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Some Notes on Flat Polynomials

e. H. el Abdalaoui and M. G. Nadkarni

Abstract. Connection of flat polynomials with some spectral questions in er-
godic theory is discussed. A necessary condition for a sequence of polynomials

of the type 1
√

N

(

1+
∑N−1

j=1
z
nj

)

to be flat in almost everywhere sense is given,

which contrasts with a similar necessary condition for a sequence of polynomi-
als to be ultraflat. This connects the problem of existence of flat sequence (in.
a.e. sense) of such polynomials with some problems in combinatorial number
theory. This is a revised version of the earlier paper with the same title.

1. Introduction

A sequence Pj , j = 1, 2, · · · of trigonometric polynomials of L2 norm one is said
to be flat if the sequence |Pj |, j = 1, 2, · · · of their absolute values converges to the
constant function 1 in some sense. The sense of convergence varies according to the
situation. Littlewood problem requires that the convergence be in the sup norm and
the individual polynomials in the sequence have coefficients of same absolute value
[20],[18], [26], [4],[24], [6],[7], [8],[3]. When the convergence required is uniform,
the sequence of polynomial is often called ultraflat. In problems connected with
Barker sequences, the L4 norm of the polynomials is required to be close to 1 [12].
Our interest in flat sequence of polynomials comes from spectral questions about
rank one transformations in ergodic theory where the polynomials are required to
have nonnegative coefficients and their L1 norms close to one or they converge in
absolute value to 1 almost everywhere. It is an open question if such a flat sequence
of polynomials exists in a non-trivial sense [5],[15], [1], [17], [23]. In these notes we
give, among other results, a necessary condition for a sequence of absolute values
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of such polynomials to converge almost everywhere to 1. This in turn connects this
problem with some question in combinatorial number theory (see Section 5).

2. Ultraflat Sequence of Polynomials

Definition 2.1. Let S1 denote the circle group and let dz denote the normal-
ized Lebesgue measure on it. A sequence Pn, n = 1, 2, · · · of analytic trigonometric
polynomials with L2(S1, dz) norm 1 and their constant terms positive, is said to be
ultraflat if |Pj(z)| → 1 uniformly as j → ∞. It is said to be flat a.e. (dz) if |Pn(z)|
converges to 1 a.e. (dz).

The sequence Pj(z) = 1, j = 1, 2, · · · is obviously ultraflat. More generally let

Pj(z) = 1 + Zj(z), j = 1, 2, · · ·

where each Zj is an analytic trigonometric polynomial with zero constant term and

such that || Zj ||∞→ 0 as j → ∞. Then | Pj(z)
||Pj ||2 , j = 1, 2, · · · is a sequence of ultra-

flat polynomials which we call a perturbation of the sequence of constant ultraflat
polynomials Pj , j = 1, 2, · · · .

Let P (z) be a polynomial and let E denote its set of its zeros strictly inside
the unit disk, F the set of zeros of P on or outside unit circle. Let

B(z) = γ
∏

α∈E

z − α

1− αz
, Q(z) = γ

∏

α∈E

(1 − αz)
∏

α∈F

(z − α),

where γ is a constant of absolute value 1 such that constant term of Q(z) is positive.
The function B(z) which is of absolute value 1 on S1 is called the inner part of
P (z) and Q(z) the outer part of P (z). We note that P = BQ. This factoring of
P is in fact Beurling’s factoring of an H2 function applied to the polynomial P . A
function of the form B is called finite Blaschke product.

Proposition 2.2. Given any sequence Pj , j = 1, 2, · · · of ultraflat polynomials,
their outer parts Qj, j = 1, 2, · · · form a sequence of ultraflat polynomials which is a
perturbation of the constant ultraflat sequence. Moreover for all j, |Pj(z)| = |Qj(z)|
on S1.

