows. It remains to consider the case where χ ν ¡pn¡1q{2 ν pn 1q{2 . We write A Apν pn 1q{2q q.

By definition, Λ ¦ n¡1 ¤ν 1{2 is the unique irreducible quotient of ν pn 1q{2 ¢1 n¡2 . The representation A is thus a quotient of V ν pn 1q{2 ¢ 1 n¡2 ¢ ν pn 1q{2 . Now write the two exact sequences:

(12.1) 0 Ñ ν ¡1{2 n¡1 Ñ ν pn 1q{2 ¢ 1 n¡2 Ñ Λ ¦ n¡1 ¤ ν 1{2 Ñ 0 and: (12.2) 0 Ñ Λ ¦ n¡1 ¤ ν 1{2 Ñ 1 n¡2 ¢ ν pn 1q{2 Ñ ν ¡1{2
n¡1 Ñ 0. Computing (12.1) ¢ ν pn 1q{2 , we get: 0 Ñ W Ñ V α ÝÑ A Ñ 0 where W is the representation ν ¡1{2 n¡1 ¢ν pn 1q{2 , which is irreducible since ν pn 1q{2 $ ν pn¡1q{2 and ν pn 1q{2 $ ν ¡pn 1q{2 . Thus W is isomorphic to ν pn 1q{2 ¢ ν ¡1{2

n¡1 . Computing ν pn 1q{2 ¢ (12.2) we get:

0 Ñ ν pn 1q{2 ¢ Λ ¦ n¡1 ¤ ν 1{2 Ñ V β ÝÑ W Ñ 0.
Observe that W is distinguished by Lemma 8.9, thus V is also distinguished. Lemma 8.9 (applied with k n ¡ 1) also shows that the space of H n -invariant forms on V is one-dimensional. Now we claim A is not distinguished. Assume A is distinguished, and let T denote a nonzero invariant linear form on V which is trivial on K 1 Kerpαq. Since V has a one-dimensional space of invariant forms, T is proportional to any nonzero invariant linear form on V which is trivial on K 2 Kerpβq. Thus, T is zero on K 1 K 2 . Since T is nonzero, K 1 K 2 is different from the whole space V. Since K 1 is irreducible and isomorphic to W, we get that K 1 K 2 K 2 , thus:

K 1 K 2 ν pn 1q{2 ¢ Λ ¦ n¡1 ¤ ν 1{2 .
It follows that:

W Spν pn 1q{2 ¢ Λ ¦ n¡1 ¤ ν 1{2 q QpAq. Thus W ¤ ν is the unique irreducible quotient of A ¤ ν. Observe that W ¤ ν ν 1{2 n¡1 ¢ ν pn 3q{2 is isomorphic to W ¦ and hence is distinguished by Proposition 8.3. However, the representation A ¤ ν Λ ¦ n¡1 ¤ ν ¡1{2 ¢ ν pn¡1q{2 is not distinguished by Lemma 8.9, a contradiction.

Remark 12.13. -In the complex case, it has been proved in [START_REF] Aizenbud | pGL n 1 , GL n q is a Gelfand pair for any local field F[END_REF] that the dimension: dpπq dim Hom Hn pπ, Rq satisfies dpπq ¤ 1 for all π p G n . This multiplicity one property does not hold in general when R has positive characteristic (see Paragraph 1.12). However, when e ¡ 1, we expect that dpπq ¤ 1 for all irreducible -modular representations π of G n . When e ¥ 3, this can be proved just as in [START_REF] Venketasubramanian | On representations of GLpnq distinguished by GLpn ¡ 1q over a p-adic field[END_REF]. But this approach fails when e 2 for the irreducible principal series 1 ¢ 1 ¢ 1 of GL 3 pFq. This is due the fact that the proof in [START_REF] Venketasubramanian | On representations of GLpnq distinguished by GLpn ¡ 1q over a p-adic field[END_REF] is by contradiction and relies on analyzing a reducible principal series representation of GL 4 pFq. When e ¥ 3, this particular reducible principal series has at most one distinguished subquotient, whose multiplicity is one and the proof of that reduces to multiplicity one proved in Theorem 3.8. When e 2, this is no longer true. The concerned principal series of GL 4 pFq has more than one distinguished subquotient and the proof fails.

It is interesting to note the analogy of the situation in the case of e 1 of Theorem 3.5 with [START_REF] Shalom | Weak Gelfand pair property and application to pGLpn 1q, GLpnqq over finite fields[END_REF]Corollary 3.3], where the author shows that dpπq ¤ 2 for π an irreducible representation of GL n pF q q and R an algebraically closed field of characteristic coprime to 2q.

Proposition 3 . 6 .

 36 -All cuspidal irreducible representations π of G are H-distinguished, with dpπq 1. Proof. -See Paragraph 8.1 for a proof, where we treat the more general case of G n , n ¥ 2. Now let St denote the Steinberg representation of G, that is the unique nondegenerate irreducible subquotient of V Ind G B p1 1q (see [22, III.1]).
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 41 [14], Proposition 5.9). -Let π and σ be irreducible representations of G n
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 421 -Assume that e ¡ 1. Let n ¥ 2, and let ρ p G n¡1 , χ p Then the representation π ρ ¢ χ possesses a unique irreducible quotient, denoted Qpπq, and a unique irreducible subrepresentation, denoted Spπq.
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 43 -Assume that n ¥ 2, and write: (4.2)

Lemma 4 . 4 (

 44 [14], Lemme 2.5). -Let π be a smooth representation of G n , n ¥ 2. Suppose that there are two irreducible representations σ p G a and τ p G b with a, b ¥ 1 and a b n, such that:
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 4 6. -(1) A segment is a pair pa, bq of half-integers such that b ¡ a N. (2) Two segments pa, bq and pc, dq are equivalent if b ¡ a d ¡ c and a c. The equivalence class of pa, bq will be denoted ra, bs (and just ras if b a).

  r , b r s, then Zpmq occurs as a subquotient of the representation Zpra 1 , b 1 sq ¢ ¤ ¤ ¤ ¢ Zpra r , b r sq with multiplicity 1. P3 If π is an irreducible subquotient of Zpra 1 , b 1 sq ¢ ¤ ¤ ¤ ¢ Zpra r , b r sq, then there exists a unique multisegment n rc 1 , d 1 s ¤ ¤ ¤ rc s , d s s such that π Zpnq. Moreover, we have λpnq λpmq and:

Proposition 4 .

