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On the computation of the Möbius transform

Morgan Barbiera, Hayat Cheballaha, Jean-Marie Le Barsa

aNormandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, 14000 Caen, France

Abstract

The Möbius transform is a crucial transformation into the Boolean world; it

allows to change the Boolean representation between the True Table and Alge-

braic Normal Form. In this work, we introduce a new algebraic point of view

of this transformation based on the polynomial form of Boolean functions. It

appears that we can perform a new notion: the Möbius computation variable by

variable and new computation properties. As a consequence, we propose new

algorithms which can produce a huge speed up of the Möbius computation for

sub-families of Boolean function. Furthermore we compute directly the Möbius

transformation of some particular Boolean functions. Finally, we show that for

some of them the Hamming weight is directly related to the algebraic degree of

specific factors.
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1. Introduction

Numerous studies of Boolean functions have been conducted in various fields

like cryptography and error correcting codes [7], Boolean circuits and Boolean

Decision Diagram (BDD) [3], Boolean logic [1] or constraint satisfaction prob-

lems [11]. There are many ways to represent a Boolean function which depends

of the domain. For instance, on propositional logic one usually uses the con-

junctive normal form or the disjunctive normal form, while we often use the

BDD in Boolean circuits.
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The various criteria of a Boolean function lead us to bring them together

in numerous classes of Boolean functions which share some set of requirements

and basic operations involved in studies mentioned above consists to build a

Boolean function in a class or to check if a Boolean function belongs to a class.

Most of the time, practical applications involve several properties which

require different representations. For instance, the (algebraic) degree and the

(Hamming) weight are crucial criteria in Cryptography but these basic criteria

are efficiently managed by distinct representations.

Indeed, the best representation for the degree is the Algebraic Normal Form

(the characteristic function of monomials), while the weight requires the truth

table (the characteristic function of minterms). Both ANF and truth table

representation require a binary word of length 2n, where n is the number of

variables.

Thus the Reed-Muller decomposition (or expansion) allows us to perform

recursive decomposition , enumeration and random generation among the degree

whereas the Shannon decomposition (or expansion) does the same task among

the weight [25] shows the switching network interpretation of this identity, but

Boole will be the first to mentioned it [2].

As its name implies, Reed-Muller decomposition is applied in error correct-

ing codes for Reed-Muller codes[17], but also various other fields, for exam-

ple to implemente circuits with AND/OR gates [19]. Furthermore it is often

used to construct classes of boolean functions. One example is the Maiorana-

McFarlands functions where Boolean functions are obtained by expansions of

affine functions (see [12, 18] for the first studies and [6] for the use of this class

for cryptography).

Shannon decomposition is very often applied in cryptography, especially

when we want to maintain a condition over the Hamming weight. However

the name is not explicitly mentioned, less specific terms like concatenation or

construction are rather used [26, 7, 8]. Furthermore it occurs in various other

fields like Ordered Binary Decision Diagrams (OBDD) [21] or Modal Logics [23].
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These decompositions allow us to rewrite a Boolean function with n

variables into two Boolean functions with n− 1 variables, while the expansions

perform the same acts in reverse, they allows us to build a Boolean function

with n variables with two Boolean functions with n− 1 variables.

Since these decompositions appear to be orthogonal, it seems unreachable to

consider them simultaneously or to perform enumeration or random generation

with both criteria.

The Möbius transform allows to pass from one to the other [7, 15, 24]. The

Butterfly algorithm appears as the best known algorithm which performs this

transformation. It was invented by Gauss in 1805 and Cooley and Tukey in-

dependently rediscovered this algorithm for the Fast Fourier Transform (FFT)

(CooleyTukey FFT algorithm [14, 10, 16]). This is a divide and conquer algo-

rithm which may be implemented in recursive or iterative form. It has quasi-

linear complexity with respect to representation length, n 2n−1 in term of num-

ber of XOR operations ⊕. However some Boolean functions have compact rep-

resentation with monomials sum or conjunctive or disjunctive normal form and

we may expect to get more efficient Möbius transform algorithm for these func-

tions. On the other hand, the Möbius transform is not necessary when we want

to answer the two following problems : finding the Hamming weight from the

ANF and finding the algebraic degree from the truth table. The aim of our

work is to characterize classes for which we have algorithms to answer these two

problems more efficient than Butterfly algorithm.

The key ingredient of this work is to manipulate polynomials with Möbius

transform operators instead of Boolean functions. Different works in pure Math-

ematics, as for example complex variable, are provide interesting new results

with the polynomial approach [20, 27]. These polynomials are not Boolean

functions, they contain indeterminates (defined by indices involved in mono-

mials) instead of variables. It is possible to go from one world to another by

fixing the number of variables of Boolean functions. We prove that this new

approach provides better algorithms to perform Möbius transform (from ANF
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to truth table) when we have few monomials in the ANF and monomials of high

degree. For instance, with 2n/2 monomials of degree greater or equal to 2n/2,

our method has a complexity 2n; thus we speed up butterfly algorithm with a

n
2 factor.

Section 2 provides the different representations of Boolean functions and ex-

hibit the function to change a representation from another one. In Section 3,

we discuss on the Möbius transformation and its first properties. Section 4

is dedicated to reformulate the Möbius transform for the polynomial form of

the Boolean function, thus we deduce faster algorithm to compute it. Finally,

Section 5 shows how to compute directly the Möbius transform and the Ham-

ming weight of simple and more complicated families of Boolean functions, we

conclude with a speed up of greater of 10% on Achterbahn-128.

2. Representations of a Boolean functions

A Boolean function is a mathematical object which is used in different do-

mains: error correcting code, cryptography, constraint satisfaction problems,

boolean circuits, etc... Most of time, each of the previous domains use a partic-

ular point of view of Boolean functions, thus it exists different representations of

Boolean functions. Each point of view make easier to study specific properties

of Boolean functions. In this work, we regularly switch between representa-

tions. We propose, to give a brief overview of three following representations:

Algebraic Normal Form (ANF), truth table, and polynomial form of Boolean

functions.

2.1. Based table representations

2.1.1. Monomials and Minterms

Let Fn be the set of Boolean functions with n variables x1, . . . , xn. Mono-

mials and minterms play a role of canonical element in the different writings.

Let us to denote x = (x1, . . . , xn). For any u = (u1, . . . , un) ∈ Fn2 , xu will

be denoted the monomial xu1
1 . . . xunn . The minterm Mu is the Boolean function
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with n variables defined by its evaluation

Mu(a) =

 1, if u = a;

0, otherwise.

Let u = (u1, . . . , un) and v = (v1, . . . , vn) ∈ Fn2 , we will write u � v, a partial

order when ui ≤ vi, for any i ∈ {1, . . . , n}.

