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Abstract Extensive studies of Boolean functions are carried in many fields. The
Mobius transform is often involved for these studies. In particular, it plays a cen-
tral role in coincident functions, the class of Boolean functions invariant by this
transformation. This class – which has been recently introduced – has interesting
properties, in particular if we want to control both the Hamming weight and the
degree. We propose an innovative way to handle the Mobius transform which al-
lows the composition between several Boolean functions and the use of Shannon
or Reed-Muller decompositions. Thus we benefit from a better knowledge of coin-
cident functions and introduce new properties. We show experimentally that for
many features, coincident functions look like any Boolean functions.

Keywords Boolean functions, Möbius transform, Coincident functions, Shannon
and Reed-Muller decompositions

1 Introduction

Numerous studies with Boolean functions have been conducted in various fields
like cryptography and error correcting codes (Carlet (2010)), Boolean circuits
and Boolean Decision Diagram (Bryant (1986)), Boolean logic (Boole (1848)) or
constraint satisfaction problems (Creignou et al. (2001)). There are many ways
to represent a Boolean function which depends of the domain. For instance, on
propositional logic one usually uses the conjunctive normal form or the disjunctive
normal form, while we often use the BDD in Boolean circuits. Most of the time
these studies involve several criteria. In cryptography, the (algebraic) degree and
the (Hamming) weight are crucial criteria.
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Unfortunately, the best representation for the degree is the Algebraic Normal
Form (sum of monomials), while the weight requires the truth table (sum of
minterms). Thus the Reed-Muller decomposition (or expansion) allows us to
perform recursive decomposition (Kasami and Tokura (1970)), enumeration and
random generation among the degree whereas the Shannon decomposition (or
expansion) does the same task among the weight Shannon (1949) shows the
switching network interpretation of this identity, but (Boole (1854)) will be the
first to mentioned it. These decompositions allow us to decompose a Boolean
function with n variables into two Boolean functions with n − 1 variables or
equivalently to build a Boolean function with n variables with two Boolean
functions with n− 1 variables.

Since these decompositions appear to be orthogonal, it seems unreachable to
consider them simultaneously or to perform enumeration or random generation
with both criteria. This is why we propose the study of coincident functions for
which we have a correspondence between the monomials and the minterms.

In Pieprzyk et al. (2011), the author defined for the first time the class of
coincident functions, the boolean functions invariant by Mobius transform (see
Guillot (1999) phd Thesis for a deep study of this property). We revisit their
results with a new point of view more convenient, in particular we introduce a
Mobius transform conditioned by the number of variables which gives a recursive
(Reed-Muller and Shannon) decomposition of Mobius transform, linking the two
decompositions. We investigate the distribution of degree and weight and provide
a uniform random generator of these functions. We also benefit to the structure
of lattice of the valuations to study the monotonic coincident functions and to
provide a complete construction of symmetric coincident ones.

The paper is organized as follows. We recall the basic definitions related to
boolean functions and to Mobius transform in Section 2. We introduce our new
point of view and the resulting properties concerning Mobius transform and co-
incident in Section 3. Thanks to lattices, we exhibit, in Section 4, links between
coincident functions with monotonic and symmetric functions, and also the ran-
dom generation of coincident functions. Finally, we propose in Section 5 a set of
experiment resulting on coincident functions.

2 Definition and first properties of Boolean functions and Mobius

transform

2.1 Boolean function

Let Fn be the set of the boolean functions with n variables. Monomials and
minterms play a role of canonical element in the different writings.

Definition 1 (Monomials and minterms) Let us to denote x = (x1, . . . , xn).
For any u = (u1, . . . , un) ∈ Fn2 , xu will be denoted the monomial xu1

1 . . . xun
n . The

minterm Mu is the Boolean function with n variables defined by

Mu(a) =

{
1, if u = a;
0, otherwise.
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The two following definitions provide two different point of views what we wish
to link.

Definition 2 (Algebraic Normal Form – ANF) A boolean function f can be
viewed as the exclusive sum of a subset of the set of monomials in variables
x1, . . . , xn.

f =
⊕
u∈Fn

2

αux
u.

Definition 3 (Truth table or valuations of f) A boolean function f can be
viewed as the exclusive sum of a subset of the set of minterms in variables
x1, . . . , xn.

f =
⊕
u∈Fn

2

βuMu.

Notation 1 Let u and v ∈ Fn2 . We will write u � v when ui ≤ vi, for any

i ∈ {1, . . . , n} and u ≺ v when u � v and u 6= v.

The previous partially ordered set provides connection between these notions.

Proposition 1 Let u ∈ Fn2 , then

xu =
⊕
u�v

Mv. (1)

Proof Let f = xu and a ∈ Fn2 , f(a) = 1 if and only if ai = 1 for all i such that
ui = 1, ie u � a. Hence f =

⊕
u�vMv.

Proposition 2 Let u ∈ Fn2 , then

Mu =
⊕
u�v

xv. (2)

Proof Let u = (u1, . . . , un) ∈ Fn2 . It is easily seen that Mu is equal to the
product

∏n
i=1(xi ⊕ ui ⊕ 1). Let I0(u) = {i ∈ {1, . . . , n} : ui = 0} and

I1(u) = {i ∈ {1, . . . , n} : ui = 1}, it follows

Mu =
∏
i∈I1(u) xi

∏
i∈I0(u)(1⊕ xi)

=
⊕
u�v x

v.

Notation 2 There are several natural ways to encode f by a binary word of length 2n.

We will choose the following natural encodings directly derived by the previous def-

inition.

T (f) = t1 . . . t2n ,

where tk, with
∑n
i=1 ui 2i−1 the 2-adic representation of k and tk = βu.

A(f) = a1 . . . a2n ,

where ak = αu.

We denote by ψ the bijection ψ(A(f)) = T (f).

The two definitions below introduce crucial parameters of a boolean function.
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Definition 4 (Hamming weight) Let f ∈ Fn be a boolean function, we will write
wH(f) the (Hamming) weight of f , ie the number of 1 of T (f).

Definition 5 (Algebraic degree) Let f ∈ Fn be a boolean function, we will write
d(f) the (algebraic) degree of f , ie the maximal degree of the monomials in the
ANF of f .

While the Reed-Muller decomposition is related to the algebraic normal form,
the Shannon one is associated to truth table.