 4 10. -Assume e ¡ 1. Let a ¤ b be integers and write πpa, bq Zpra, bsq ¢ 1.

Example 4 .¡ n ¡ 3 2

 43 11. -Assume that n ¥ 2 and write: (4.4) Π n Z ¢ Assume e ¡ 1 and look at Example 4.3 for the definition of Λ n . Then:

  comparing the exponents in the left hand side and the right hand side shows that the only possible values for r, s are:(1) r s 0 (thus a 2);(2) r s n (thus b ¡1);(3) r 0 and s n (thus a 1 and b 0).

Lemma 4 .

 4 14. -(1) Given a cuspidal irreducible representation ρ of G n , its k th derivative is zero for all k t1, . . . , n ¡ 1u, and we have ρ pnq 1 for k n.

Remark 6 . 3 .

 63 -Since Π ¦ n Π n ¤ ν ¡1 by Properties P4 and P5, we get the derivatives of Π ¦ n and Λ ¦ n from Lemma 6.1 and Corollary 6.2. Example 6.4. -(1) We have St 2 Zpr¡1{2s r1{2sq Π 2 ¤ ν ¡1 . If f 2, the representation St 2 is cuspidal thus its first derivative is zero. Otherwise, we have pSt 2 q p1q ν 1{2 .
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 82 -Let n ¥ 2 and let ρ p

Proposition 8 . 4 .

 84 -Let us write σ for the involution on G defined by g Þ Ñ transpose of g ¡1 . Let π p

  and τ ν ¡pk¡2q{2 n¡k . (C) ρ p1q ¤ ν ¡pn¡1¡kq{2 and τ ¦p1q ¤ ν ¡pk¡1q{2 have a trivial quotient. Conversely, if ρ p

)

  If e divides n, then ν a¡1 ν b 1 and Vpν b 1 q has length 3 with: SpVpν b 1 qq Zpra, b 1sq, QpVpν b 1 qq Zpra ¡ 1, bsq. Proof. -Case 1 follows from Propositions 4.1 and 4.8. The other cases reduce to Proposition 4.10 by twisting by the character χ ¡1 , since Vpχq ¤ ν ¡c Zpra ¡ c, b ¡ csq ¢ χν ¡c for c Z.

  The following proposition follows from [13, §3.3.2]. Proposition 4.12. -Let m be a multisegment of length n and of the form ra, bs rc, ds. Assume that b ¡ a ¥ d ¡ c. Write k d ¡ c 1 and:

µpmq p1, . . . , 1, 2, . . . , 2q with 1 occurring n ¡ 2k times and 2 occurring k times, Stpmq ν a

  Corollaire 2.2.7 and [14] Théorème 9.40, it follows that α is trivial. Remark 8.5. -Note that the condition e ¡ 1 implies that the characteristic of R is not 2. Proposition 8.6. -Write n n 1 n 2 where n 1 , n 2 are positive integers, and let π i p

  it follows that dpΠ n q 2. Thanks to Corollary 8.11, we are already reduced to studying those H n -distinguished irreducible representations of G n , with n ¥ 3, whose cuspidal support is made of characters. Lemma 8.17. -Let ρ p

	8.6. First reduction of the problem

  Case 1: the irreducible quotients of ν ¡1{2n¡1 ¢ χ and ν 1{2 n¡1 ¢ χ for χ p G 1 ;Case 2: the irreducible quotients of1 n¡2 ¢ µ ¢ χ for µ p G 1 ¡ tν ¡pn¡1q{2 , ν pn¡1q{2 u, χ p n¡2 ¢ µ with µ p G 1 ¡ tν ¡pn¡1q{2 , ν pn¡1q{2 u (included in Case 2); (4.c) a representation ν n¡2 ¢ µ with µ p G 1 ¡ tν ¡pn¡3q{2 , ν pn 1q{2 u; one of the representations Λ n¡1 ¤ ν 1{2 or Λ ¦ n¡1 ¤ ν 1{2 (see Case 3 above); Cases 1 and 4.c are treated in Section 9 for arbitrary e ¥ 1, and Case 4.d is treated in Section 11 for e ¡ 1.

	G 1 ;
	Case 3: the irreducible quotients of Λ ¦ n¡1 ¤ ν 1{2 ¢ χ for χ p G 1 ;
	Case 4: the irreducible quotients of ρ ¢ ν ¡pn¡3q{2 where ρ is: (4.a) the character ν 1{2 n¡1 (included in Case 1 above);
	(4.b) a representation 1 (4.d) a representation ν n¡3 ¢ τ with τ p 1{2 G 2 infinite-dimensional;
	(4.e)