A minterm (resp. a monomial) may be written as a sum of monomials (resp.

minterms).  Mu =
⊕

u�v x
v;

xu =
⊕

u�vMv.

2.1.2. Characteristic functions of monomials and minterms

Let f ∈ Fn be a Boolean function, f may be viewed as a sum of of minterms

f =
⊕
u∈Fn2

θuMu, with θu ∈ F2.

Its Truth Table is the characteristic function of minterms, that is:

T (f) = t1 . . . t2n ,

where tk = θu, with k =
∑n
i=1 ui 2i−1. Moreover, f may be also viewed as a

sum of monomials

f =
⊕
u∈Fn2

αux
u, with αu ∈ F2.

Its ANF (Algebraic Normal Form) is the characteristic function of monomials,

that is:

A(f) = a1 . . . a2n ,

where ak = αu, with k =
∑n
i=1 ui 2i−1.

Example 1. Let f = x1⊕ x1x2 ∈ F2 be a Boolean function with two variables.
Then its truth table and its ANF are represented by four long bit sequences, and
we have:

• T (f) = 0100;

• A(f) = 0101.

Obviously, we may choose in both cases other orders to encode the charac-

teristic function, we may for instance permute the order of variables.
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2.2. Polynomial representation

Let n ∈ N and i1, . . . , in ∈ N, we will denote by F2[Xi1 , . . . , Xin ] the set of

polynomials over the field F2 with the indeterminates Xi1 , . . . , Xin .

Notation 1. Let n ∈ N∗ and u = (u1, . . . , un) ∈ Fn2 . Recall that xu is the mono-
mial xu1

xu2
. . . xun . In order to distinguish a monomial over Boolean functions

and a monomial over polynomials, we use the respective notations xu and Xu.

Definition 1 (Polynomial form). Let f ∈ Fn such that

f =
⊕
u∈Fn2

αux
u.

We call the polynomial form of the Boolean function f , the polynomial in
F2[X1, . . . , Xn]:

πn(f) =
∑
u∈Fn2

αuX
u.

Since an indeterminate Xj ∈ {Xi1 , . . . , Xin} could not occur in P ∈

F2[Xi1 , . . . , Xin ], we have F2[Xi1 , . . . , Xin ] ⊂ F2[Xj1 , . . . , Xjm ] if {i1, . . . , in} ⊂

{j1, . . . , jm}. Conversely P ∈ F2[Xi1 , . . . , Xin ] means that any indeterminateXj

which occurs in P belongs to {Xi1 , . . . , Xin}. Thus the polynomial X1 +X1X2

belongs to F2[X1, X2] but also belongs to F2[X1, X2, X3]. We will use the term

indeterminate instead of variable to notice that we manipulate formal terms Xij

without notion of evaluation.

Let P ∈ F2[Xi1 , . . . , Xin ], for any i ∈ N, we will consider the following

decomposition

P = XiP
0
i + P 1

i ,

where the second part contains all the monomials without the indeterminate Xi

and the first one contains all the other monomials. Obviously, the case P 0
i = 0

means the indeterminate Xi does not occur in P .

Example 2 (Example 1 continued). Let f = x1⊕x1x2 ∈ F2. We define f3 ∈ F3

and f4 ∈ F4 such that π2(f) = π3(f3) = π4(f4). Then

π2(f) = X1 +X1X2

A(f) = 0101 T (f) = 0100
A(f3) = 01010000 T (f3) = 01000100
A(f4) = 0101000000000000 T (f4) = 0100010001000100
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Although the polynomial form seems to be identical to the ANF, we can

see in Example 2, that the size of the ANF representation fixed the number of

variables.

2.3. Differences and similarities between representations

2.3.1. Hamming weight and algebraic degree

Let f ∈ Fn be a Boolean function, we will write wH(f) the (Hamming)

weight of f , ie the number of 1 of T (f) and deg(f) the (algebraic) degree of f ,

ie the maximal degree of the monomials in the polynomial or ANF of f .

2.3.2. Shannon and Reed-Muller decompositions

While the Reed-Muller decomposition is related to the algebraic normal

form, the Shannon one is associated to truth table. Indeed, let f ∈ Fn, the

Reed-Muller decomposition, consists in rewriting the Boolean function as

f = f0R ⊕ xnf1R,

where f0R, f
1
R ∈ Fn−1 and are unique. Clearly, the part xnf

1
R correspond exactly

at all monomials of f where xn is, and f0R the part of f where xn is not. Let ‖

be the concatenation over words, then

A(f) = A(f0R) ‖ A(f1R),

A(f0S) (resp. A(f1S)) contains all the monomials xu of the ANF of f , where

un = 0 (resp. un = 1).

The Shannon decomposition, consists in rewriting the Boolean function as

f = (1⊕ xn)f0S ⊕ xnf1S ,

where f0S , f
1
S ∈ Fn−1 and are unique. Clearly the part (1⊕xn)f0S gives the part

of f when xn = 0, and xnf
1
S the part of f when xn = 1. Thus

T (f) = T (f0S) ‖ T (f1S),

T (f0S) (resp. T (f1S)) contains all the minterms Mu of the ANF of f , where

un = 0 (resp. un = 1).
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Remark 1. Let f ∈ Fn, we have by a trivial identification f0R = f0S and f1R =
f0S ⊕ f1S.

Remark 2. The Shannon decomposition is the natural decomposition for ma-
nipulating the minterms since T (f) = T (f0S) ‖ T (f1S). This trivially implies

wH(f) = wH(f0S) + wH(f1S).

On the other hand the Reed-Muller decomposition is the natural decomposition
for manipulating the monomials; since A(f) = A(f0R) ‖ A(f1R), this implies

deg(f) = max
(
deg(f0R),deg(f1R) + 1

)
.

3. Möbius transform: operator relating the representations

Since the polynomial and the ANF representation of a Boolean function

involving the presence of monomials, it is easy to see these two representations

are in direct connection. Moreover, it is a lot more difficult to see that the truth

table and the ANF of a Boolean function are connected by a transformation,

called the Möbius transform. We noted it µ and is defined by the following

bijection

µ : Fn ←→ Fn
f 7−→ µ(f),

such that, for any f ∈ Fn and a ∈ Fn2

f(a) =
⊕
u∈Fn2

µ(f)(u)au. (1)

The Möbius transform allows us to compute the truth table representation from

ANF one and vice versa. Let f and g ∈ Fn, the following assertions are equiv-

alent: 

µ(f) = g;

µ(g) = f ;

A(f) = T (g);

T (f) = A(g).

We propose to present a known result [24, Theorem 5, page 5] in a different

usual way. Thus we easy make the link between the Reed-Muller parts f0R and

f1R with the Möbius transform.
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Proposition 1. Let f ∈ Fn and f0R, f
1
R ∈ Fn−1 be the Reed-Muller decompo-

sition of f , ie f = f0R ⊕ xnf1R. Then

µ(f) = (1⊕ xn)µ(f0R)⊕ µ(f1R).