Definition 6 (Reed-Muller decomposition) Let f ∈ Fn. The Reed-Muller de-

composition, consists in rewriting the boolean function as

f = f0R ⊕ xnf
1
R,

where f0R, f
1
R ∈ Fn−1 and are unique.

Definition 7 (Shannon decomposition) Let f ∈ Fn. The Shannon decomposition,
consists in rewriting the boolean function as

f = (1 + xn)f0S ⊕ xnf
1
S ,

where f0S , f
1
S ∈ Fn−1 and are unique.

Remark 1 Let f ∈ Fn. Clearly, we have by identification f0R = f0S and f1R = f0S⊕f
1
S .

Remark 2 The Shannon decomposition is the natural decomposition for manipu-
lating the minterms since T (f) = T (f0S) | T (f1S), where | denotes the concatenation.
This trivially implies

wH(f) = wH(f0S) + wH(f1S).

Remark 3 The Reed-Muller decomposition is the natural decomposition for ma-
nipulating the monomials since A(f) = A(f0R) | A(f1R). This implies

d(f) = max(d(f0R), d(f1R) + 1).

Notation 3 From now one, we will write 0n the valuation of Fn2 (0, . . . , 0) and 0n
(resp. 1n) the Boolean function with n variables which takes the value 0 (resp. 1) for

any valuation.

2.2 Mobius transform

The Mobius transform is at the heart of this article.

Definition 8 (Mobius transform) The Mobius transform, noted µ is defined by
the following bijection

µ : Fn ←→ Fn
f 7−→ µ(f),

such that, for any f ∈ Fn
f =

⊕
u∈Fn

2

µ(f)(u)xu.
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The statements of the following proposition derives directly from the definition of
the Mobius transform.

Proposition 3 (Pieprzyk et al. 2011, Theorem 1 and Lemma 3) Let f, g ∈ Fn and

u ∈ Fn2 ,

µ(f ⊕ g) = µ(f)⊕ µ(g) and µ(f)(0n) = f(On).

Proof Both results are direct implication of the definition of
µ, let f =

⊕
u∈Fn

2
µ(f)(u)xu and g =

⊕
u∈Fn

2
µ(g)(u)xu. Then

f ⊕ g =
⊕
u∈Fn

2
(µ(f)(u)⊕ µ(g)(u))xu and µ(f ⊕ g)(u) = µ(f)(u) ⊕ µ(g)(u).

Therefore let a = 0n, au = 0 for any a ≺ u, then f(0n) = µ(f)(a).

Proposition 4 (Pieprzyk et al. 2011, Lemma 2) Let u ∈ Fn2 , then µ(xu) = Mu and

µ(Mu) = xu.

Proof Let u = (u1, . . . , un) ∈ Fn2 and f = xu. f =
⊕
v∈Fn

2
µ(f)(v)xv. Then µ(f)(v)

is equal to 1 if v = u and equal to 0 otherwise, which is the definition of Mu.

Mu =
⊕
u�v x

v by (2)

µ(Mu) =
⊕
u�v µ(xv)

=
⊕
u�vMv

= xu by (1).

Proposition 5 The Mobius transform is a involution, ie µ2(f) = f and µ(f) = g if

and only if µ(g) = f .

Proof

f =
⊕
u∈Fn

2
µ(f)(u)xu

µ(f) =
⊕
u∈Fn

2
µ(f)(u)Mu

µ2(f) =
⊕
u∈Fn

2
µ(f)(u)xu.

3 New properties on Mobius transform and coincident functions

Let us start this section by the following remark, which is one of main statement
of this paper.

Notation 4 Let f ∈ Fn, we will denote by P (f) the polynomial form of f .

Remark 4 The polynomial form contains only the variables which play a role for
the evaluation of the function. We will denote by indeterminates these variables.
We may increase the numbers of variables by keeping the same number of inde-
terminates. Let fn ∈ Fn then for all k > 0, it exists fn+k ∈ Fn+k, such that
fn and fn+k share the same polynomial form, P (fn) = P (fn+k). Furthermore
T (f2+k) = T (f2) ∗ 2k (we repeat 2k times the word T (f2)).

For instance, the Boolean function with two variables f2 such that T (f2) = 0110
has the polynomial form P = P (f2) = x1 ⊕ x2 and f3 such that T (f3) = 01100110
satisfies P (f3) = x1 ⊕ x2.
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We were wondering if the Mobius transforms of function see as n variables and
n+ k are equals. Let fn ∈ Fn and fm ∈ Fm such that n < m and P (fn) = P (fm).
Does the following equality holds?

µ(fn) = µ(fm)? (3)

We propose to look on a particular toy example.

Example 1 Let f1 = x1 ⊕ 1 ∈ F1 be a boolean function with one indeterminate
and f2 = x1 ⊕ 1 ∈ F2 be the same function see as a boolean function with two
variables. Very simple computations give us that µ(f1) = 1 and µ(f2) = x2 ⊕ 1.

3.1 New insights of the Mobius transform

The example 1 provides a counterexample (3). Then we have to use the Mobius
transform carefully if we manipulate the polynomial form of a Boolean function.
In this setting, we introduce the following notation.

Notation 5 Let f ∈ Fn be a Boolean function with n variables. We will write µn(f)
instead of µ(f).

Example 1 implies µ(x1⊕1) = µ1(x1⊕1) = 1 and µ2(x1⊕1) = x2⊕1. In other
words, the Mobius transform depends on the variables, not on the indeterminates.

We obtain the following result, which permits us to manipulate the Mobius
transform easily, hence this is one of key ingredient.

The following theorem contains three key ingredients to manipulate properly
the Mobius transform.

Theorem 1 Let f ∈ Fn−1. We have

µn(f) = (1⊕ xn)µn−1(f), (4)

µn(xnf) = xnµn−1(f), (5)

µn((1⊕ xn)f) = µn−1(f). (6)

Proof It is straightforward to prove Equation (4) from the definition of the Mobius
transform. Indeed, we can see the computation of the Mobius transform as an
interpolation problem. Since the coefficients of the monomials where occurs xn+1

must be null, thus the statement.
The definition of the Mobius transform give us

µn(xnf) = µn(f)− µn−1(f)

= (1⊕ xn)µn−1(f)− µn−1(f)

= xnµn−1(f),

which is exactly Equation (5).

Let us to compute Equality (6):

µn((1⊕ xn)f) = µn(f)⊕ µn(xnf)

= (1⊕ xn)µn−1(f)⊕ xnµn−1(f)

= µn−1(f).
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The Reed-Muller decomposition is related to algebraic normal form, whereas
the Shannon one is related to truth table. Since the Mobius transform allows us
to switch from one to the other; it is natural to see the relationship between the
previous decompositions and the Mobius transform.