  Lemma 10.1. -The representation Wpχq has unique irreducible subrepresentation and unique irreducible quotient. Moreover, one has:St 2 ¤ χν 1{2 if e ¡ 2, 1 2 ¤ χν ¡1{2 if e 2.In particular, when e ¥ 2, the representations1 n¡2 ¢ St 2 ¤ µν 1{2 and 1 n¡2 ¢ 1 2 ¤ µν ¡1{2have a unique irreducible quotient. Proof. -The first statement follows from Lemma 4.2 and the second one from Lemma 9.1. To prove the final statement, observe that 1 n¡2 ¢ St 2 ¤ µν 1{2 is a quotient of Wpµνq if e ¡ 2. Since Wpµνq has a unique irreducible quotient, the claim follows. For e 2, 1 n¡2 ¢ St 2 ¤ µν 1{2 is itself irreducible by Proposition 4.8. Similarly, for e¥ 2, 1 n¡2 ¢ 1 2 ¤ µν ¡1{2 is a quotient of Wpµν ¡1 q,which has a unique irreducible quotient. This completes the proof of the proposition. Lemma 10.2. -For any χ tµν, µν ¡1 , ν ¡pn¡1q{2 , ν pn¡1q{2 u, the representation Wpχq is irreducible and distinguished. Proof. -By Proposition 4.8, Wpχq is irreducible. It satifies Condition (A) of Lemma 8.9 with k n ¡ 2, thus it is distinguished.Qp1 n¡2 ¢ St 2 ¤ µν 1{2 q if e ¡ 2, Qp1 n¡2 ¢ 1 2 ¤ µν ¡1{2 q if e 2,and QpWpµν ¡1 qq Qp1 n¡2 ¢ 1 2 ¤ µν ¡1{2 q.Proof. -First observe that, by Lemma 10.1, Wpµνq has 1 n¡2 ¢St 2 ¤µν 1{2 as a quotient if e ¡ 2 and Wpµν ¡1 q has 1 n¡2 ¢ 1 2 ¤ µν ¡1{2 as a quotient if e ¥ 2. Once again, applying Lemma 10.1 the statement is proved.Proposition 10.4. -Write Ypµq Qp1 n¡2 ¢ St 2 ¤ µν 1{2 q. Then: St 2 ¤ µν 1{2 if µ $ ν ¡pn 1q{2 or e 2,if µ ν ¡pn 1q{2 and e does not divide n and e ¡ 2.Proof. -The statement follows from Proposition 4.8 if e 2, and it follows from Proposition 7.4 if µ $ ν ¡pn 1q{2 . Assume that µ ν ¡pn 1q{2 and e does not divide n and e ¡ 2. We have:Ypν ¡pn 1q{2 q QpWpν ¡pn¡1q{2 qq Qpν ¡pn 1q{2 ¢ 1 n¡2 ¢ ν ¡pn¡1q{2 q Qpν ¡pn 1q{2 ¢ ν ¡1{2 n¡1 q Lemma 12.2. -Assume that e does not divide n ¡1, and let χ p G 1 . Then Apχq is distinguished if and only if χ ν ¡pn¡3q{2 . Proof. -First, Lemma 8.9 with k n ¡ 1 shows that Apν ¡pn¡3q{2 q is distinguished.For the converse, we may assume that n ¥ 4 since we have treated the case when n 3 in Lemma 12.[START_REF] Aizenbud | pGL n 1 , GL n q is a Gelfand pair for any local field F[END_REF]. Assume first that e ¡ 2. By Proposition 10.4, Apχq is a quotient of: St 2 ¤ ν ¡pn¡2q{2 ¢ χ, which is distinguished by Remark 8.10 if and only if Condition (A) of Lemma 8.9 is satisfied with k n ¡3. This is the case if and only if St 2 ¤ν ¡1{2 ¢χν pn¡3q{2 is distinguished. By Lemma 12.1, this happens if and only if χ ν ¡pn¡3q{2 . Assume now that e 2. Note that the characters ν pn¡1q{2 and ν pn 1q{2 are the only ones that are obtained from ν ¡pn¡3q{2 up to a translation of an integer power of ν. Assume first that χ tν ¡pn¡1q{2 , ν pn¡1q{2 u. Then Apχq is irreducible by Proposition 4.1, and Lemma 8.9 implies that Apχq ¦ is not distinguished. By Proposition 8.3, Apχq is not distinguished either.

	Qpχ ¢ χνq QpWpµνqq Lemma 10.3. -One has: 4 Ypµq 4 1 n¡2 ¢ ν 1{2 n¡3 ¢	4

Λ ¦

n
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Π n if does not divide n,

In conclusion, if we summarize Example 4.11 and Definition 5.3, we get the following definition of Λ n . Definition 5.4. -Assume e is arbitrary, and recall that f is the quantum characteristic (see Paragraph 3.2). For n ¥ 2, we define:

(5.1)

2 sq if f does not divide n,

Thanks to Example 4.11, note that we also have:

(5.2)

2 s r¡ n 1 2 sq if f does not divide n,

If we look at Proposition 5.2, we also have the following property (for arbitrary e ¥ 1). Remark 5.5. -For n ¥ 2, if f does not divide n, then Λ n is an irreducible quotient of V n .

Computing the derivatives of Λ n and Π n

In this section, we assume that e is arbitrary. Remind (see (4.2), (4.4) and (5.1)) that we have defined representations V n , Π n and Λ n for all n ¥ 2. By Propositions 4.10 and 5.2, we have: (6.1)

in the Grothendieck group of finite length representations of G n . Let us compute the derivatives of Π n . Lemma 6.1. -Suppose that n ¥ 2.

(1) If f n 2, the derivative Π p1q

2 is zero. (2) Otherwise we have:

(3) We have Π p2q n 1 n¡2 and Π pkq n is zero for all k ¥ 3.

Proof.

-By Leibniz's rule (see Lemma 4.14(3)), we have:

in the Grothendieck group of finite length representations of G n¡1 . Since the k th derivative of a character is zero for k ¥ 2, we have V p2q n 1 n¡2 and V pkq n is zero for all k ¥ 3. The k th derivative functors being exact, the expected result follows from (6.1) together with Propositions 4.10 and 5.2.

Corollary 6.2. -Suppose that n ¥ 2.

(1.3) ν a ¢ Zpra 1, a 2sq;

(1.4) ν ¢ Zpra 1, a 2sq;

(1.5) Zpra 1, a 3sq. This follows from [14,Théorème 8.16].

In Case 2, Equation (7.1) in addition with the fact that Lpr0, 1sq embeds in ν ¢1 implies that π is a subrepresentation of:

But π is also a quotient of: Zpra, bsq ¢ 1 ¢ ν 1 ¢ Zpra, bsq ¢ ν which itself is a quotient of the representation 1 ¢ Zpra 1, bsq ¢ ν ¡1 ¢ ν. We thus can choose σ ν ¡1 ¢ ν and τ 1 ¢ Zpra 1, bsq. Again, by the geometric lemma, it is enough to prove that σ does not occur as a subquotient of ν ¡1 ¢ 1, ν ¢ 1, Zpr0, 1sq or 1 ¢ 1, which follows easily.