Proof. Let a = (a1, . . . , an) and u = (u1, . . . , un) ∈ Fn2 , b = (a1, . . . , an−1) and
v = (u1, . . . , vn−1). we will write a = ban and u = vbn. It follows au = bv aunn .
Since aunn = 0 if and only if an = 0 and un = 1, we have au = 0 if an = 0 and
un = 1 and au = bv otherwise.

The relation (1) implies

f(b0) =
⊕

v∈Fn−1
2

µ(f)(v0)bv00
⊕

v∈Fn−1
2

µ(f)(v0)bv01,

=
⊕

v∈Fn−1
2

µ(f)(v0)bv;

f(b1) =
⊕

v∈Fn−1
2

µ(f)(v1)bv10
⊕

v∈Fn−1
2

µ(f)(v1)bv11,

=
⊕

v∈Fn−1
2

(µ(f)(v1)⊕ µ(f)(v1))bv.

We deduce
µ(f)(v0) = µ(f0R)(v)
µ(f)(v1) = µ(f0R)(v)⊕ µ(f1R)(v)

Thus µ(f) = (1⊕ xn)µ(f0R)⊕ µ(f1R).

In the following, we propose a new operator, which is related to the Möbius

transform, which is dedicated to manipulate indeterminate one by one.

Definition 2. Let f ∈ Fn and P = πn(f) ∈ F2[X1, . . . , Xn] its polynomial
form. Assume that P = P 0

i +XiP
1
i . We define the operator µXi by

µXi(P ) = P 0
i +Xi(P

0
i + P 1

i ).

In particular, if i /∈ {i1, . . . , in}, µXi(P ) = (1 + Xi)P and if P = XiP
1
i ,

µXi(P ) = P .

Proposition 2. The operators µXi are commutative, that is

µXi(µXj (P )) = µXj (µXi(P )).

Proof. Let P1, P2, P3 and P4 the four polynomials without the variables Xi and
XiXj such that

P = P1 +XiP2 +XjP3 +XiXjP4.

Thus

µXi(P ) = P1 +Xi(P1 + P2) +Xj(P3 +XiP4 +XiP3);

µXj (µXi(P )) = P1 +Xi(P1 + P2) +Xj(P1 + P3 +Xi(P1 + P2 + P3 + P4)),

= P1 +Xj(P1 + P3) +Xi(P1 + P2 +Xj(P1 + P2 + P3 + P4)),

= µXi(µXj (P )).

9



Notation 2. Let k ∈ N∗ and i1, . . . , ik ∈ N. Let P be a polynomial over F2.
We denote the operator µXi1 ...Xik by

µXi1 ...Xik (P ) = µXi1 (µXi2 (. . . µXik (P ) . . .).

We may extend the previous Proposition for any permutation σ of {1, . . . , k},

µXi1 ...Xik (P ) = µXiσ(1) ...Xiσ(k) (P ).

Hence µXi1 ...Xik (P ) depends only of the set of indexes N = {i1, . . . , ik}.

Notation 3. We will write µN (P ) instead of µXi1 ...Xik (P ). Moreover, let n ∈
N∗, we will denote by [n] the set {1, . . . , n}.

Example 3 (Example 2 continued). Let f ∈ F2 such that its polynomial form
is X1 +X1X2. Then

µ[2](X1 +X1X2) = µ2 (µ1 (X1 +X1X2))

= µ2 (X1 +X1X2)

= X1X2 + (1 +X2)X1

= X1

µ[3](X1 +X1X2) = µ{3}(µ[2](X1 +X1X2))

= µ{3}(X1)

= (1 +X3)X1

= X1 +X1X3

µ[4](X1 +X1X2) = (1 +X4)(X1 +X1X3)

= X1 +X1X3 +X1X4 +X1X3X4

The following proposition explains how the previous operator is related to

the Möbius transform.

Proposition 3. Let n ∈ N∗, f, g ∈ Fn with polynomial forms P = πn(f) and
Q = πn(g). The following assertions are equivalent:

(a) µ(f) = g;

(b) µ[n](P ) = Q.

Which yields the following commutative diagram:

f
µ−→ g

πn ↓ ↓ πn

P
µ[n]−→ Q
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Proof. We only proof that (a) =⇒ b. The other implication is similar.

We use a induction on n. For n = 1, we have by disjunction

f P µ(f) µX1(P )
0 0 0 0
1 1 1⊕ x1 1 +X1

x1 X1 x1 X1

1⊕ x1 1 +X1 1 1

Since for all f ∈ F1, we have µ(f) = µX1
(P ), the induction holds for n = 1.

Assume now this is true for n > 1:

πn (µ(f)) = µ[n] (πn(f)) .

Let f ∈ Fn+1 be a Boolean function and f0R, f
1
R ∈ Fn such that f = f0R ⊕

xn+1f
1
R. Thus with the induction assumption and Proposition 1:

πn+1 (µ(f)) = (1 +Xn+1)× πn
(
µ
(
f0R
))

+ πn
(
µ
(
f1R
))
,

= (1 +Xn+1)× µ[n]

(
πn
(
f0R
))

+ µ[n]

(
πn
(
f1R
))
,

= µXn+1

(
µ[n]

(
πn
(
f0R
)

+Xn+1πn
(
f1R
)))

,

= µ[n+1]

(
πn+1

(
f0R + xn+1f

1
R

))
,

= µ[n+1] (πn+1 (f)) .

Directly, the operator on monomials inherits of Möbius transform properties.

Proposition 4. Let Xi be an indeterminate. The automorphism µXi is invo-
lutive:

µ2
Xi = id.

Proof. Let P = P 0
i + XiP

1
i the Reed-Muller decomposition of polynomial P ,

we denote Q = µXi(P ). By definition of µXi , Q = P 0
i + Xi(P

0
i + P 1

i ), thus
µXi(Q) = P 0 +Xi(P

0
i + P 0

i + P 1) = P .

Propositions 3 and 4 imply the Corollary below

Corollary 1. Let N ⊂ N be a subset, then µN satisfies

µ2
N = id.

Let f ∈ Fn be a Boolean function and P = πn(f) its polynomial form;

Corollary 1 provides an alternative proof that µ is an involutive automorphism,

since combined with Proposition 3 it implies µ2
[n] = id.
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Notation 4. Let I ⊂ [n], we define M I =
∏
i∈[n]\I

(
1 +Xi

)
which is the

polynomial form of the minterm Mu, where I = Iu.

Proposition 5. Let I ⊂ [n], then

µ[n](X
I) = XI ×

∏
i∈[n]\I

(
1 +Xi

)
= MI .