Proof. That | Pj(z) |=| Qj(z) |, j = 1, 2 · · · follows from the construction of
inner and outer factors of Pj . Since | Pj |, j = 1, 2, · · · converges to 1 uniformly,
we may assume without loss of generality that Pj ’s, hence Qj’s, do not vanish on
S1. Also, being outer, Qj’s have no zeros inside the the unit disk. Therefore, for
each j, log | Qj | is the real part of the holomorphic function logQj on an open set
containing the closed unit disk. By the mean value property of harmonic function
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we see that

log | Qj(0) |=
∫

S1

log | Qj(z) | dz → 0 as j → ∞,

since | Pj(z) |→ 1 uniformly as j → ∞. Also, by construction Qj(0) is positive,
we see that Qj(0) =| Qj(0) |→ 1 as j → ∞. Clearly then Qj , j = 1, 2, · · · is a
perturbation of the sequence of constant ultraflat polynomials.

�

Despite rather trivial nature of a sequence of ultraflat polynomials when divided
by their inner factors, their importance stems from the following questions raised
by J. E. Littlewood [20].

(1) Does there exist a sequence of ultraflat polynomials Pj , j = 1, 2, · · · such that
for each j, the coefficients of Pj are all equal in absolute value?

(2) Can these coefficients in addition be real ?

J-P. Kahane [18] has answered the first question in the affirmative. The second
question remains open. Also flat sequence of polynomials, in particular ultraflat
sequence of polynomials, appear naturally in discussion of some spectral questions
in ergodic theory. The papers of Bourgain [5] and M. Guenais [15] are the two
early papers connecting L1(S1, dz) flatness with spectral questions. Solution of
some of these problems depends of the existence of certain kind of flat sequence of
polynomials [1] (see Remarks ).
Kahane’s solution can be viewed in the following way: there is an ultraflat sequence
of outer polynomials Qj, j = 1, 2, · · · which when multiplied by appropriate inner
functions yields an ultraflat sequence of polynomials Pj , j = 1, 2, · · · such that for
each j, the coefficients of Pj are equal in absolute value.

It may seem natural to conjecture, in the light of the proposition above, that
if Pj , j = 1, 2, · · · is a flat sequence a.e (dz) then the constant terms of their outer
parts converge to 1. This however is false since for any given λ, −∞ < λ ≤ 0, it
is possible to give a sequence Pj , j = 1, 2, · · · of polynomials which is flat a.e. (dz)

and such that

∫

S1

log | Pj(z) | dz → λ as j → ∞ ; the sequence Qj , j = 1, 2, · · · of

their outer parts will be flat a.e.(dz) with the same property.

We will derive here a necessary condition for a sequence of polynomials to be
ultraflat.

Consider an analytic trigonometric polynomial P (z), with n terms, of L2(S1, dz)
norm 1, P (0) > 0. Then for all z ∈ S1, 1 − ǫ ≤| P (z) |2≤ 1 + ǫ where ǫ =
supz∈S1 ||P (z)|2 − 1|. For any continuous f on S1,

(1 − ǫ)

∫

S1

| f |2 dz ≤
∫

S1

| f(z) |2| P (z) |2 dz ≤ (1 + ǫ)

∫

S1

| f(z) |2 dz;
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in particular, if f(z) =
∑k

j=1 z
mj , a sum of characters of S1, then

(1− ǫ)k ≤
k

∑

i=1

k
∑

j=1

∫

S1

zmi−mj | P (z) |2 dz ≤ (1 + ǫ)k, (1)

Now

1− ǫ ≤| P (z) |2= 1 +

N
∑

j=−N

j 6=0

bjz
nj ≤ 1 + ǫ,

for some suitable non-zero bj = b−j, and integers nj = −n−j,−N ≤ j ≤ N, j 6= 0.
Note that N ≤ n(n− 1). Putting z = 1 we get

−ǫ ≤
N
∑

j=−N

j 6=0

bj ≤ ǫ

(

N
∑

j=−N

j 6=0

bj

)2

≤ ǫ2 < ǫ, (2)

Consider now the functions znj − bj ,−N ≤ j ≤ N, j 6= 0. The gram matrix of
these vectors in L2(S1, | P (z) |2 dz) has entries

∫

S1

zni−nj | P (z) |2 dz − bibj .