In Case 3, we embed Zpra, bsq into Zpra, b ¡ 1sq ¢ ν b and show by a similar argument that we can choose σ Zpr1, b ¡ 1sq ¢ Lpr0, 1sq and τ ν b . By using the geometric lemma, it is enough to prove that ν b is different from 1 and ν b¡1 , which is immediate.

In Case 4, we prove the following more general lemma.

Lemma 7.6.

-Assume e ¡ 3. Then Zpr1, bsq ¢ Lpr0, 1sq is irreducible for any b ¥ 1, b % ¡1.

Proof. -We first treat the case where b 2 (the case where b 1 has already been done). We embed π Zpr1, 2sq ¢ Lpr0, 1sq in:

Now assume b ¥ 3. We embed Zpr1, bsq in Zpr1, 2sq ¢ Zpr3, bsq and then choose σ Zpr1, 2sq and τ Zpr3, bsq ¢Lpr0, 1sq. By the geometric lemma, it is enough to prove σ does not occur in:

(4.1) ν ¢ ν 3 ; (4.2) ν ¢ ν;

(4.3) Lpr0, 1sq;

(4.4) ν 3 ¢ ν;

(4.5) Zpr3, 4sq. This is immediate.

In Case 5, n is of the form 3k for some k ¥ 1, and we write Ω k Zpr1, 3ksq. Lemma 7.7. -The representation Ω 1 ¢ Lpr0, 1sq is irreducible. Proof. -Let ξ be an irreducible subquotient of π Ω 1 ¢ Lpr0, 1sq. It is thus a subquotient of the representation Zpr1, 3sq ¢ ν ¢ 1. By using Properties P2 and P3, we deduce that ξ is of the form Zpmq where m is a multisegment in the following list:

(5.1) m r0, 4s;

(5.2) m r0, 3s r1s;

(5.3) m r1, 4s r0s;

(5.4) m r0, 2s r3, 4s;

(5.5) m r2, 4s r0, 1s;

(5.6) m r1, 3s r0, 1s;

(5.7) m r1, 3s r0s r1s.

We will prove that Case 5.7 is the only possible case, which implies that Ω 1 ¢ Lpr0, 1sq is irreducible and equal to Zpr1, 3s r0s r1sq. By the geometric lemma, we get: rr p3,2q pπqs Zpr1, 3sq Lpr0, 1sq pZpr1, 2sq ¢ νq p1 ¢ 1q pν ¢ Lpr0, 1sqq Zpr2, 3sq and each of these three subquotients is irreducible. Since r p3,2q pZpr0, 4sqq Zpr0, 2sq Zpr3, 4sq, we see that Zpr0, 4sq cannot occur as a subquotient of π. Now the semi-simplification of r p1,2,2q pπq is equal to: ν Zpr2, 3sq Lpr0, 1sq ν Lpr0, 1sq Zpr2, 3sq ν pν ¢ 1q Zpr2, 3sq ν Zpr1, 2sq p1 ¢ 1q ν pν 2 ¢ νq p1 ¢ 1q.

By using Proposition 4.12, we see that Cases 5.4, 5.5 and 5.6 cannot occur.

Now the semi-simplification of r p1,1,1,2q pπq is equal to:

By using Proposition 4.12, we see that Case 5.2 cannot occur.

It remains to treat Case 5.3. The semi-simplification of r p1,1,3q pZpr1, 4sq ¢ 1q is equal to:

By Proposition 4.10(2) and the geometric lemma, we get: rr p1,1,3q pZpr1, 4sq r0sqs ν ν 2 pZpr0, 1sq ¢ 1q ν 1 Zpr2, 4sq. On the other hand, the semisimplification of r p1,1,3q pπq is equal to:

and each of the individual subquotients is irreducible. Therefore, Case 5.3 cannot occur.

The proof is now by induction on k. We embed Ω k 1 into Ω 1 ¢ Ω k and choose σ Ω 1 and τ Lpr0, 1sq ¢ Ω k . By using the geometric lemma, we have to prove that, for all 0 ¤ i ¤ 2, the factor σ τ does not occur as a subquotient of any of these three representations:

(

. This follows by using Property P3. (Notice that the term (5.A) does not appear if i 2). This ends the proof of Proposition 7.4.

Distinguished representations

For n ¥ 2, we write H n for the subgroup of G n made of all matrices of the form:

If the space Hom Hn pV, Rq has finite dimension over R, we denote this dimension by dpπq.

Proof. -The proof in just as in the complex case (see [START_REF] Venketasubramanian | On representations of GLpnq distinguished by GLpn ¡ 1q over a p-adic field[END_REF]Section 5]).

Remark 8.10. -Notice that if τ is smooth (not necessarily irreducible), we still have conditions similar to Lemma 8.9. We will have the occasion to use this in the case where:

In G n be H n -distinguished. Then one of the following properties holds:

(2) The cuspidal support of π is made of characters of G 1 .

Proof. -There are irreducible cuspidal representations τ 1 , . . . , τ r such that π is a quotient of τ 1 ¢ ¤ ¤ ¤ ¢ τ r . Since n ¥ 3, Theorem 8.2 implies that π is not cuspidal, which implies that r ¥ 2. Let k denote the largest integer among the degpτ i q's and let τ i have degree k with i maximal for this property. Then by [START_REF]Types modulo les formes intérieures de GL n sur un corps local non archimédien[END_REF] and Lemma 4.5, one may assume that i r. Now write τ τ r and let ρ be an irreducible subquotient of τ 1 ¢ ¤ ¤ ¤ ¢ τ r¡1 such that π is a quotient of ρ ¢ τ . Since π is distinguished, so ρ ¢ τ is. Apply Lemma 8.9 to this product. According to Theorem 8.2, we obtain that k must be ¤ 2. Moreover, if k 2, then ρ 1 n¡2 .