Proposition 6 (Pieprzyk et al. 2011, Theorem 5). Let f ∈ Fn be a boolean function

and f0R, f
1
R ∈ Fn−1 be the terms of the Reed-Muller decomposition. Then

µn(f) = (1⊕ xn)µn−1(f0R)⊕ xnµn−1(f1R).

Proof

µn(f) = µn(f0R)⊕ µn(xnf
1
R)

= (1⊕ xn)µn−1(f0R)⊕ xnµn−1(f1R).

Proposition 7 Let f ∈ Fn be a boolean function and f0S , f
1
S ∈ Fn−1 be the terms of

the Shannon decomposition. Then

µn(f) = µn−1(f0S)⊕ xnµn−1(f1S).

Proof

µn(f) = µn

(
(1⊕ xn)f0S

)
⊕ µn(xnf

1
S)

= (1⊕ xn)µn−1

(
f0S

)
⊕ xnµn−1

(
f0S

)
⊕ xnµn−1

(
f1S

)
= µn−1(f0S)⊕ xnµn−1(f1S)

We find again that the Reed-Muller decomposition of the Mobius transform is
the Mobius transform of the Shannon decomposition; and vice versa.

The first step to try to make a link between the algebraic degree of a boolean
function and its hamming weight is given by the following proposition.

Proposition 8 (Pieprzyk et al. 2011, Theorem 7) Let f ∈ Fn \ {0n}. Then

deg(f) + deg(µn(f)) ≥ n.

Proof Let f = f0R ⊕ xnf
1
R. By Proposition 6,

µn(f) = µn−1(f0R)⊕ xn(µn−1(f0R)⊕ µn−1(f1R))

= µn−1(f0R)⊕ xn(µn−1(f0R ⊕ f
1
R)).

Since f 6= 0n, f
0
R and f1R cannot be null in same time, then it is easily seen that

the property holds for n = 1.
Let n > 1. Assume that the property holds for n− 1.

Case 1) deg(f0R) 6= deg(f1R). Then

deg(f0R ⊕ f
1
R) = max(deg(f0R),deg(f1R)) ≤ deg(f).

Since deg(f0R) 6= deg(f1R), then deg(xnµn−1

(
f0R ⊕ f

1
R

)
) ≥ deg(µn−1

(
f0R ⊕ f

1
R

)
), so

we deduce

deg(f) + deg(µn(f)) ≥ deg(f0R ⊕ f
1
R) + deg(µn−1(f0R ⊕ f

1
R)) + 1

≥ n− 1 + 1 by hypothesis of recurrence

≥ n
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Case 2) Hence deg(f0R) = deg(f1R); moreover deg(f) = deg(f0R) + 1
and deg(µn(f)) ≥ deg(µn−1(f0R)), and by hypothesis of recurrence,
deg(f0R) + deg(µn−1(f0R)) ≥ n− 1, hence deg(f) + deg(µn(f)) ≥ n.

Always with the same intended target: draw a link between algebraic degree and
the Hamming weight of a boolean function; the following result gives us the prob-
ability that the Mobius transform has degree n.

Proposition 9 Let f ∈ Fn built uniformly at random. Then

Pr(deg(µn(f)) = n | deg(f) = n) = Pr(deg(µn(f)) = n | deg(f) < n)
= Pr(deg(µn(f)) = n) = 1

2 .

Proof One may easily check the property for n = 1. Assume the property holds for
n− 1.

Let f = f0R ⊕ xnf
1
R built uniformly at random. Then deg(f) = n if and only

if x1 . . . xn occurs in the ANF of f . Since it is the case for half of the Boolean
functions, Pr(deg(f) = n) = 1

2 . On the one hand deg(f) = n if and only if

d(f1R) = n− 1 and on the other hand, by Proposition 6, deg(µn(f)) = n if and
only if deg(µn−1(f0R ⊕ f

1
R)) = n− 1. Hence

Pr(deg(µn(f)) = n | deg(f) = n) = Pr(deg(µn−1(f
0
R ⊕ f

1
R)) = n− 1 | deg(f1R) = n− 1).

Moreover, deg(µn−1(f0R ⊕ f1R)) = n − 1 if deg(µn−1(f0R)) = n − 1 and
deg(µn−1(f1R)) < n− 1 or deg(µn−1(f0R)) < n− 1 and deg(µn−1(f1R)) = n− 1.

The degree of µn−1(f0R) and µn−1(f1R) are clearly independent and
Pr(deg(µn−1(f0R)) = n− 1) = 1

2 . It follows

Pr(deg(µn−1(f0R)) = n− 1 and deg(µn−1(f1R)) < n− 1|deg(f1R) = n− 1)
= Pr(deg(µn−1(f0R)) = n− 1) Pr(deg(µn−1(f1R)) < n− 1 | deg(f1R) = n− 1)
= 1

2 ·
1
2 = 1

4 .

Similarly, we find

Pr(deg(µn−1(f0R)) < n− 1 and deg(µn−1(f1R)) = n− 1|deg(f1R) = n− 1) =
1

4
.

Hence Pr(deg(µn−1(f0R ⊕ f
1
R)) = n− 1 | deg(f1R) = n− 1) = 1

2 .

The following proposition can be view as a new decomposition related to Mo-
bius transform.

Proposition 10 (Pieprzyk et al. 2011, Lemma 7). Let n ∈ N and 0 < k < n.

We will denote respectively the tuples x = (x1, . . . , xn), y = (x1, . . . , xk) and

z = (xk+1, . . . , xn). Let f1(y) ∈ Fk, f2(z) ∈ Fn−k and f(x) = f1(y) · f2(z) and

g(x) = f1(y)⊕ f2(z). Then

µn(f(x)) = µn−k(f2(z)) · µk(f1(y));

µn(g(x)) =
∏n
i=k+1(1⊕ xi)µk((f1(y))⊕

∏k
i=1(1⊕ xi)µn−k(f2(z)).

Proof Let u = (uk+1, . . . , un) ∈ Fk2 . By applying (4) and (5) of Proposition 1, it
follows

µn−k(zuf1(y)) = Mu(z) · µk(f1(y)).
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Hence
µn(f(x)) =

⊕
u∈Fn

2
Mu(z) · µk(f1(y))

= µn−k(
⊕
u∈Fn

2
zu) · µk(f1(y))

= µn−k(f2(z)) · µk(f1(y)).