Moreover since µ[n] is an involutive function µ[n](MI) = XI .

Proof. Thanks to Definition 2, we obtain by recurrence

µ[n](X
I) = XI × µ{Xi : i∈[n]\I}(X

I)

= XI ×
∏

i∈[n]\I

(
1 +Xi

)
.

And finally Proposition 4 holds the last statement.

This provide an alternative proof µ(xu) = Mu and µ(Mu) = xu.

4. A new method to compute the Möbius transform

We have introduced the Möbius transform over polynomials and show that

it is possible to perform the computations in several steps with various orders

thanks to the partial operators µXi . We propose to firstly reformulate the

Möbius transform over polynomials in order to introduce two new algorithms

based on this reformulation.

4.1. Reformulation of Möbius transform

To introduce our reformulation let us to present a new operator given in the

following definition.

Definition 3 (Exclusive multiplication). Let P be a polynomial over F2 and i ∈
N, P 0

i and P 1
i such that P = P 0

i +XiP
1
i . We define the exclusive multiplication,

noted ⊗, as
P ⊗Xi = XiP

0
i .

Let I be a finite subset of N, we generalize the definition for a monomial XI .

P ⊗XI = XIP6| I ,

where P6| I is formed with the monomials of P which contain no variables Xi,
with i ∈ I.
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We may now generalize for any polynomial Q. Let I be a set of finite subsets
of N and Q =

∑
I∈I X

I ,

P ⊗Q =
∑
I∈I

P ⊗XI .

Proposition 6. Let I = {i1, . . . , ik} be a finite subset of N.

P ⊗XI = (. . . (P ⊗Xi1)⊗Xi2)⊗ . . . Xik).

Thanks to the previous definition, we can reformulate the Möbius transform

of the Boolean function as a multiplication; this is the result of the following

proposition.

Proposition 7. Let P be a polynomial over Fn2 and i ∈ N.

P ⊗ (1 +Xi) = µXi(P ).

Proof. Let P 0
i and P 1

i such that P = P 0
i +XiP

1
i .

P ⊗ (1 +Xi) = P + P ⊗Xi

= P +XiP
i
0

= P i0 +Xi(P
i
0 + P i1)

= µXi(P ).

Thanks to the previous results, we obtain the following corollary, which

supplies a new reformulation of the Möbius transform.

Corollary 2. Let P ∈ F2[X1, . . . , Xn]. Then

µ[n](P ) = P ⊗
n∏
i=1

(1 +Xi).

Proposition 8. Let P be a polynomial over F2 and i and j ∈ N.

(P ⊗ (1 +Xi))⊗ (1 +Xj) = P ⊗ ((1 +Xi)(1 +Xj)).

Proof. Let P = P1 +XiP2 +XjP3 +XiXjP4. By Proposition 7,

P ⊗ (1 +Xi) = P1 +XjP3 +Xi(P1 +XjP3 + P2 +XjP4)
= (P1 +XiP1 +XiP2) +Xj(P3 +XiP3 +XiP4)

(P ⊗ (1 +Xi))⊗ (1 +Xj) = P1 +XiP1 +XiP2 +Xj(P1 +XiP1 +XiP2 + P3 +XiP3 +XiP4)
= P1 +Xi(P1 + P2) +Xj(P1 + P3) +XiXj(P1 + P2 + P3 + P4)

P ⊗ ((1 +Xi)(1 +Xj)) = P ⊗ (1 +Xi +Xj +XiXj)
= P1 + P2 +XjP3 +XiXjP4 +XiP1

+XiXjP3 +XjP1 +XiXjP2 +XiXjP1

= (P ⊗ (1 +Xi))⊗ (1 +Xj)
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Corollary 3. Let P ∈ F2[X1, . . . , Xn]. Then

µ[n](P ) = P ⊗ (1 +X1)⊗ (1 +X2) . . .⊗ (1 +Xn).

Now, we propose to build an algebraic structure such that the exclusive
multiplication becomes the canonical multiplication in this new structure. Thus
we have to create, an algebraic structure such that all monomials containing
square indeterminates are projected on zero. We naturally researched a ring
which is quotiented by an ideal which represent all these monomials. Thus we
obtain the following proposition.

Proposition 9. Let In be the ideal of F2[X1, . . . , Xn] spanned by all the inde-
terminates with a power of two, that is

In = 〈X2
1 , · · · , X2

n〉.

Then the exclusive multiplication is the natural multiplication in the ring

Rn = F2[X1, . . . , Xn]/In.

Proof. We propose to prove by inclusion that the ideal In is exactly all monomial
with at least a square indeterminates.

Since In is an ideal, thus by the stability property, we have:

∀a ∈ In, ∀P ∈ F2[X1, . . . , Xn], a.P ∈ In;

thus all monomials containing a square indeterminate is into the ideal In.
Let a ∈ In be an element such that it does not contain any square in-

determinate. Since In is spanned by X2
1 , · · ·X2

n, then it exists a1, · · · , an ∈
F2[X1, · · · , Xn] such that:

a =

n∑
i=1

ai.X
2
i .

Since a does not contain any square indeterminate then ∀i ∈ {1, · · · , n}, ai = 0;
thus a = 0. We obtain the statement.

Corollary 4. Let f ∈ Fn be a Boolean function, then the computation of its
Möbius transform is only a multiplication on Rn.

Thus we reformulate the Möbius transform such that it is equivalent to
canonical multiplication into the quotient ring Rn.

Example 4. [Example 3 continued] With this reformulation, let us to compute
again the Möbius computation of the two variables Boolean function defined by
its polynomial form P = X1 +X1X2.

µ[2](P ) = (X1 +X1X2)⊗ (1 +X1)⊗ (1 +X2)

= (X1 +X1X2)⊗ (1 +X2)

= X1 +X1X2 +X1X2

= X1.

We find exactly the same result that in Example 3.
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Proposition 10. The exclusive multiplication is commutative.

Proof. The exclusive multiplication is only the canonical multiplication in Rn,
moreover F4[X1, . . . , Xn] is a commutative ring, then Rn, that is the exclusive
multiplication, also is.

4.2. Algorithms to compute the Möbius transform

We propose in this Section an algorithm which compute the Möbius
transform with the multiplication ⊗. Firstly we will see that it is exactly the
same than the iterative version of Butterfly algorithm when the algorithm is
applied on a 2n long bit vector which encodes which monomials occur in P
(which corresponds to the ANF of π−1n (P )). Thus the complexity is n2n−1.
Secondly, we consider P as a list of monomials. In this case, we show that
this algorithm is better than Butterfly algorithm over large classes of Boolean
functions.

In the first hand, we propose to revisit the Butterfly algorithm and recall a
previous improvement. And the other hand, we propose new algorithms from
our previous results.