Sum of these entries, denoted by r = r(P ), can be seen to satisfy (by equations
(1) and (2) above):

2N(1− ǫ)− ǫ ≤ r ≤ 2N(1 + ǫ) + ǫ

Thus the sum of the entries of the gram matrix in question is of order N and diag-
onal entry of the ith row is 1− |bi|2.

We record this calculation as:

Proposition 2.3. Let P (z) be an analytic polynomial of L2(S1, dz) norm 1

and let | P (z) |2= 1+
∑N

j=−N,j 6=0 bjz
nj , ∀j, bj 6= 0. Let r(P ) denote the sum of the

entries of the gram matrix of the random variable znj − bj ,−N ≤ j ≤ N, j 6= 0.
Then

2N(1− ǫ)− ǫ ≤ r ≤ 2N(1 + ǫ) + ǫ

where ǫ = supz∈S1 || P (z) |2 −1 |.
Corollary 2.4. Let Pn, n = 1, 2, · · · be a sequence of polynomials of L2(S1, dz)

norm 1. Let

| Pn(z) |2= 1 +

Nn
∑

j=−Nn,j 6=0

bj,nz
kj,n , ∀j, bj,n 6= 0.
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Then
(a) if Pn, n = 1, 2, · · · are uniformly bounded then so are the ratios r(Pn)

Nn
, n =

1, 2, · · · ,
(b) if the sequence Pn, n = 1, 2, · · · is ultraflat then r(Pn)

2Nn
→ 1 as n → ∞. In

particular this holds for any ultraflat sequence of Kahane polynomials.

The Gauss-Fresnel polynomials and Hardy-Littlewood polynomials are defined
respectively as follows

GN (z) =
1√
N

N−1
∑

k=0

g(k)zk, where g(k) = exp
(πik2

N

)

,

HN (z) =
1√
N

(

1 +

N−1
∑

k=1

v(k)zk
)

, where v(k) = exp
(

2πi(ck ln(k))
)

.

Our terminology is due to the fact that the first polynomials are connected to
the Gaussian sums and the Fresnel integral and the second are studied by Hardy-
Littlewood in [16].

Furthermore, it is well known that the Gauss-Fresnel polynomials and Hardy-
littlewood polynomials verify

∣

∣

∣
GN (e2πiθ)

∣

∣

∣
≤ 3C

(√
2 +

1√
2

)

, ∀θ ∈ [0, 1), (3)

and

∣

∣

∣
HN (e2πiθ)

∣

∣

∣
≤ K, ∀θ ∈ [0, 1) (4).

where C and K are constants independent of N .
These inequalities follow as an application of the van der Corput method. A

nice account on this method can be found in [28, p.61-67], [27, p.31-37], [14], [22,
p.15-18]. We present the proof of inequalities (3) and (4). The principal ingredient
in the proof is the following lemma due to van der Corput [29, p.199], [22, p.15-18].

Lemma 2.5. Suppose that f is a real valued function with two continuous
derivatives on [a, b]. Suppose also that there is some ρ > 0 such that

|f ′′(u)| ≥ ρ, ∀u ∈ [a, b].

Then,
∣

∣

∣

∑

a≤n≤b

exp(2πif(n))
∣

∣

∣
≤

(

|f ′(b)− f ′(a)|+ 2
)( 4√

ρ
+ 3

)

.
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It suffice now to take in the first case f(u) = uθ +
u2

2N
with a = 0, b = N − 1,

and in the second case f(u) = cu ln(u) + uθ with [1, N ] =
⋃n−1

j=0 [2
j, 2j+1]

⋃

[2n, N ],

2n ≤ n < 2N+1. We therefore have as a corollary of proposition 2.3

Theorem 2.6. The ratios r(GN )
N

,
r(HN )

N
, N = 1, 2, · · · are bounded above.