Distinction of the twists of Λ n and Π n

We first determine which twists of Λ n are distinguished. Lemma 8.12. -Let n ¥ 2 and χ p G 1 . Then Λ n ¤ χ is distinguished if and only if χ 1.

Proof.

-If f divides n, then Λ n is the trivial character and the result is immediate. If f does not divide n, then we have the exact sequence: If e 1, then V n 1 n Λ n by Proposition 5.2. By Lemma 8.9, we have dpV n q ¥ 2 since Conditions (A) and (B) are fulfilled. Thus Λ n is distinguished with dpΛ n q dpV n q ¡ 1. Corollary 8.13. -Assume that e ¡ 1. All the irreducible representations of G n , n ¥ 3 in the list given by Theorem 1.1 are distinguished.

Proof. -When applied with k n ¡ 1 and k n ¡ 2 respectively, Lemma 8.9 gives the result for ν ¡1{2 n¡1 ¢χ and 1 n¡2 ¢τ. By passing to the contragredient (Proposition 8.3), we get the result for the representation ν

By Lemma 8.12, Λ n is distinguished. By passing to the contragredient, we get the result for Λ ¦ n when e ¡ 1. (Note that Λ n is selfdual when e 1.) This finishes the proof.

We now determine which twists of Π n are distinguished. This is done in Lemma 8.12 when f does not divide n. We now treat the case where f divides n. Lemma 8.14. -Assume that e is not 1 and divides n. For χ p G 1 , the representations Π n ¤ χ and Π ¦ n ¤ χ are not distinguished.

Proof.

-By Proposition 8.3, it is enough to prove it for Π ¦ n ¤ χ. By Lemma 8.8, for Π ¦ n ¤ χ to be distinguished, it is necessary that at least one of the derivatives pΠ ¦ n ¤ χq piq for i 1, 2 has a character as a quotient. We have:

n¡2 . By Lemma 8.8, our claim follows.

Lemma 8.15. -Assume that e 1 and divides n.

-When e 1, the representation Π n is selfdual thus the first part of the proof of Lemma 8.14 still holds. Thus Π n ¤ χ is not distinguished for any χ $ 1. However, the second derivative of Π n is 1 n¡2 , thus Lemma 8.8 is not sufficient to determine whether or not Π n is distinguished.

Let H n act on X P pn¡1,1q zG n . There are two closed orbits A, B in X, where A is reduced to a point and B is isomorphic to P pn¡2,1q zG n¡1 (see [START_REF] Venketasubramanian | On representations of GLpnq distinguished by GLpn ¡ 1q over a p-adic field[END_REF][START_REF]Un cas simple de correspondance de Jacquet-Langlands modulo[END_REF]). Since q is congruent to 1 mod the characteristic of R, the modulus R-character of P pn¡1,1q is trivial. By [22, Proposition I.2.8], there is a non-zero G n -invariant linear form µ X on V n . Similarly, there is a non-zero H n -invariant linear form on C V c pB, Rq. Composition by the restriction from X to B gives us a non-zero H n -invariant linear form µ B on V n . Finally, for f C V c pX, Rq, we write µ A pfq for the value of f at A. We thus get three H n -invariant linear forms on V n . The form µ X is actually G n -equivariant; its image is 1 n , and its kernel W n has length 2, with socle 1 n (the space of R-valued constant functions on X) and irreducible quotient Π n . We claim that these three linear forms are linearly independent. Granting the claim, there is no nontrivial linear combination of µ A , µ B that vanishes on W n . Moreover, if f 0 denotes the constant function taking value 1, and if µ B is chosen so that µ B pf 0 q 1, then:

pµ A ¡ µ B qpf 0 q 0. Therefore, µ A ¡ µ B is a nonzero H n -invariant linear form on W n that vanishes on the space of constant functions; it thus induces a nonzero H n -invariant linear form on Π n . Thus, Π n is H n -distinguished when e 1 and divides n.

It remains to prove the claim. Let U denote the unique open H n -orbit in X, so that X is the disjoint union of A, B and U, and let p U be its preimage in G n . Let µ be a Haar measure on G n .

Since G n is locally pro-p, there is a compact open subset Ω p U with nonzero measure. Write φ for the characteristic function of the image of Ω in X. By [22, §2.8], there exists a α R ¢ such that:

µ X pφq α ¤ µp1 Ω q $ 0. On the other hand, we have µ A pφq µ B pφq 0 and hence the linear forms µ X , µ A and µ B are linearly independent. Proposition 9.3. -Assume e ¡ 1. For all n ¥ 1, we have:

By duality, we get the following. Proposition 9.4. -Assume e ¡ 1. For all n ¥ 1, we have:

Twisting by ν, we get the following. Proposition 9.5. -Assume e ¡ 1. For all n ¥ 1, we have:

In the case where e 1, we summarize below the results obtained in Section 5. Proposition 9.6. -Assume e 1.

(1) If χ $ ν pn 1q{2 , then ν 1{2 n¡1 ¢ χ is irreducible.

(2) If does not divide n, the irreducible quotients of ν 1{2 n¡1 ¢ ν pn 1q{2 are 1 n and Π n .

(

Thus we have treated Case 1 of Proposition 8.18.

Corollary 9.7.

-Let e ¡ 1 and µ p G 1 ¡ tν ¡pn¡3q{2 , ν pn 1q{2 u. Then:

-By assumption on µ, the representation ν n¡2 ¢ µ is irreducible. It is thus isomorphic to µ ¢ ν n¡2 . It thus suffices to consider the representation πpµq Qpµ ¢ ν n¡2 ¢ ν ¡pn¡3q{2 q. By Proposition 9.2, we have:

By assumption on µ, the representation µ ¢ν 1{2 n¡1 is reducible if and only if µ ν ¡pn¡1q{2 . Finally, the representation: 

n¡1 ¢ ν ¡pn¡3q{2 . Assume now that e 2 and n is odd. By a similar argument as above, we deduce that:

Ppν ¡pn¡3q{2 q Qpν ¡pn¡3q{2 ¢ ν ¡1{2 n¡1 q. By Proposition 9.4 and the observation following Lemma 4.2, we get Ppν ¡pn¡3q{2 q Λ ¦ n .