First µn(g(x)) = µn(f1(y)) ⊕ µn(f2(z)). Furthermore (4) of Proposition 1 implies

µn(f1(y)) =
∏n
i=k+1(1⊕ xi)µk((f1(y)) and µn(f2(z)) =

∏k
i=1(1⊕ xi)µn−k(f2(z)).

3.2 Coincident functions

The notion of coincident function was previously introduced in Pieprzyk et al.
(2011). A coincident function is a boolean function which is equal to its Mobius
transform.

Definition 9 (Coincident function) Let f ∈ Fn, f is called coincident if and only
if

f = µn(f).

We will denote by Cn the set of coincident functions with n variables.

For this particular subset of boolean functions the monomial and the associated
minterms are directly related; this is the result of the following proposition. Let
f ∈ Fn, by Proposition 5, f ⊕ µn(f) ∈ Cn. Here we propose an improvement of
(Pieprzyk et al. 2011, Lemma 11).

Proposition 11 Let u ∈ Fn2 and hu = xu ⊕Mu. Then hu is coincident and

hu =
⊕
u≺v

xv =
⊕
u≺v

Mv.

Proof Since µn(xu) = Mu, hu = xu ⊕ µn(xu) is coincident. By (2), Mu =
⊕
u�v x

v

hence hu =
⊕
u≺v x

v.

Remark 5 We propose another point of view of the previous proposition: let
fk =

∏k
i=1 xi, the function with all multiples of fk, except fk itself, give a co-

incident function; that is

fk

1⊕
n∏

i=k+1

(1⊕ xi)

 .

Hence for particular coincident functions, it becomes trivial to compute their ham-
ming weight.

Corollary 1 Let k = wH(a). It follows wH(ha) = 2n−k − 1.

Coincident functions had a lower bound on its algebraic degree, this is a trivial
consequence from Proposition 8.

Proposition 12 (Pieprzyk et al. 2011, Theorem 31) Let h ∈ Cn \ {0} be a coincident

function with n variables. Then a lower bound on its algebraic degree is

deg(h) ≥ n

2
.
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Proof Since h is a coincident function and Proposition 8, we have that

deg(h) + deg(µ(h)) ≥ n

2 deg(h) ≥ n

deg(h) ≥ n

2
.

Notation 6 Let f ∈ Fn. We define the operators ϕn and Cn by

ϕn(f) = f ⊕ µn(f)
Cn(f) =

{
f ′ ∈ Fn : ϕn(f ′) = ϕn(f)

}
.

3.3 A construction of coincident functions

The following proposition gives us a simple way to build a coincident functions.

Proposition 13 (Pieprzyk et al. 2011, Theorem 24) Let h ∈ Cn, there exists a unique

g ∈ Fn−1 such that
h = g ⊕ µn(g)

= ϕn−1(g)⊕ xnµn−1(g)
= (1⊕ xn)ϕn−1(g)⊕ xng.

Proof Let h = h0R ⊕ xnh
1
R ∈ Cn−1. Then µn(h) = µn−1(h0R) ⊕ xnµn−1(h0R ⊕ h

1
R).

Since h = µn(h), it follows h0R ∈ Cn−1 and h1R = h0R ⊕ µn−1(h1R), which implies
h0R = ϕn−1(h1R). Let g = µn−1(h1R), hence

g ⊕ µn(g) = µn−1(h1R)⊕ (1⊕ xn)h1R

= ϕn−1(h1R)⊕ xnh1R
= h0R ⊕ xnh

1
R = h.

Since ϕn−1(g) = h0R, we also have

h = ϕn−1(g)⊕ xnµn−1(g)

= (1⊕ xn)ϕn−1(g)⊕ xng.

Since we have a one to one correspondence between the Boolean functions with
n − 1 variables and the coincident functions with n variables, we trivially deduce

that card(Cn) = 22n−1

; see (Pieprzyk et al. 2011, Theorem 18). We also show that
Cn has a vectorial space structure.

Proposition 14 The set Cn is a vectorial space of dimension 2n−1.

Proof Let h1 and h2 ∈ Cn. We consider f1 and f2 ∈ Fn2 such that h1 = ϕn(f1) and
h2 = ϕn(f2). Let h = h1 ⊕ h2.

h = g1 ⊕ µn(g1)⊕ g2 ⊕ µn(g2) = (g1 ⊕ g2)⊕ µn(g1 ⊕ g2),

hence h = ϕn(f1 ⊕ f2).

Corollary 2 (Random generation of a coincident function) Let uniform(E) a func-

tion which returns with the uniform distribution an element of a finite set E. The

following algorithm returns with the uniform distribution a coincident function from

Cn.
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Algorithm 1: Uniform random generation of a coincident function

Input: The integer n, the number of variables.
Output: h ∈ Cn a coincident function with n variables.

begin
g ← uniform(Fn−1)
f ← µn(g)
h← g ⊕ f

return h

Proposition 15 Let h ∈ Cn be a coincident function, then h(0n) = 0.

Proof Let f such that h = ϕn(f), by Proposition 3, µ(f)(0n) = f(0n), then
h(0n) = 0.

Here is a strong connection between the Mobius transform of a boolean function
and this one of its Reed-Muller decomposition.

Proposition 16 Let f = f0R⊕ xnf
1
R ∈ Fn and h0 = ϕn−1(f0R), h1 = ϕn−1(f1R) then

ϕn(f) = h0 + xn(h0 ⊕ h1 ⊕ f0R).

Proof Let h = ϕn(f). Let us to compute h

h = f ⊕ µn(f)

= f0R ⊕ xnf
1
R ⊕ (1 + xn)µn−1(f1R)⊕ xnµn−1(f1R)

= h0 ⊕ xn(h1 ⊕ µn−1(f0R))

= h0 ⊕ xn(h0 ⊕ h1 ⊕ f0R).

Remark 6 Proposition 13 and 16 imply h0 = ϕn−1(g) and g = h1 ⊕ f0R, ie

f0R ∈ Cn−1(g).

Remark 7 Let h ∈ Fn, then h is coincident if and only if h ∈ Cn(0).

Corollary 3 Let g1, g2 ∈ Fn−1, f1 ∈ Cn(g1) and f2 ∈ Cn(g2). Then

f1 ⊕ f2 ∈ Cn(g1 ⊕ g2).