Newman in [24] established the L1-flatness of the Gauss-Fresnel polynomials.
Besides, Littlewood proved in [21] that the Gauss-Fresnel polynomials converge in
measure to 1. But, since the PN ’s are bounded, Littlewood result implies conver-
gence of || PN ||1 to 1 as N → ∞ hence Newman’s result.

We further notice that Egorov theorem allows to see that for any sequence of
polynomials (Pn(z)) with L2 norm 1, |Pn(z)| converge almost everywhere to 1 if
and only if ‖|Pn(z)|2 − ‖1 converge to 0.

Remarks. (1) Consider the linear fractional transformation f(z) = z−α
1−αz

where α is real positive and less than one. It maps S1 onto itself and has power series
expansion −α+

∑∞
k=1(1−α)αnzn whose sequence of partial sums Sn, n = 1, 2, · · ·

converges uniformly to f(z). Thus the sequence of polynomials Sn

||Sn||2 , n = 1, 2, · · ·
is ultraflat.

(2) Definition: Call a sequence Pn(z) = a0,n+a1,nz+· · ·+akn,nz
kn , n = 1, 2, · · ·

of analytic trigonometric polynomials, each Pn of L2(S1, dz) norm 1, trivial if
max{| aj,n |: 1 ≤ j ≤ kn} → 1 as n → ∞.

If an ultraflat sequence Pn(z) = a0,n + a1,nz + · · ·+ akn,nz
kn , n = 1, 2, · · · has

all its coefficients non-negative then it is necessarily trivial. This follows from the
inequality (since aj,k’s are non-negative):

1 =

kn
∑

j=0

a2j,n ≤
kn
∑

j=0

aj,n = Pn(1) → 1

as n → ∞, which is same as 0 ≤ ∑kn

j=1

(

aj,n(1− aj,n

)

→ 0 as n → ∞.

Thus there are no nontrivial ultraflat sequences with all coefficients non-negative.

(3) Next we consider flat sequence in almost everywhere sense. If φ is a sin-
gular inner function, and if Sn, n = 1, 2, · · · is the sequence of partial sums of

its power series expansion, then |Sn(z)|
||Sn||2 → 1 a.e. (dz) as n → ∞. The sequence

Sn

||Sn||2 , n = 1, 2, · · · is therefore a flat sequence in a.e (dz). sense, but not an ultra-

flat sequence.

(4) Call a function φ of absolute value 1 a.e. (dz) trivial if it is of the type czn

for some integer n, c will then be necessarily of absolute value 1. We note that if φ
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is a measurable function on S1 of absolute value one a.e. (dz) with all its Fourier
coefficients non-negative, then φ is necessarily trivial. This follows by comparing
the Fourier coefficients of two sides of the identity 1 = φφ a.e.. Indeed if φ is
non-trivial and has all its Fourier coefficients non-negative then φ has at least two
Fourier coefficients positive which in turn implies that φφ has at least two Fourier
coefficients positive, which is a contradiction. It is therefore not possible to get a
non-trivial flat sequence Pj , n = 1, 2, · · · in a.e. sense with coefficients of each Pj

non-negative and such that that the sequence Pj , j = 1, 2, · · · itself converges to a
function of absolute value a.e. (dz).

(5) This brings us to one of the main open question about flat sequence of
polynomials in a.e. sense, namely, whether there exists an non-trivial flat sequence
of polynomials in almost everywhere sense with all coefficients non-negative ? It is
known that if there is such a sequence then there exists non-dissipative, ergodic non-
singular transformations with simple Lebesgue spectrum for the associated unitary
operator [1].