Note that 1 n¡2 ¢ µ ¢ χ µ ¢ 1 n¡2 ¢ χ. Thus:

We have the following proposition.

Proposition 10.6. -One has:

n if µ ν ¡pn 1q{2 and e does not divide n.

Proof. -This follows from Propositions 9.4 and 9.5.

It remains to study:

QpWpν pn¡1q{2 qq Qpµ ¢ Λ n¡1 ¤ ν ¡1{2 q when e does not divide n ¡ 1. This will be done in Section 12.

Computing

In this section, we assume that e ¡ 1. We consider all those infinite dimensional τ p

(1) τ is cuspidal;

(2) τ is a Steinberg representation St 2 ¤ µν 1{2 with µ tν ¡pn¡1q{2 , ν pn¡1q{2 u and e ¡ 2;

(3) τ is a principal series λ ¢ µ with λµ ¡1 tν ¡1 , νu and λ, µ tν ¡pn¡3q{2 , ν pn¡1q{2 u.

In all these cases, we study the unique irreducible quotient:

We first have the following results.

Lemma 11.1. -For all these τ as above, we have Upτ q Qpτ ¢ 1 n¡2 q.

Proof. -It follows from the fact that ν 1{2 n¡3 ¢τ τ ¢ν 1{2 n¡3 and Qpν 1{2 n¡3 ¢ν ¡pn¡3q{2 q 1 n¡2 . Proposition 11.2. -Assume that τ is cuspidal. Then Upτ q τ ¢ 1 n¡2 . Proof. -This follows from the fact that τ ¢ 1 n¡2 is irreducible when τ is cuspidal.

We now treat the cases where τ is not cuspidal.

Proposition 11.3. -Assume τ λ ¢ µ with λµ ¡1 tν ¡1 , νu and λ, µ tν ¡pn¡3q{2 , ν pn¡1q{2 u.

Then we have:

Upτ q λ ¢ µ ¢ 1 n¡2 for all λ, µ $ ν ¡pn¡1q{2 and, if µ ν ¡pn¡1q{2 and e does not divide n ¡ 1, then Upτ q is not distinguished. Proof. -The first assertion follows from Proposition 4.8. Assume now that µ ν ¡pn¡1q{2 and e does not divide n ¡ 1. It follows from Proposition 9.4 that:

Upτ q Qpλ ¢ Λ ¦ n¡1 ¤ ν 1{2 q, which is not distinguished by Lemma 8.9 with k 1. Proposition 11.4. -Assume e ¡ 2 and τ St 2 ¤ µν 1{2 with µ tν ¡pn¡1q{2 , ν pn¡1q{2 u. Then:

Upτ q τ ¢ 1 n¡2 for all µ $ ν ¡pn 1q{2 and Upτ q is not distinguished for µ ν ¡pn 1q{2 . Remark 11.5. -If we assume that e 2 in Lemma 11.4, then τ is cuspidal and this case has already been done in Lemma 11.2.

Proof. -Write τ Lpr0, 1sq ¤ µ. By Proposition 7.4, the representation τ ¢ 1 n¡2 is irreducible unless µ ν k with k a half-integer and the segments r¡pn ¡ 3q{2, pn ¡ 3q{2s and rk, k 1s are juxtaposed, that is µ ν pn¡1q{2 (which is not allowed) or µ ν ¡pn 1q{2 .

Assume µ ν ¡pn 1q{2 and e does not divide n (thus µ $ ν pn¡1q{2 ). Let L be the unique irreducible quotient of St 2 ¤µν 1{2 ¢ν ¡pn¡3q{2 . If e ¡ 3, note that St 3 ¤ν ¡1 is the unique irreducible quotient of St 2 ¤ ν ¡3{2 ¢ 1 (see p. 168 of [START_REF] Prasad | On the decomposition of a representation of GLp3q restricted to GLp2q over a p-adic field[END_REF] and the exact sequence (3.5) in [START_REF] Venketasubramanian | On representations of GLpnq distinguished by GLpn ¡ 1q over a p-adic field[END_REF]). Twisting by ν ¡pn¡3q{2 , we see that L St 3 ¤ ν ¡pn¡1q{2 . Moreover, by [START_REF] Prasad | On the decomposition of a representation of GLp3q restricted to GLp2q over a p-adic field[END_REF]Theorem 2] or [20, Remark 6.7], no twist of L is distinguished. If e 3, L is equal to a twist of Π 3 , which is not distinguished by Lemma 8.14. Hence, no twist of L is distinguished. Applying Lemma 8.9 with k n ¡ 3 to ν 1{2 n¡3 ¢ L yields that it is not distinguished, and so Upτ q is not distinguished.

The remaining cases

In this section, we assume that e ¡ 1 as in Sections 10 and 11. It remains for us to study the distinction of the following representations:

(1) the irreducible quotients of µ ¢ Λ n¡1 ¤ ν ¡1{2 for µ p G 1 ¡ tν ¡pn¡1q{2 , ν pn¡1q{2 u;

(2) the irreducible quotients of Λ ¦

(3) the irreducible quotient of Λ n¡1 ¤ ν 1{2 ¢ ν ¡pn¡3q{2 .

Note that we may assume e does not divide n ¡ 1 (or else Λ n¡1 would be the trivial character).

The first case is the one that remains from Section 10, the second one corresponds to Case 3 of Paragraph 8.6 and the third one corresponds to the part of Case 4.e of Paragraph 8.6 which does not belong to Case 3. Assume χ t1, ν, ν ¡2 u. Since χ is nontrivial, Lemma 8.9 implies that Bpχq ¦ is not distinguished. Since χ tν, ν ¡2 u, Lemma 7.3 shows that Bpχq is irreducible. Thus, by Lemma 8.3, Bpχq is not distinguished. It remains to consider the case when χ tν, ν ¡2 u.