4.2.1. Butterfly algorithm

There exists a simple divide-and-conquer butterfly algorithm to perform the
Möbius transform, called the Fast Möbius Transform. We work over A, a vector
of size 2n which encodes the ANF of a Boolean function f . Algorithm 1 gives
the recursive version of the Fast Möbius Transform.

Algorithm 1: Recursive butterfly algorithm RBM(A,n)

Input: A be the ANF (or truth table) of a Boolean function with n
variables.

Output: the truth table (or ANF) corresponding to A.

if n = 1 then
if A = 00 or A = 01 then

return A
if A = 10 then

return 11
if A = 11 then

return 10

else
A0 ← RBM(A[0] . . . A[2n−1 − 1], n− 1)
A1 ← RBM(A[2n−1] . . . A[2n − 1], n− 1)

for i = 0 to 2n−1 − 1 do
A1[i]← A1[i]⊕A0[i]

return A0||A1
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We may directly apply the modifications over A = A(f) without recursive
calls. For i = 1 to n, we split the string A in 2n−i pairs of strings (A1, A2) of
size 2i−1 and we replace A2 by A1 ⊕A2, where ⊕ is here the bit-wise modulo 2
sum. Thus it provides a butterfly algorithm working with the memory in place;
that is no need extra memory and copy results. It result the Algorithm 2 which
gives this iterative version of the Fast Möbius Transform. It is quite the same
algorithm introduced in [9], replacing plus operation by XOR.

Algorithm 2: Iterative butterfly algorithm IBM(A,n)

Input: A be the ANF (or truth table) of a Boolean function with n
variables.

Output: the truth table (or ANF) corresponding to A.

for i = 1 to n do
for k = 0 to 2n−i − 1 do

for l = 0 to 2i−1 − 1 do
A[k ∗ 2i + l + 2i]← A[k ∗ 2i + l + 2i]⊕A[k ∗ 2i + l]

return A

4.2.2. Optimisation by isolated monomials

In 2012, Calik Cagdas and Doganaksoy Ali, compute the Hamming weight
of Boolean functions from the ANF [5]. More exactly, a deep reading of this
work shows that they compute the Hamming weight of Boolean functions from
its polynomial form. Moreover, it provides a new algorithm which can be faster
than the butterfly one over a subclass of Boolean function. The previous subclass
is mainly defined by they called isolated monomials. That is they rewrite the
polynomial form in isolating a monomial, and they take advantage to compute
the Hamming weight, their method can be fully detailed in [5, Algo. 4.1]. An
implementation is even available in [4].

4.2.3. Algorithm with the exclusive multiplication

From Corollary 2, we obtain directly the following algorithm to compute the
Möbius transform.

Algorithm 3: Möbius transformation by the exclusive multiplication.

Input: P be a polynomial form of a Boolean function.
Output: Q be the polynomial such that µ[n](P ) = Q.

P0 ← P
for i = 1 to n do

Pi ← Pi−1 ⊗ (1 +Xi);

return Pn
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We change the point of view of the Algorithm 3, in order to make the relation
with the Butterfly algorithm. We encode P by a array A = A(π−1n (P ))) of length
2n such that for each j = u1 + u22⊕ . . .+ un2n−1 ∈ {0, . . . , 2n − 1}

A[j] = 1 ⇐⇒ the monomial XIu occurs in the ANF of f.

At the step i, (P = P⊗(1 +Xi)), we consider all the j = a1+a22⊕ . . .+an2n−1

such that ai = 0 and we modify the value of A[j + 2i] when A[j] = 1.

Algorithm 4 gives the iterative version of Algorithm 3 over the vector A
which encodes the monomials.

Algorithm 4: Reformulation of Algorithm 3.

Input: A be the ANF (or truth table) of a Boolean function with n
variables.

Output: the truth table (or ANF) corresponding to A.

A← A(π−1n (P ))
for i = 1 to n do

for every j = a1 + a22⊕ . . .+ an2n−1, where ai = 0 do
A[j + 2i]← A[j + 2i]⊕A[j]

return A

We obtain exactly the same that algorithm 2. Indeed, let i ∈ {1, . . . , n}
and j = a1 + a22 ⊕ . . . + an2n−1, where ai = 0. Let l ∈ {0, . . . , 2i − 1} and
k ∈ {0, . . . , 2n−i−1 − 1} such that{

l = a1 + a22 + . . . ai−12i−2

k = ai+1 + ai+22 + . . .+ an2n−i−1

It follows j = l+ 2ik and the instruction A[j + 2i]← 1−A[j + 2i] is equivalent
to A[k ∗ 2i + l + 2i]← 1−A[k ∗ 2i + l + 2i].

4.2.4. Algorithm for list representation

In this section, we manipulate Boolean function by its polynomial form given
by the list of involved monomials. Hence we can avoid useless computation, as
for example a XOR bit with zero. However, this representation suffers an extra
memory cost compare to the vector representation.

Proposition 11. Let P ∈ F2[X1, . . . , Xn] be a polynomial form of the Boolean
function with n variables. We denote by Pi, i ∈ {1, . . . , n} the polynomial in-
volved in Algorithm 3 and N(Pi) their number of monomials. Then Algorithm 3
uses

∑n
i=1N(Pi) XORs.

Proof. This is a direct implication of the equality Pi−1 ⊗ (1 + Xi) = Pi−1 +
Pi−1 ⊗Xi (see Proposition 7).
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With Proposition 11, we note that the number of monomials in the list
representation is essential for the complexity.

Corollary 5. Let N = max{N(Pi) | i ∈ {1, . . . , n}}. Algorithm 3 uses at most
n N XORs.

Notation 5. Let P ∈ F2[X1, . . . , Xn] be a polynomial form of the Boolean func-
tion with n variables. We denote P̄ the polynomial form of the complementary
Boolean function associated at polynomial P , that is

P + P̄ =

n∏
i=1

(1 +Xi).

Then we propose the following result in order to improve the complexity of
our algorithm.

Proposition 12. Let P ∈ F2[X1, . . . , Xn] be a polynomial form of the Boolean
function with n variables. Then

µ[n](P̄ ) = µ[n](P ) + 1;

µ[n](P + 1) = µ[n](P ) +
∏n
i=1(1 +Xi) = µ[n](P ).

Proof. Let us to compute

µ[n](P̄ ) =

(
P +

n∏
i=1

(1 +Xi)

)
⊗

n∏
i=1

(1 +Xi)

=

(
P ⊗

n∏
i=1

(1 +Xi)

)
+

(
n∏
i=1

(1 +Xi)⊗
n∏
i=1

(1 +Xi)

)
= µ[n](P ) + 1

µ[n](P + 1) = (P + 1)⊗
n∏
i=1

(1 +Xi)

=

(
P ⊗

n∏
i=1

(1 +Xi)

)
+

n∏
i=1

(1 +Xi)

= µ[n](P ) +

n∏
i=1

(1 +Xi).