From the linearity, the Mobius transform of the sum of function is the sum of
the Mobius transforms. We propose to look on the multiplicativity.

Proposition 17 (Pieprzyk et al. 2011, Theorem 7) Let n ∈ N and 0 < k < n.

We will denote respectively the tuples x = (x1, . . . , xn), y = (x1, . . . , xk) and

z = (xk+1, . . . , xn). Let f1(y) ∈ Fk, f2(z) ∈ Fn−k and f(x) = f1(y) · f2(z). Then

f is coincident if and only if f1 and f2 are.

Proof This is a direct application of Proposition 10:

µn(f(x)) = µn−k(f2(z)) · µk(f1(y)).

Clearly if f1 and f2 are coincident functions, then µn(f(x)) = f2(z) · f1(y) = f(z)
and f is a coincident function. Conversely, µn(f(x)) = f(z) implies
µn−k(f2(z)) = f2(z) and µk(f1(y)) = f1(y).
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We exhibit now some constructions of coincident functions available for any
number of variables.

Proposition 18 Let n ∈ N∗ be a positive integer, the boolean functions:

1. µn(0n) = 0n,

2.
∏n
i=1 xi,

3. 1⊕
∏n
i=1(1⊕ xi),

are coincident.

Proof Let us to prove the three assertions.
The definition of Mobius transform gives us directly 1.
For the next assertion 2, we have

∏n
i=1 xi = x1 = M1, we conclude by applying

Proposition 4.
Concerning the assertion3;

∏n
i=1(1 ⊕ xi) = M0 and 1 = x0, then∏n

i=1(1⊕ xi) = µn(1) and 1 = µn(
∏n
i=1(1⊕ xi)). Hence 1⊕

∏n
i=1(1⊕ xi) = ϕn(1).

Since the Mobius transform of a coincident function provides a connection between
the minterms and the monomials, we deduce the following corollary.

Corollary 4 Let h be a coincident function, then w(h) = N(h), where N(h) gives the

number of monomials of the h.

We introduce now the dual of a coincident function.

Definition 10 Let h ∈ Cn. The dual of h is the coincident function h
∗

= h⊕ϕn(1).

Proposition 19 We have a one to one correspondence between coincident functions

with odd Hamming weight and even Hamming weight.

Proof A Boolean function has Hamming weight odd if and only if
∏n
i=1 xi occurs

in its ANF. Let h ∈ Cn. It follows A(f) = T (f) = t1 . . . t2n , and wH(h) odd if
and only if t2n = 1. Hence we a have partition of Cn = (Con, Cen), where Con (resp.
Cen) are coincident functions of Hamming weight odd (resp. even) and a one to one
correspondence between Con and Cen with h′ = h⊕

∏n
i=1 xi,

∏n
i=1 xi is the coincident

function which changes the parity of a coincident function.

Thanks to the previous propositions, we propose to exhibit different coincident
functions of any number of variables.

Proposition 20 Table of some coincident functions

The following words codes table (or equivalently ANF) of coincident functions:

1. 0n ⇐⇒ 0 . . . 0;

2.
∏n
i=1 xi ⇐⇒ 0 . . . 01;

3. 1⊕
∏n
i=1(1⊕ xi)⇐⇒ 01 . . . 1;

4. 1⊕
∏n
i=1(1⊕ xi)⊕

∏n
i=1 xi =

∏n
i=1 xi

∗
⇐⇒ 01 . . . 10;

5. ∀u ∈ Fn2 ,
⊕
u≺v x

v.
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4 Constructions of coincident functions based on the Boolean lattice

4.1 Boolean lattice properties of coincident functions

The set of valuations in n variables forms a Boolean lattice with the partial order
� already defined. The process of placing the minterms (or the monomials) which
appears in a Boolean function over this lattice may be useful for some studies. In
Guillot (1999) PHD Thesis Boolean lattice is already considered for the study of
Mobius transform.

We first provide a new caracterisation of coincident functions. Let n ∈ N, we
define the complete Boolean lattice Ln = (Fn2 ,�) such that, for any u = (u1, . . . , un)
and v = (v1, . . . , vn) ∈ Fn2 , the supremum and the infimum are defined by

sup(u, v) = u ∨ v = (u1 ∨ v1, . . . , un ∨ vn);
inf(u, v) = u ∧ v = (u1 ∧ v1, . . . , un ∧ vn).

11

01

00

10

101

001

000

100

111

011

010

110

Fig. 1 The lattices L2 and L3.

1k

0k

The Boolean lattice Lk

u ∨ v

u

u ∧ v

v

The Boolean lattice L(u, v)

Fig. 2 Isomorphism between Lk and L(u, v).

The lattice is complete in the sense that any sublattice (U ,�) has the
supremum

∨
u∈U u and the infimum

∧
u∈U u. Ln is also called the n-cube

(Palmer et al. (1992)). Let u and v ∈ Fn2 and k = dh(u ∨ v, u ∧ v). Then
L(u, v) = {w ∈ Fn2 |u � w � v} is isomorph to Lk (we remove the identical com-
ponents in u and v), see Fig. 2.

Definition 11 Let f ∈ Fn, we define Ln(f) = (U ,�) the sublattice of Ln by
U = support(f) = {u ∈ Fn2 |f(u) = 1}.
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Then f can be viewed as a 2 coloring of the Ln.

Let a = (a1, . . . , an) and f ∈ Fn, f(a) =
⊕
u∈Fn

2

µn(f)(u)au. Since au = 0 for any

u such that u 6� a and au = 1, it follows

f(a) =
⊕
u�a

µn(f)(u). (7)

Proposition 21 (Pieprzyk et al. 2011, Theorem 23) Let f ∈ Fn be a boolean function

with n variables. Then f is coincident if and only if⊕
v≺u

f(v) = 0, for any u ∈ Fn2 . (8)

In other words, for each u ∈ Fn2 , we have an even number of v ≺ u such that f(v) = 1.

Proof Let f be a coincident function, then f(u) =
⊕
v�u f(v) = f(u)⊕

⊕
v≺u f(v).

Proposition 22 Recall that ha = xa ⊕Ma, for any a ∈ Fn2 . Then (ha)a∈Fn
2 , an=0

forms a basis of Cn.

Proof Let h ∈ Cn and g ∈ Fn−1 such that h = g ⊕ µn(g). Let U ⊂ Fn2 such that
g =

⊕
a∈U x

a. Then an = 0 for any a ∈ U and

h =
⊕
a∈U x

a ⊕ µn(
⊕
a∈U x

a)
=
⊕
a∈U x

a ⊕
⊕
a∈U Ma

=
⊕
a∈U ha.