If Pn, n = 1, 2, · · · is a flat sequence of polynomials in a.e. sense then the
constant term of | Pn |2 is one, but all other coefficients of | Pn |2 tend to zero
uniformly as n → ∞. Indeed if k 6= 0 then

∣

∣

∣

∫

S1

zk | Pn(z) |2 dz
∣

∣

∣
=

∣

∣

∣

∫

S1

zk(| Pn(z) |2 −1)dz
∣

∣

∣

≤
∫

S1

|| Pn(z) |2 −1 | dz → 0

as n → 0, since | Pn(z) |2→ 1 as n → ∞. This in turn implies that for a flat
sequence Pn, n = 1, 2, · · · in a.e. sense with coefficients of all Pn non-negative, the
second largest coefficient of Pn(z) tends to zero as n → ∞, which means that all
except possibly the largest coefficient of Pn tend to zero uniformly as n → ∞. If
the largest coefficient of Pn tends to 1 as n → ∞ then Pn, n = 1, 2, · · · is a trivial
flat sequence. It is an open question whether there exists an a.e (dz) flat sequence
Pn, n = 1, 2, · · · with non-negative coefficients with largest of the coefficients of
Pn, n = 1, 2, · · · uniformly bounded away from 1.

(6) Given a flat sequence of polynomials Pn, n = 1, 2, · · · in a.e. sense, we can
form the sequence Mn, n = 1, 2, · · · of covariance matrices associated to it, and
the sums rn, n = 1, 2, · · · of entries of Mn, n = 1, 2, · · · . Since the sequence is flat
in a.e. sense, we see, from the considerations above, that the diagonal terms of
Mn, n = 1, 2, · · · tend to 1 while the off diagonal terms converge to 0 uniformly.
Thus Mn, n = 1, 2, · · · converges to the infinite identity matrix entrywise, where,
moreover, the off diagonal terms tend to zero uniformly. In what follows we will
study the behavior of the sequence rn, n = 1, 2, · · · , for the case when the sequence
Pn, n = 1, 2, · · · is flat in a.e. sense. We will also bring into play a sequence
Cn, n = 1, 2, · · · where, for each n, Cn is the sum of the absolute values of entries
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of Mn, n = 1, 2, · · ·

(7) Consider now the class B of polynomials of the type 1√
m

(

1 +
∑m−1

j=1 zRj

)

.

As Bourgain[5] has shown the spectrum of a measure preserving rank one transfor-
mation is given (up to possibly some discrete points) by a generalized Riesz product
made out of such polynomials. It is not known if there is a measure preserving rank
one transformation with simple Lebesgue spectrum. This is equivalent to the ques-
tion if there exist a flat sequence of polynomials in a.e. sense from the class B[1].
We will give below a necessary condition for a sequence of polynomials from the
class B to be flat a.e. (dz) which contrasts with the necessary condition for ul-
traflat sequences derived in section 1. Consider a sequence of distinct polynomials
Pj , j = 1, 2, · · · of the type

Pj(z) =
1

√
mj

(

1 +

mj−1
∑

k=1

zRk,j

)

, (3)

Such a sequence can not be ultraflat since Pj(1) =
√
mj → ∞ as j → ∞. As

mentioned above it is not known if such a sequence can be flat a.e. (dz). However,
we will show in next section that if a sequence of polynomials Pj , j = 1, 2, · · · of
this type converges to 1 a.e.(dz) then

rj
Nj

→ ∞ as j → ∞. This will follow from a

more general result we prove below (Theorem 4.3). We will need some ideas and
results about generalized product [1] which we give the next section.

(8) An inequality due to D. J. Newman [24] is

‖f‖22
‖f‖

4
3

4

≤ ‖f‖
2
3

1 ,

which is obtained by applying Hölder’s inequality as follows: Since
∫

S1

| f |2 dz =

∫

S1

| f | 43 | f | 23 dz,

we get the required inequality by applying Hölder’s inequality with p = 3, q =
3
2 . This inequality immediately implies that if Pn, n = 1, 2, · · · is a sequence of

polynomials of L2(S1, dz) norm 1, and if it is flat in L4-norm,, then it is flat in
L1 sense, hence over a subsequence it is flat in a.e. (dz)-sense. However this
sufficiency criterion for flat sequence of polynomials is not applicable to a sequence
of polynomials from the class B since for any polynomial P from the class, ‖P‖44 ≥ 2
[10].