Then if the list representation of the Boolean function is dense, we can take
advantage and work on the complementary, which have a sparse representa-
tion. Thus mixing with previous results, we improve the complexity for the list
representation.

Corollary 6. Let P ∈ F2[X1, . . . , Xn]. We may perform Algorithm 3 with
min

(∑n
i=1N(Pi),

∑n
i=1N(P̄i)

)
XORs.
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Proposition 12 is useful in our context, however this result is not dedicated
to our reformulation, it is also true with truth table and ANF.

We remark that the order of the multiplication by the affine polynomial plays
an important role since we involved different polynomials Pi when we change
the order. To illustrate our claim, we propose to make again Example 4 by
multiplying with another order.

Example 5 (Example 4 continued). Let f ∈ F3 be the Boolean function in
Example 4, with the list representation we can see that we need only to add 3
monomials, that is

P = [X3, X1X2, X1X3].

After the multiplication by affine polynomials, we obtain

P ⊗ (1 +X1) = [X3, X1X2];

P ⊗ (1 +X1)⊗ (1 +X2) = [X3, X1X2, X2X3];

P ⊗ (1 +X1)⊗ (1 +X2)⊗ (1 +X3) = µ[3](P ) = [X3, X1X2, X2X3, X1X2X3].

If we process the exclusive multiplication in the different order the number of
operation in the list, that is add or remove, will considerably increase:

P ⊗ (1 +X2) = [X3, X1X2, X1X3, X2X3, X1X2X3]

P ⊗ (1 +X2)⊗ (1 +X1) = [X3, X1X2, X2X3]

P ⊗ (1 +X2)⊗ (1 +X1)⊗ (1 +X3) = µ[3](P ) = [X3, X1X2, X2X3, X1X2X3].

We obtain the same result with 5 modifications, while Example 4 obtain the
same result with only 3.

We show that in Example 5 the order of the affine polynomials is really im-
portant on the number of list modifications. We propose a strategy to minimize
the number of modifications: we propose to multiply by (1 + Xi0), where i0 is
the indeterminate which occurs the most of time in the intern representation.
Hence we maximize the number of monomials for which one, we do not perform
modification. In this way, we propose Algorithm 5 which manage a good order
to perform successive exclusive multiplications to obtain the Möbius transform.

Where:

• occurrence computes a table of size n where the i-th component-wise gives
the number of occurrences of Xi;

• remove(L,M) and add(L,M) modify the list L with the monomial M ;

• update(O,M, value) modifies the occurrence table O for all variables into
the monomial M adding value.

In Table 1, we compare our proposed algorithms with the literature. We see
that the list representation is only valuable for really sparse Boolean functions,
or thanks to the complementary property, Proposition 12, and really dense ones.
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Algorithm 5: Reformulated Möbius transformation for the list represen-
tation

Input: L be the list representation of f ∈ Fn.
Output: Mu be the list representation of the Möbius transform of f .

Mu← L;
O ← occurrence(L);
for i = 1 to n do

i0 ← argmax(O);
Mui←Mu;
for M ∈Mu do

if not (Xi0 ∈M) then
if Xi0 ∈Mu then

remove(Mui,Xi0M);
update(O,Xi0M,−1);

else
add(Mui,Xi0 ,M);
update(O,Xi0M, 1);

Mu←Mui;
O[i0]← −∞;

return Mu

Table 1: Number of XORs or list modifications needed to compute the Möbius transform in
worst case or for the special case f = x3 ⊗ x1x2 ⊗ x1x3 ∈ F3.

Butterfly Algorithm in [5] Algorithm 5

Complexity n2n−1 min
(∑n

i=1N(Pi),
∑n
i=1N(P̄i)

)
x3 ⊕ x1x2 ⊕ x1x3 12 10 3

5. Direct Möbius computations for some Boolean functions

We have proposed a reformulation of the Möbius transform which produces
two new algorithms: one for the vector representation and the other for the
polynomial form. The worst case of these algorithm happen when a variable
xi does not appear. Hence this section is dedicated to directly compute the
Möbius transform and the Hamming weight of a Boolean function for the worst
cases of proposed algorithms.

Please note that for the following propositions, we give the Möbius transform
for some families of Boolean functions. Thus, the computation cost of these
Boolean functions is only their Hamming weight for simply write the result into
the memory.

Proposition 13. Let I ⊂ [n]; then

µ[n](X
I) = XI

∏
j∈[n]\I

(1⊕Xj),
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and we have wH(π−1n (XI)) = 2n−|I|.

Proof. It is sufficient to combine Proposition 5 and Proposition 3. This result
could be also proved with the relation Mu =

⊕
u�v x

v.

We consider the following basic algorithm to compute µ[n](P ) which involves
the monomial XI . We began with the word w = (0, . . . , 0) of length 2n; then for
each monomial XI , we flip the corresponding bits in w, hence the complexity
depends on |Ī|. For instance, if P = XI , we obtain a complexity 2n−|I|.

For all i ∈ [n], we find again that the Boolean functions of Fn given by the
polynomial form Xi are balanced functions.

Definition 4 (Valuation). Let P be a polynomial defined over a ring R. The
valuation of P is the smallest degree of the set of its monomials.

Example 6. Let P (X1, X2, X3) = X1+X2X3 and Q(X1, X2, X3) = 1+X2X3+
X1X2X3 be polynomials over F2[X1, X2, X3], then

val(P ) = 1, val(Q) = 0.

Moreover, in order to the valuation has order property, it is frequently assumed
that val(0) = −∞.

Proposition 14. Let P =
∑
I∈I X

I ∈ F2[X1, . . . , Xn] and M = |I|. Then the
Möbius transform of P and the Hamming weight of π−1n (P ) can be computed
with a complexity

∑
IinI 2n−|I|, with upper bound M . 2n−val(P ).

Proof. Let P = πn(f) and I such that P =
∑
I∈I X

I .

µ[n](P ) =
⊕
I∈I

(
XI

∏
j∈[n]\I

(1 +Xj)
)
.

We conclude by observing that each factor of the sum contains 2n−|I| ≤
2n−val(P ) terms.

For example, if val(P ) = n/2 and M = 2n/2, we obtain an upper bound of
the complexity 2n/2 · 2n/2 = 2n which is better than the complexity of butterfly
algorithm which is n2n−1.

Proposition 15. Let P be the polynomial form of a Boolean function f ∈ Fn−1.
Then Möbius transform of the polynomial Xn + P with n indeterminates is

µ[n](Xn + P ) = µ[n−1](P ) +Xnµ[n−1](P + 1).