If e ¡ 3, then we remind that rSt 2 ¤ν 3{2 ¢1s St 3 ¤ν Λ 3 as in the complex case (see p. 168 of [START_REF] Prasad | On the decomposition of a representation of GLp3q restricted to GLp2q over a p-adic field[END_REF] or (3.5) in [START_REF] Venketasubramanian | On representations of GLpnq distinguished by GLpn ¡ 1q over a p-adic field[END_REF]). First we twist St 2 ¤ ν 3{2 ¢ 1 by ν ¡2 . Secondly, we take the contragredient St 2 ¤ ν ¡3{2 ¢ 1 and twist by ν. These yield:

respectively. None of these subquotients are distinguished.

If e 2, then St 2 is cuspidal, thus Bpνq is irreducible and the result follows from Lemma 8.9.

We finally assume that e 3. We first claim the principal series ξ ν ¡1 ¢ 1 ¢ ν has length 7, with subquotients:

and the cuspidal representation St 3 .

Indeed, ξ contains 1 3 and Π 3 as well as their twists by ν and ν 2 , and it also contains the cuspidal (thus nondegenerate) representation St 3 with multiplicity 1. The Jacquet module r p1,1,1q pξq has length 6, thus our claim follows. Now we have:

by Proposition 4.10. It follows that:

in the Grothendieck group of finite length representations of G 3 . By Lemma 8.14 and Theorem 8.2, none of these subquotients are distinguished. Since Bpν ¡2 q is equal to Bpνq, our lemma is proved.

Given χ p G 1 , we now write:

We study the distinction of Apχq in the following lemma.

12.2. Distinction of QpΛ ¦ n¡1 ¤ ν 1{2 ¢ ν ¡pn¡3q{2 q and Qpν pn¡3q{2 ¢ Λ n¡1 ¤ ν ¡1{2 q By Lemma 12.2, in order to finish Cases 1 and 2 of Section 12 for e ¡ 1, it remains to discuss the distinction of the irreducible quotients:

Note that the latter is the contragredient of the former, thus it is enough to study the distinction of the first one. Moreover, if n 3, then:

by Lemmas 7.3 and 12.1. So we will assume that n ¥ 4 in the remainder of this Section. In what follows, the computation of distinguished quotients will fall into three cases:

(1) e ¡ 2 and e does not divide n ¡ 2;

(2) e ¡ 2 and e divides n ¡ 2 (this implies that e does not divide n);

(3) e 2 (this implies that e divides n ¡ 2 since e does not divide n ¡ 1).

We start with the following lemma, which follows from Lemma 9.1.

Lemma 12.3. -Assume e ¡ 1. We have:

n if e 2 and e does not divide n ¡ 2,

n if e 2 and e divides n ¡ 2.

We now define two irreducible representations of G n .

Definition 12.4.

-Assume e ¡ 1 and n ¥ 4. Define:

Observe that Φ n is selfdual if e divides n ¡ 2 and Ψ n is selfdual if e divides n. We also recall

-Assume e ¡ 1 and n ¥ 4, and suppose e does not divide n¡1. The irreducible subquotients of:

(1) the representations ν ¡1{2

n¡1 ¢ ν ¡pn¡3q{2 and Φ n if e does not divide n ¡ 2,

(2) the representations

Moreover, all subquotients appear with multiplicity 1 if e ¡ 2. If e 2, only 1 n may appear with multiplicity more than 1.

Proof. -We apply Proposition 4.13. The irreducible subquotients Φ n and:

if e divides n ¡ 2, always occur in (12.3). The irreducible subquotients Zpr¡pn¡3q{2, pn¡1q{2s r¡pn¡1q{2sq and Zpr¡pn ¡1q{2, pn¡1q{2sq 

-Since e does not divide n ¡ 2, the product 1 n¡2 ¢ ν ¡pn¡3q{2 is irreducible, thus it is isomorphic to ν ¡pn¡3q{2 ¢ 1 n¡2 . Moreover, the representation ν ¡pn¡1q{2 ¢ ν ¡pn¡3q{2 ¢ 1 n¡2 has a unique irreducible quotient by Proposition 4.2. It follows that this unique irreducible quotient is St 2 ¤ ν ¡pn¡2q{2 ¢ 1 n¡2 , which is irreducible by Proposition 7.4. Lemma 12.8. -Assume e ¡ 1 and n ¥ 4, and suppose e does not divide n ¡ 1. If the representation QpΛ ¦ n¡1 ¤ν 1{2 ¢ν ¡pn¡3q{2 q is distinguished, then it is either 1 n or 1 n¡2 ¢St 2 ¤ν ¡pn¡2q{2 . Proof. -If e ¡ 2 and does not divide n ¡2 we reduce to the case of Lemma 12.7. Therefore, we need only consider either e 2 or e divides n ¡2. The representation B Λ ¦ n¡1 ¤ν 1{2 ¢ν ¡pn¡3q{2 is a quotient of U ν ¡pn¡1q{2 ¢ 1 n¡2 ¢ ν ¡pn¡3q{2 . Observe that we have rUs rPs rBs where P ν ¡1{2 n¡1 ¢ ν ¡pn¡3q{2 . Now U has the same semisimplification as 1 n¡2 ¢ ν ¡pn¡1q{2 ¢ ν ¡pn¡3q{2 , thus we have:

is irreducible (this follows from Proposition 7.4 if e ¡ 2, and from Proposition 4.1 together with the fact that St 2 is cuspidal when e 2.) Since e does not divide n ¡ 1, the irreducible subquotients occurring in 1 n¡2 ¢ 1 2 ¤ ν ¡pn¡2q{2 by Lemma 12.5 are:

Moreover, all of them occur with multiplicity 1 except 1 n , which may appear with larger multiplicity if e 2. Also, By Lemma 12.6, since e does not divide n ¡1, the irreducible subquotients occurring in 1 n¡2 ¢ 

The proof of Lemma 12.8 will be complete if we prove the following lemma.