3. Dissociated Polynomials and Generalized Riesz Products

Consider the following two products:

(1 + z)(1 + z) = 1 + z + z + z2 = 1 + 2z + z2,

(1 + z)(1 + z2) = 1 + z + z2 + z3.
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In the first case we group terms with the same power of z, while in the second case
all the powers of z in the formal expansion are distinct. In the second case we say
that the polynomials 1+ z and 1+ z2 are dissociated. More generally we say that a
set of trigonometric polynomials is dissociated if in the formal expansion of product
of any finitely many of them, the powers of z in the non-zero terms are all distinct
[1].

If P (z) =

m
∑

j=−m

ajz
j, Q(z) =

n
∑

j=−n

bjz
j, m ≤ n, are two trigonometric polyno-

mials then for some N , P (z) and Q(zN) are dissociated. Indeed

P (z) ·Q(zN) =

m
∑

i=−m

n
∑

j=−n

aibjz
i+Nj .

If we chooseN > 2n, then we will have two exponents, say i+Nj and u+Nv, equal if
and only if i−u = N(v−j) and sinceN is bigger than 2n, this can happen if and only
if i = u and j = v. More generally, given any sequence P1, P2, · · · of polynomials one
can find integers 1 = N1 < N2 < N3 < · · · , such that P1(z

N1), P2(z
N2), P (zN3), · · ·

are dissociated. Note that since the map z 7−→ zNi is measure preserving, for any
p > 0 the Lp(S1, dz) norm of Pi(z) and Pi(z

Ni) remain the same, as also their
logarithmic integrals, i.e,

∫

S1 log | Pi(z) | dz =
∫

S1 | log | Pi(z
Ni) | dz.

Now let P1, P2, · · · be a sequence of polynomials, each Pi being of L2(S1, dz)
norm 1. Then the constant term of each | Pi(z) |2 is 1. If we choose 1 = N1 <

N2 < N3 · · · so that | P1(z
N1) |2, | P2(z

N2) |2, | P3(z
N3) |2, · · · are dissociated, then

the constant term of each finite product

n
∏

j=1

| Pj(z
Nj ) |2

is one so that each finite product integrates to 1 with respect to dz. Also, since
| Pj(z

Nj) |2, j = 1, 2, · · · are dissociated, for any given k, the k-th Fourier coef-
ficient of

∏n
j=1 | Pj(z

Nj) |2 is either zero for all n, or, if it is non-zero for some

n = n0 (say), then its remains the same for all n ≥ n0. Thus the measures
(
∏n

j=1 |Pj(z
Nj)|2)dz, n = 1, 2, · · · admit a weak limit on S1. It is called the gener-

alized Riesz product of the polynomials | Pj(z
Nj) |2, j = 1, 2, · · · . Let µ denote this

measure. It is known [1] that
∏k

j=1 |Pj(z
Nj )|, k = 1, 2, · · · , converge in L1(S1, dz)

to
√

dµ
dz

as k → ∞. It follows from this that if
∏k

j=1 | Pj(z
Nj ) |, k = 1, 2, · · ·

converge a.e. (dz) to a finite positive value then µ has a part which is equivalent
to Lebesgue measure.
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4. Flat a.e.(dz) Sequence of Polynomials: Necessary Conditions

Consider a polynomial of norm 1 in L2(S1, dz). Such a polynomial with m

non-zero coefficients can be written as:

P (z) = ǫ0
√
p0 + ǫ1

√
p1z

R1 + · · ·+ ǫm−1
√
pm−1z

Rm−1 , (4)

where each pi is positive and their sum is 1, and where ǫi’s are complex numbers
of absolute value 1. Such a P gives a probability measure | P (z) |2 dz on the circle
group which we denote by ν. Now | P (z) |2 can be written as

| P (z) |2= 1 +

N
∑

k=−N,

k 6=0

akz
nk ,

where each nk is of the form Ri − Rj , and each ak is a sum of terms of the type
ǫiǫj

√
pi
√
pj , i 6= j, with Rj −Ri = nk , ak = a−k, 1 ≤ k ≤ N . We will write

L =
N
∑

k=−N,

k 6=0

ak =| P (1) |2 −1.