Moreover the Boolean function f ′ = π−1n (Xn + P ) is a balanced one, that is:

wH(f ′) = 2n−1.
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Proof. Let us to develop the computation thanks to Definition 2:

µ[n](Xn + P ) = µ[n](Xn) + µ[n](P )

= Xnµ[n−1](1) + (1 +Xn)µ[n−1](P )

= µ[n−1](P ) +Xnµ[n−1] (P + 1) .

Moreover, applying Proposition 12:

µ[n−1](P + 1) = µ[n−1](P ) +

n−1∏
i=1

(1 +Xi) = µ[n−1](P );

thus

wH(f ′) = wH(f) + 2n−1 − wH(f);

= 2n−1.

Proposition 16. The Möbius transform of the sum of all monomials of degree
one is the sum of all monomials of odd degree; that is

µ[n]

∑
i∈[n]

Xi

 =
∑

J⊂[n], st |J| is odd

XJ .

Thus wH

(
π−1n

(∑
i∈[n]Xi

))
= 2n−1.

Proof.

µ[n]

∑
i∈[n]

Xi

 =
∑
i∈[n]

µ[n](Xi)

=
∑
i∈[n]

Xi

∏
j∈[n]\{i}

(1 +Xj)

=
∑

J⊂[n],|J| is odd

XJ .

Remark 3. Let f =
⊕n

i=1 x
i ∈ Fn be the Boolean function which is the sum of

all monomials of degree 1. Since wH(f) = N(µ[n](
∑
i∈[n]Xi)), Proposition 16

provides an alternative proof that f is a balanced Boolean function.

The following Proposition shows that we may improve the complexity by a
factorization.
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Proposition 17. Let I ⊂ [n], J ⊂ [n] be two subsets such that I ∩ J = ∅
and n1 = |I|. Let P ∈ F2[X1, . . . , Xn] be a polynomial such that P =

XI
(∑

j∈J Xj

)
. Then

µ[n] (P ) =

 ∑
I⊂L⊂[n]\J

XL

 ∑
K⊂J,|K|odd

XK

 ;

and wH
(
π−1n (P )

)
= 2n−n1−1.

Proof. Let n2 = |J |, it follows

µ[n](P ) = XIµ[n]\I

∑
j∈J

Xj

 ,

= XI
∏

k∈[n]\(I∪J)

(1 +Xk) µJ

∑
j∈J

Xj


=

 ∑
I⊂L⊂[n]\J

XL

 ∑
K⊂J,|K|odd

XK

 .

Since
∏
k∈[n]\(I∪J)(1 +Xk) gives 2n−n1−n2 terms and 2n2−1 subsets of J has a

odd cardinality, from Proposition 16, then the statement is hold.

Example 7. Let P = X1X2(X4 + X5) be a polynomial form of a Boolean
function with five variables, with calculus made in the previous proof, we directly
deduce:

µ[5] (P ) = X1X2 × (1 +X3)× (X4 +X5)

= X1X2X4 +X1X2X5 +X1X2X3X4 +X1X2X3X5.

Thus, we can check on this example that wH(π−15 (P )) = 4 = 25−2−1.

Proposition 18. Let I1 and I2 ⊂ [n], J ⊂ [n] be two subsets such that I1∩I2 =
I1 ∩ J = I2 ∩ J = ∅, |I1| = n1 and I2 = n2. Let P ∈ F2[X1, . . . , Xn] be a

polynomial such that P = (XI1 +XI2)
(∑

j∈J Xj

)
. Then its Möbius transform

is ∑
K⊂J,|K| odd

XK

 ∏
k∈[n]\(I1∪I2∪J)

(1 + Xk)

XI1
∏
k∈I2

(1 + Xk) + XI2
∏
k∈I1

(1 + Xk)

 ,

and wH
(
π−1n (P )

)
= 2n−n1−1 + 2n−n2−1 − 2n−(n1+n2).
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Proof. By Proposition 17

µ[n](P ) =

 ∑
I1⊂L⊂[n]\J

XL +
∑

I2⊂L⊂[n]\J

XL

 ∑
K⊂J,|K|odd

XK


=

 ∑
I1⊂L⊂[n]\J,I2*I2

XL +
∑

I2⊂L⊂[n]\J,I1*I2

XL

 ∑
K⊂J,|K|odd

XK

 .

Since mutual terms XL satisfy I1 ∪ I2 ⊂ L ⊂ [n] \ J . L = (I1 ∪ I2) ∪ L′,
where L′ ⊂ [n] \ (I1 ∪ I2 ∪ J). Hence we have 2n−|J|−n1−n2 such L subsets.
{K ⊂ J, |K|odd} contains 2|J|−1 subsets. Therefore, since each mutual term is
remove twice, we have 2·2n−|J|−n1−n2 ·2|J|−1 = 2n−(n1+n2) terms to remove.

Remark 4. We may generalize this proposition with k subsets I1, . . . , Ik by
using the inclusion/exclusion principle.

We can easily see that the Boolean functions defined as Proposition 17 has
an even Hamming weight. Moreover, we can notice that the size of second subset
J does not act in the Hamming weight.

Example 8 (Example 7 continued). Let Q = X1X2(X3 +X4 +X5) be a poly-
nomial form of a Boolean function with five variables, we have:

µ[5] (Q) = X1X2 × (X3 +X4 +X5 +X3X4X5)

= X1X2X3 +X1X2X4 +X1X2X5 +X1X2X3X4X5.

Thus wH(π−15 (Q)) = wH(π−15 (P )) = 4.

Another important remark is that the Möbius transform of indeterminate
on set J produces only monomials with odd degree. Thus we can generalize the
previous result to the following proposition.

Proposition 19. Let I, J, I ′, J ′ ⊂ [n] be four subsets such that I ∩ J = ∅ =
I ′ ∩ J ′, I ∪ J = [n] = I ′ ∪ J ′ and n1 = |I|, n′1 = |I ′|, moreover n1 and n′1 has
not the same parity. Let P, P ′ ∈ F2[X1, . . . , Xn] be two polynomials such that

P = XI
(∑

j∈J Xj

)
and P ′ = XI′

(∑
j∈J′ Xj

)
. Then

µ[n](P + P ′) = µ[n](P ) + µ[n](P
′),

and
wH

(
π−1n (P + P ′)

)
= 2n−n1−1 + 2n−n

′
1−1.

Proof. Since n1 and n′1 has different parity and [n]\ (I ∪J) = ∅ = [n]\ (I ′∪J ′),
we can’t have equal monomials in µ[n](P ) and µ[n](P

′); then it could not have
some vanishing. Thus the statement is hold.
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Example 9. Let f ∈ F5 be a Boolean function such that its polynomial form
is defined as:

Q = X1X2X3X4 +X1X2X3X5 +X2X4X1 +X2X4X3 +X2X4X5

= X1X2X3(X4 +X5)︸ ︷︷ ︸
=P

+X2X4(X1 +X3 +X5)︸ ︷︷ ︸
=P ′

.