The following proposition gives a link between a Boolean function f and the cor-
responding coincident function ϕn(f) = f ⊕ µn(f).

Proposition 23 Let f a Boolean function, U = support(f) and h = ϕn(f), then

h(a) = 1 if and only if there is an odd number of u ∈ U such that u ≺ a.

Proof Let u ∈ U , hu = xu ⊕Mu =
⊕
u≺vMv. Hence h =

⊕
u∈U (

⊕
u≺vMv). Let

U≺a = {u ∈ U , u ≺ a}, for any a ∈ Fn2 . Since h(a) =
⊕
u∈U≺a

1, h(a) = 1 if and only
if the cardinality of U≺a is odd.

Proposition 24 The Boolean function with n variables x1 ⊕ . . .⊕ xn is coincident.

Proof Let f =
∏n
i=1(1⊕xi). f(u) = 1 if and only if u = 0n. Let 0n = (0, . . . , 0) and

uj = (uj1, . . . , u
j
n) for any j ∈ {1, . . . , n}, where uji = 1 if and only if i = j; hence

xu
j

= xi. We check Proposition 23. There is no u ≺ 0n and for any uji , the unique

u ≺ xu
j

is 0n and f(0n) = 1.

Proposition 25 Let h = ϕn(f) ∈ Cn. Either the ANF (h) contains all the terms

x1, . . . , xn either it contains none of these terms.

Proof The proof is similar that Proposition 24. If f(0n) = 1 (resp. 0), then all the
monomials xi has an odd (resp. even) number of u ≺ uj such that f(u) = 1.
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4.2 Monotonic coincident functions

Monotonic Boolean functions are commonly involved as instances of constraint
satisfaction problems like the NP-complete SAT or 3-SAT problems, Creignou
et al. (2001). Indeed these problems are monotonic in the sense where an instance
of a set of constraints C is also an instance of any subset of C.

We exhibit in this part 2n+1 monotonic coincident functions. We also provide
a general characterization of the class of monotonic coincident functions in order
to build more such functions.

Definition 12 A Boolean function f is monotonic if for any u ∈ Fn2 such that
f(u) = 1 we have f(v) = 1 for any v ≺ u.

As far as we know, the number of such functions on n variables is known as the
Dedekind number of n and the exact values are known only for n ≤ 8.

Proposition 26 A Boolean function f is monotonic if there exists Inf(f) ⊂ Fn2 which

satisfies f(v) = 1 if and only if there exists u ∈ Inf(f) with u � v.

Proof We define Inf(f) = {u ∈ Fn2 | f(u) = 1 and f(v) = 0 for any v ≺ u}.
Assume that f is monotonic. Let v /∈ Inf(f) and f(v) = 1. Then there exists a
unique u ∈ Inf(f) such that u ≺ v. Conversely assume that f(v) = 1 for any v � u,
for some u ∈ Inf(f), then f is clearly monotonic.

1n

0n

0

1

Fig. 3 Lattice for monotonic boolean functions.

Since f =
⊕
u∈Fn

2
βuMu, f is monotonic when for any u such that βu = 1,

βv = 1 for any v ≺ u.

For example, xu =
⊕
u�vMv are monotonic functions and hu =

⊕
u≺vMv are

monotonic coincident functions.

Proposition 27 Let u ∈ Fn2 and u = (u1 ⊕ 1, . . . , un ⊕ 1). Then fu = hu ⊕ hu ⊕
x1 . . . xn is a monotonic coincident function.

Proof Let v ∈ Fn2 . If hu(v) = hu(v) = 1 then u ≺ v and u ≺ v, hence v = (1, . . . , 1)
and fu(v) = 1. Assume that v 6= (1, . . . , 1), if hu(v) = 1 or hu(v) = 1 then
fu(w) = 1, for any v � w.

We have yet exhibit 2n+1 monotonic coincident functions but other constructions
over the Boolean lattice could be performed.
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4.3 Construction of the class of coincident symmetric Boolean functions

Symmetric Boolean functions have good implementation since the number of re-
quired gates is linear in the number of variables. In Canteaut and Videau (2005),
the authors proposed an extensive study combined with cryptographic parameters
like degree, correlation-immunity, non-linearity. We present here an algorithm to
generate all the 2b

n
2
c+1 coincident symmetric functions.

Definition 13 (Symmetric (Boolean) functions) Let k ≤ n, Σnk will denote the
Boolean function with n variables which is the sum of monomials of degree k. A
symmetric function f of Fn is defined by

f =
n∑
k=0

λkΣ
n
k ,

where (λ0, . . . , λn) ∈ Fn2 satisfies

λi =

{
1, if all the monomials of degree i occur in the ANF of f;
0, otherwise.

We will note λ(f) = (λ0, . . . , λn).
Since a symmetric function is invariant by permutation of the variables,

we have another definition of a symmetric function over the valuations. Let
a = (a1, . . . an) ∈ Fn2 ,

f(a1, . . . , an) = f(aσ(1), . . . , aσ(n)),

for any permutation σ of {1, . . . n}.
Then the value of f(a) only depends of the weight of the valuation a. Let

v(f) = (v0, . . . , vn), where vk = f(a), for any a ∈ Fn2 of weight k.

Since a symmetric Boolean function may be defined by fixing λ(f) = (λ0, . . . , λn)
or v(fn) = (v0, . . . , vn), we have 2n+1 symmetric Boolean functions. Furthermore,
d(f) is the largest i such that λi = 1 and wH(f) is

∑n
i=0 λi (ni).

Let f = f0R⊕xnf
1
R be a symmetric function with n variables, where f0R and f1R

are Boolean functions with n− 1 variables.
For i ∈ {1, . . . , n − 1}, the ANF of f contains all the monomials of degree i

if and only if the ANF of f0R contains all the monomials of degree i. Thus f0R is
a symmetric function. Furthermore for i ∈ {0, . . . , n − 1} the ANF of f contains
all the monomials of degree i + 1 if and only if the ANF of f1R contains all the
monomials of degree i. Hence f1R is also a symmetric function.

We define
λ(f) = (λ0, . . . , λn);
λ(f0R) = (λ00, . . . , λ

0
n−1);

λ(f1R) = (λ10, . . . , λ
1
n−1).