Lemma 12.9.

-Assume e ¡ 1 and n ¥ 4, and suppose that e does not divide n ¡ 1. For any character χ p G 1 , the twists Φ n ¤ χ and Ψ n ¤ χ are not distinguished. Proof. -Observe that Φ n ¤χ and Ψ n ¤χ have only first and second derivatives which are nonzero. Thus we will use Lemma 8.8.

Assume the first derivative of Φ n ¤χ has a quotient isomorphic to ν ¡1{2 n¡1 . By Lemma 8.17, this would imply that Φ n ¤ χ is a character, or that the multisegment that corresponds to it is made of one segment of length n ¡ 1 and one of length 1, which is not the case. The same argument holds for Ψ n ¤ χ.

From Lemma 12.6, we see that the second derivative of Ψ n ¤ χ is pν ¡1{2 n¡3 ¢ ν ¡pn 1q{2 q ¤ χ, and since e does not divide n ¡ 1 it is irreducible for all χ p G 1 by Lemma 9.1. Thus it does not have any character as a quotient. Now we have:

n¡2 if e does not divide n ¡ 2. By Lemma 6.1 and Corollary 6.3, we have pΠ n ¤ν ¡1 q p2q ν n¡2 and pΠ ¦ n ¤νq p2q 1 n¡2 . Therefore, we conclude using Lemma 12.5 that the second derivative of Φ n is Π ¦ n¡2 . By Lemma 8.8, Φ n ¤ χ and Ψ n ¤ χ are not distinguished. This ends the proof of Lemma 12.8.

Distinction of

We begin this paragraph with a simple lemma which we will need in the sequel. We remind that n ¥ 4 and e does not divide n ¡ 1. Lemma 12.10. -Let n ¥ 4. Assume that e ¡ 1 and let λ, µ p G 1 ¡ tν ¡pn¡3q{2 u. Then the induced representation 1 n¡2 ¢ λ ¢ µ has a unique irreducible quotient. Proof. -If λ µ, the result follows from [13,Lemma 6.1]. We thus assume that λ $ µ. By the geometric lemma, the semi-simplification of the Jacquet module r pn¡2,1,1q p1 n¡2 ¢ λ ¢ µq is the sum of the following representations:

(1) 1 n¡2 λ µ, (2) 1 n¡2 µ λ, (3) rν ¡1{2 n¡3 ¢ λs ν pn¡3q{2 µ, (4) rν ¡1{2 n¡3 ¢ µs ν pn¡3q{2 λ,

(5) rν ¡1{2 n¡3 ¢ λs µ ν pn¡3q{2 , (6) rν ¡1{2 n¡3 ¢ µs λ ν pn¡3q{2 , (7) rν ¡1 n¡4 ¢ λ ¢ µs ν pn¡5q{2 ν pn¡3q{2 , in the Grothendieck group of finite length representations of the Levi subgroup G n¡2 ¢G 1 ¢G 1 . If λ, µ $ ν pn¡3q{2 then by [14,Lemme 2.4] the representation 1 n¡2 ¢λ¢µ has a unique irreducible subrepresentation. The result follows by taking contragredients.

Lemma 12.11. -Assume that e ¡ 2 and e does not divide n ¡ 2. Then:

QpΛ n¡1 ¤ ν 1{2 ¢ ν ¡pn¡3q{2 q Λ n . Proof. -The representation C Λ n¡1 ¤ ν 1{2 ¢ ν ¡pn¡3q{2 is a quotient of: W ν n¡2 ¢ ν pn 1q{2 ¢ ν ¡pn¡3q{2 . If we apply Lemma 12.10 with λ ν pn¡1q{2 and µ ν ¡pn¡1q{2 , which is possible since e ¡ 2 and e does not divide n¡2, we deduce that W¤ν ¡1 (thus W) has a unique irreducible quotient. Since ν pn 1q{2 ¢ ν ¡pn¡3q{2 is irreducible, it is isomorphic to ν ¡pn¡3q{2 ¢ ν pn 1q{2 . Thus ν 1{2 n¡1 ¢ ν pn 1q{2 is a quotient of W, and it has the unique irreducible quotient Λ n .

Lemma 12.12. -Assume that e ¡ 1 and n ¥ 4. If QpΛ n¡1 ¤ν 1{2 ¢ν ¡pn¡3q{2 q is distinguished, then it is Λ n .

Proof.

-If e ¡ 2 and does not divide n ¡ 2 we reduce to the case of Lemma 12.11. We may assume that e 2 or e divides n ¡ 2. In this proof, W, C are as in Lemma 12.11 and U, P are as in Lemma 12.8. Assume that e divides n ¡ 2. Then ν pn¡1q{2 ν ¡pn¡3q{2 and therefore W ¤ ν ¡1 1 n¡2 ¢ ν ¡pn¡3q{2 ¢ ν ¡pn¡1q{2 .

Therefore, we have rWs rU ¤ νs and rWs rP ¦ ¤ νs rCs where P ¦ ¤ ν ν 3{2 n¡1 ¢ ν pn¡1q{2 . If e ¡ 2 and e divides n ¡ 2, then we twist the subquotients of U in the proof of Lemma 12.8 by ν to get:

Hence the only distinguished subquotient is Π n which is the definition of Λ n when e does not divide n. Now e 2, which necessarily divides n ¡ 2. Then P ¦ ¤ ν is isomorphic to P. We twist the subquotients of U in the proof of Lemma 12.8 by ν to conclude that the only possible irreducible subquotients of W are:

1 n , ν n , Π n , Π ¦ n , Φ n ¤ ν, Ψ n ¤ ν with all representations except possibly 1 n and ν n appearing with multiplicity 1. Since rPs 1 n ν n Π ¦ n it follows that the only possible irreducible subquotients of C are:

Hence the only distinguished subquotient is 1 n which is the definition of Λ n when e divides n. This completes the proof of the Lemma.