µ[n](Q) = X1X2X3(X4 +X5) +X2X4(X1 +X3 +X5 +X1X3X5).

Thus wH(π−15 (Q)) = 6 = 25−3−1︸ ︷︷ ︸
=wH(π−1

5 (P ))

+ 25−2−1︸ ︷︷ ︸
=wH(π−1

5 (P ′))

= 2 + 4.

We propose another generalization of the Proposition 17.

Proposition 20. Let I, J,K ⊂ [n] be three subsets of [n] such that I, J,K is a
partition of [n], then

µ[n]

(
XI .

(
XJ +XK

))
= XI

XJ
∏
k∈K

(
1 +Xk

)
+XK

∏
j∈J

(
1 +Xj

) .

Moreover, the Hamming weight of this associated Boolean function is 2|J|+2|K|.

Proof.

µ[n]

(
XI .

(
XJ +XK

))
= XI .µ[n]\I

(
XJ +XK

)
;

= XI
(
µ[n]\I

(
XJ
)

+ µ[n]\I
(
XK

))
;

= XI

XJ
∏
k∈K

(
1 +Xk

)
+XK

∏
j∈J

(
1 +Xj

) .

The first consequence of the last proposition, we are able to design balanced
Boolean functions directly. Moreover, another direct consequence is that the
Hamming weight of a Boolean function does not depend of its degree, but here
only of the degree of its factorization.

Finally, we conclude this part with a generalization of the previous proposi-
tion.

Proposition 21. Let I, J,K ⊂ [n] be three subsets of [n] such that I ∩ J =
I ∩K = J ∩K = ∅. We denote L = I ∪ J ∪K, then µ[n]

(
XI .

(
XJ +XK

))
is

∏
`∈[n]\L

(
1 +X`

)
XI

XJ
∏
k∈K

(
1 +Xk

)
+XK

∏
j∈J

(
1 +Xj

) .

Moreover, the Hamming weight of this Boolean function is
2n−|L|

(
2|J| + 2|K|

)
.
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All propositions in this section allows us to give directly the Möbius trans-
form and the Hamming weight of particular Boolean functions. Other similar
propositions could be useful, we introduce the previous ones which seem to be
the most helpful. We have few chances to exploit these propositions for a ran-
dom Boolean function. However, most of Boolean functions used in practice are
not random but design by specific constructions. The following example detail
the Boolean function into the design of Achertbahn 128.

Example 10. Achterbahn 128 is a a synchronous stream cipher algorithm de-
veloped by Berndt Gammel, Rainer Göttfert and Oliver Kniffler[13, 22]. It
involves a Boolean function fA with 13 variables, which has good cryptographic
properties: balanced, its algebraic degree is 4, correlation immunity of order 8,
nonlinearity 3584 and algebraic immunity 4. The polynomial form of fA may
be written with the following factorization

X0 +X1 +X2 +X3 +X4 +X5 +X6 +X7 +X8 +X9 +X10 +X11 +X12+
X0X5 +X2(X10X11) +X6(X5 +X8 +X10 +X11 +X12) +X8(X4 +X7 +X9 +X10)+
X9(X10 +X11 +X12) +X10X12 +X12X4 +X0X5(X8 +X10 +X11 +X12)+
X1X2(X8 +X12) +X1X4(X10 +X11) +X1X9(X8 +X10 +X11)+
X2X4(X8 +X10 +X11 +X12) +X2X7(X8 +X12) +X2X8(X3+
X7 +X10 +X11) +X3X8(X4 +X9) +X4X7(X8 +X12) +X4X8X9+
X4X12(X3 +X9) +X5X6(X8 +X10 +X11 +X12)+
(X1X2X3 +X4X7X9)(X8 +X12) + (X1X2X7 +X3X4X8)(X8 +X12)+
X1X3X5 +X2X4X7)(X8 +X12) + (X1X3X8 +X2X5X7)(X8 +X12)+
(X1X7X9 +X2X5X7)(X8 +X12) + (X1X5X7 +X2X3X4)(X8 +X12)+
X6X8(X10 +X11) +X6X12(X10X11) +X8X9(X7 +X10 +X11)+
(X0X5X8 +X1X4X12)(X10 +X11) + (X0X5X12 +X2X3X9)(X10 +X11)+
(X2X4X12 +X5X6X8)(X10 +X11) + (X1X9X12 +X2X4X8)(X10 +X11)+
(X1X8X9 +X5X6X12)(X10 +X11) + (X1X4X8 +X2X9X12)(X10 +X11)

Butterfly algorithm performs the computation of Möbius transform in 13×212 =
53248 operations. By Proposition 16, the Möbius transform of the sum of all
monomials of degree one is the sum of all monomials of odd degree. Then
µ[13](

∑12
i=0Xi) is compute in 212 operations. Concerning monomials of degree

2, we have 7 terms P of the form Xi (
∑
j∈J Xj), where i /∈ J . By Proposition 17,

each µ[13](P ) is compute in 211 operations. Then for monomials of degree 3,
we have 18 terms P of the form Xi1Xi2 (

∑
j∈J Xj), where i1, i2 /∈ J . By

again Proposition 17, each µ[13](P ) is compute in 210 operations. Finally for
monomials of degree 4, we have 12 terms (Xi1Xi2Xi3 +Xi4Xi5Xi6)(Xj1 +Xj2),
where {i1, i2, i3, i4, i5, i6} ∩ {j1, j2} = ∅. By Proposition 18, each µ[13](P ) is
compute in 210 − 27 operations. Hence the total number of operations is 212 +
7 ∗ 211 + 18 ∗ 210 + 12 ∗ (210 − 27) = 47616. We gain 5632 operations, that is a
reduction of 10.57%, only rewriting fA and use previous propositions.
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6. Conclusion

The major contribution of our work is to introduce a polynomial form with-
out reference of a specific Boolean function; since the indeterminates indicate
the variables which occurs in the ANF and not the number of variables. Which
allow us to give a new point of view of the Möbius transform and to manipulate
Boolean functions of various number of variables via different Möbius transform
operators. We derive from this operators two new algorithms to compute the
Möbius transform, which can be view as a reformulation of the famous Butterfly
one. Furthermore, after a deeper study of this reformulation, we provide a new
algorithm which have a huge speed up for really sparse or dense polynomials.
We also explicitly compute the Möbius transform and Hamming weight for some
classes of Boolean functions. Finally, we exhibit a subfamily of Boolean func-
tions for which ones their Hamming weight is directly related to the algebraic
degree of specific factors.
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