We have λi = λ0i = λ1i−1, for any i ∈ {1, . . . , n − 1}, λn = λ1n−1 and λn = 1 if and
only if the ANF of f contains the monomial x1 . . . xn.

Definition 14 (Luca’s coefficients) Let k, j ∈ N and p(k, j) =

(
k

j

)
mod 2.
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Proposition 28 Let f be a symmetric Boolean function with n variables,

v(f) = (v0, . . . , vn) and λ(f) = (λ0, . . . , λn). The following system holds

vj =

j∑
k=0

λk p(k, j).

Proof Clearly v0 = λ0. Let j ∈ {0, . . . , n} and a = (a1, . . . , an) ∈ Fn2 such that
wH(a) = j. By (7),

f(a) =
⊕
u�a

µn(f)(u)au.

For k ≤ j, we have (kj) b ∈ Fn2 such that wH(b) = k and b � a. We have to deal
with two cases

1. λk = 1 and µn(f)(b) = 1 for any b � a such that wH(b) = k.
2. λk = 0 and µn(f)(b) = 0 for any b � a such that wH(b) = k.

It follows

f(a) =

j⊕
k=0

λk

(
k

j

)
.

Notation 7 Let k =
∑
i∈N ki 2i and j =

∑
i∈N ji 2i the 2-adic representation of k

and respectively j. We will write j � k when ji = 1 implies ki = 1, for any i ∈ N.

By Lucas’ Theorem p(k, j) = 1 if and only if j � k and by definition of Mobius
transform,

v(f) = λ(µn(f)) and λ(f) = v(µn(f)).

Proposition 29 With the previous notations, we have λ(µn(Σkn)) = (vk0 , . . . , v
k
n),

where 
vkj = 0, for j < k

vkk = 1

vkj = p(j, k), for k < j ≤ n.
(9)

We have already seen the symmetric coincident functions 1⊕x1⊕ . . .⊕xn (Propo-
sition 24) which corresponds to v(f) = (0, 1, 0, . . . , 0). We are looking for the whole
class of such functions.

Recall that h(Σnk ) = Σnk ⊕ µn(Σkn), λ(h(Σkn)) = (wk0 , . . . , w
k
n), where wki = vki ,

for any i 6= k and wkk = 0.
Since a sum of symmetric functions still a symmetric function, a sum of sym-

metric coincident functions still a symmetric coincident function. Hence SCn the
set of symmetric coincident function is generated by the h(Σnk ) is a vector space
of dimension 2l, for some l ∈ n+ 1. Remark that for some k1 and k2 ∈ {0, . . . , n},
k1 < k2, we may have h(Σk1n ) = h(Σk2n ).

Let CSn the set of coincident symmetric Boolean functions. Since the sum of
two coincident functions is a coincident function and the sum of two symmetric
functions is a symmetric function, CSn is a vector space.

Proposition 30

|CSn| = 2b
n
2
c+1.
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Proof We show that 
|CS1| = 2
|CSn| = |CSn−1| if n is odd

= 2|CSn−1| if n is even.

For n = 1, f(x1) = x1 is the unique coincident symmetric Boolean function differ-
ent from 01, λ(f) = (0, 1) and λ(01) = (0, 0).

Let n ≥ 1 and f = f0R ⊕ xnf
1
R be a symmetric function with n variables, where

f0R and f1R are Boolean functions with n− 1 variables.

Let λ(f) = (λ0, . . . , λn) and v(f) = (v0, . . . , vn), f is coincident if and only if
λ(f) = v(f).

Let j be any element of {0, . . . , n}. By implying (9) we obtain

vj = λj ⊕
(⊕n

k=0 λk vj

)
,

= λj ⊕
(⊕

k<j λk p(j, k)
)
.

Then f is coincident if and only if⊕
k<j

λk p(j, k) = 0, for any j ∈ {0, . . . , n}. (10)

We have seen that λ(f0R) = (λ0, . . . , λn−1). Furthermore

µn(f) = µn(f0R)⊕ µn(f1R)
= (1⊕ xn)µn−1(f0R)⊕ xnµn−1(f1R)
= µn−1(f0R)⊕ xn

(
µn−1(f0R)⊕ µn−1(f1R)

)
.

Then f is coincident if and only if{
µn−1(f0R) = f0R
µn−1(f1R) = f0R ⊕ f

1
R.

The first equation implies that f0R is a symmetric coincident function and it just
remains to check the last equation of (10)⊕

k<n

λk p(n, k) = 0.

Case n is even

p(n, 1) = 0 and it is easily seen that p(n, k) = 0 for k odd and p(n, k) = p(n−2, k−2),
for k even. Then we have to check⊕

k<n−2

λk p(n− 2, k) = 0,

which is already satisfies by f0R. Hence we may choose λn = 0 or 1 and
CSn = 2CSn−1.
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Algorithm 2: Enumeration

Input: The number of variables: n ∈ N.
Output: Enumeration of coincident symmetric functions with n variables.

if n = 1 then
enumerate (0, 0)
enumerate (0, 1)

else
if n even then

for (λ0, . . . , λn−1) of Enumeration(n− 1) do
enumerate (λ0, . . . , λn−1, 0)
enumerate (λ0, . . . , λn−1, 1)

else
for (λ0, . . . , λn−1) of Enum(n− 1) do

if λ0 p(n, n)⊕ λ2 p(n, n− 2) . . .⊕ λn−2 p(n, 2) = λn−1 then
enumerate (λ0, . . . , λn−1, 0)
enumerate (λ0, . . . , λn−1, 1)

Case n is odd

Since p(n, 1) = 1, λ0 p(n, n) ⊕ λ2 p(n, n − 2) . . . ⊕ λn−2 p(n, 2) = λn−1. Then we
may chose λn = 0 or 1, but we have a unique possibility for λn−1. By the previous
case, we know that half of the symmetric coincident function f0R satisfy λn−1 = 0.
Clearly |CSn| = |CSn−1|.

Proposition 31 Enumeration

The Algorithm 2 provides an enumeration of coincident symmetric functions.

Proposition 32 The Algorithm 3 provides random generation of coincident symmet-

ric functions.

Algorithm 3: UniformRandomGeneration

Input: The number of variables: n ∈ N.
Output: Uniform random generation of a coincident symmetric functions with n

variables
if n = 1 then

return uniform( {(0, 0), (0, 1)})
else

if n even then
(λ0, . . . , λn−1)← UniformRandomGeneration(n− 1)
λn ← uniform ({0, 1})
return (λ0, . . . , λn).

else
(λ0, . . . , λn−1)← UniformRandomGeneration(n− 1)
λn ← uniform ({0, 1}).
if λ0 p(n, n)⊕ λ2 p(n, n− 2) . . .⊕ λn−2 p(n, 2) = λn−1 then

return (λ0, . . . , λn−1, λn).

else
return (λ0, . . . , 1− λn−1, λn).
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5 Experiments results

The usefulness of coincident functions for practical applications is not yet es-
tablished. Therefore a deep investigation of other cryptographically significant
properties of Boolean functions must be conducted from a cryptographic point of
view. We show in this part that for some aspects a random coincident function
looks like uniform random Boolean functions. We consider the Hamming weight,
the distribution of the degrees (the number of monomials for each degree), the
balancedness and the nonlinearity. Other investigation like propagation criteria,
algebraic immunity may also be considered.

5.1 Correlation-immune Boolean functions

Correlation immunity of a Boolean function is a measure of the degree to which
its outputs are uncorrelated with some subset of its inputs. In Siegenthaler (1984),
the author shows the importance of this property in cryptography.

The table below gives the number of correlation-immune functions of order 1
for fix Hamming weight for n ≤ 5. We write cor1(n) the total number of correlation-
immune functions of order 1 with n variables.

Remark that the only 1-resilient in this table is the function with 2 variables
x1 ⊕ x2.

n \m 0 2 4 6 8 10 12 14 18 22 30 Total cor1(n)

1 1 1
2 1 1 2 4
3 1 1 2 18
4 1 3 3 1 8 648
5 1 5 70 70 5 1 152 3140062

5.2 Hamming weight distribution

We observe that Cn and Fn follows a similar weight distribution. The Figure 5 gives
the distribution of Hamming weight for 1000 uniform random generated Boolean
functions over Cn and Fn, with n = 20. The Hamming weight w is normalized by
the mean 2n−1, so the abscissa will be w′ = w/2n−1. It is easily shown that the
distributions are very similar.

5.3 Algebraic degree distribution

We show experimentally that random coincident functions follow the same al-
gebraic degree distribution than any random Boolean function. Let f and g be
Boolean functions uniformly randomly generated over respectively Cn and Fn, we
consider the number of monomials of degree d for each d ∈ {0, . . . , n}. For any d,
the expected value should be close to (nd)/2 in the case of g. We have used several
times the Kolmogorov-Smirnov statistical test to show that the distributions are
very closed. Of course if we consider just one degree d, its is possible to distinguish
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Fig. 4 Hamming weight distributions for coincident and boolean functions with 20 variables.
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Fig. 5 Degree distribution of Boolean functions with 20 variables.

the distributions since in f we have either all the monomials of degree 1 or neither
(Proposition 24). The Figure 5.3 in a single random generation of f and g.

5.4 Balancedness

A Boolean function of n variables is balanced when wH(fn) = 2n−1. It is easily
seen that the probability that a random Boolean function is balanced is equal to
( 2n

2n−1)
22n . We obtain every close frequencies when we generates random coincident

function under n ≤ 20. Further investigations should proved this statement for any
n ∈ N.
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Fig. 6 Nonlinearity distributions for coincident and boolean function with 10 and 11 variables.

5.5 Non-linearity

The non-linearity is the Hamming weight distance to all the affine Boolean func-
tions. It is shown that Boolean functions must have a high nonlinearity to ensure
confusion, an important property in cryptographic context(Carlet (2010)), in par-
ticular to avoid fast correlation attacks(Canteaut and Trabbia (2000); Chepyzhov
and Smeets (1991)). The functions which reach the best nonlinearity are called bent
functions, they occur when n is even and they have nonlinearity 2n−1 − 2n/2−1.
On the other hand, the best nonlinearity of Boolean functions in odd numbers of

variables is strictly greater than the quadratic bound –2n−1−2
n−1

2 – for any n > 7.
See (Carlet (2010)) for a good introduction of the nonlinearity property and the
bent functions.

Let h ∈ Cn, there exists a unique g ∈ Fn−1 such that h = (1⊕ xn)ϕn−1(g)⊕ xng
(Proposition 13). Let ln ∈ Ln, the set of affine functions with n vari-
ables. There is ln−1 ∈ Ln−1 such that ln = (1 ⊕ xn)ln−1 ⊕ xnln−1

or ln = (1⊕ xn)ln−1 ⊕ xn(ln−1 ⊕ 1). Hence d(h, ln) = wH(ϕn−1(g), ln−1) +
wH(g, ln−1) or d(h, ln) = wH(ϕn−1(g), ln−1) + wH(g ⊕ 1, ln−1). A random h of C
should have the same distance from the affine functions from any random Boolean
function if the there is no correlation between the distances wH(ϕn−1(g), ln−1)
and wH(g ⊕ 1, ln−1).

We observe experimentally that this is the case. In Figure 6, we consider n = 10
and 11 and we build 1000 random functions over Cn and 1000 over Fn and we
compute the frequency of each nonlinearity value. Remark that bent functions
have nonlinearity 29 − 24 = 496. We consider even and odd values of n because
the nonlinearity behaviour is very different in these cases.
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6 Conclusion

Our paper presents an innovative way to manipulate the Mobius transform, with
the distinction between variables abd indeterminates. This allows us to highlight
new properties of coincident functions. We may also move easily from Shannon de-
composition to Reed-Muller decomposition or vice versa. We show how the Boolean
lattice is colored in the case of coincident functions, which gives a method to build
monotone functions, and we provide a method to build and generate uniformly
the symmetric coincident functions. Thanks to a uniform random generator over
all the coincident boolean functions, we establish experimentally that for the most
common characteristics (Hamming weight, distributions of the monomials degree,
balanceness), a coincident function looks like any Boolean function. This exper-
imental work could be completed by further properties. Notice that our random
generator of coincident functions requires the computation of a Mobius transform
with n − 1 variables. We may avoid this problem with the use of the basis of co-
incident functions but it is not an efficient way. Direct random generation and
enumeration will be a challenge. Another promising perspective will be to propose
algorithms which compute the Mobius transform with low complexity for a larger
part of Boolean functions, standed by our new properties. Based on all these re-
sults, we therefore recommand to use this class of functions, especially in order to
build Boolean functions with good cryptographic properties. Specific constructions
with trade-off between cryptographic criteria seems really feasible.
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