Consider the special case when each ǫi = 1. Then

L =
∑

0≤i,j≤m−1,

i6=j

√
pi
√
pj ,

is a function of probability vectors (p0, p1, p2, · · · pm−1), which attains its maximum

value when each pi =
1
m
, and the maximum value is m(m−1)

m
= m− 1.

We conclude therefore that | L |≤ m− 1, irrespective of whether ǫi’s all one or not.
We also note that m− 1 ≤ N ≤ m(m− 1). So, when pi’s are all equal and = 1

m
we

have
N

L2
≤ m

m− 1
≤ 2

for m ≥ 2.
Note that, in general, if N

L2 is bounded then L can not be close to zero, which
in turn implies that a sequence of such polynomials stays away from 1 in absolute
value at z = 1, and so can not ultraflat.

For each k,−N ≤ k ≤ N, k 6= 0, let Dk denote the cardinality of the set of
pairs (i, j), i 6= j,−N ≤ i, j ≤ N, i, j 6= 0, such that nj − ni = nk. For each k,
Dk ≤ 2N − 2 | k | +2 ≤ m(m− 1), whence

∣

∣

∣

N
∑

k=−N

k 6=0

akDk

∣

∣

∣
≤ m(m− 1)

N
∑

k=−N

k 6=0

|ak| < m3
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We write

A(P ) = A =

N
∑

k=−N

k 6=0

akDk, B(P ) = B =
∑

−N≤i,j≤N

06=i,j

aiaj = (|P (1)|2 − 1)2.

Consider the random variables X(k) = znk − ak with respect to the mea-

sure ν. We write m(k, l) =
∫

S1 X(k)X(l)dν, −N ≤ k, l ≤ N, k, l 6= 0 and M

for the correlation matrix with entries m(k, l),−N ≤ k, l ≤ N, k, l 6= 0. We call
M the covariance matrix associated to | P (z) |2. Since linear combination of
X(k),−N ≤ k ≤ N, k 6= 0, can vanish at no more than a finite set in S1, and,
ν is non discrete, the random variables X(k),−N ≤ k ≤ N, k 6= 0 are linearly
independent, whence the covariance matrix M is non-singular.

Note that

mi,j =

∫

S1

zni−njdν − aiaj , mi,i = 1− | ai |2

Let r(P ) = r denote the sum of the entries of the matrix M . We have

r =

N
∑

k=−N

k 6=0

∑

{i,j,ni−nj=nk,i,j 6=0}
mi,j +

N
∑

k=−N

k 6=0

mk,k

=

N
∑

k=−N

k 6=0

∑

{i,j,ni−nj=nk,i,j 6=0}
(ak − aiaj) + 2N −

N
∑

i=−N

i6=0

| ai |2

=

N
∑

k=−N

k 6=0

akDk + 2N −
∑

−N≤i,j≤N

i,j 6=0

aiaj

= A+ 2N+ | L |2

Since |A| is of order at most m3, N ≤ 1
2m(m − 1), and | L |2 are of order m2,

we see that r is of order at most m3. We also note that the quantity C(P ) = C =
∑

{(i,j),−N≤i,j≤N,i,j 6=0} | mi,j | is also of order at most m3. Indeed

C ≤
N
∑

k=−N

k 6=0

(

Dk | ak | +
∑

{(i,j):i−j=k,i,j 6=0}
| aiaj |

)

+ 2N,

which shows that C is of order at most m3.

We will now consider a sequence Pj(z), j = 1, 2, · · · of polynomials, each Pn

of L2(S1, dz) norm 1. The quantities A(Pj), C(Pj) etc will now written as Aj , Cj



12 E. H. EL ABDALAOUI AND M. G. NADKARNI

etc. It will follow from our considerations below that if a sequence of polynomials

Pj , j = 1, 2, · · · from the class B is flat then
C(Pj)

m2
j

→ ∞ as j → ∞
We will first prove two singularity lemmas under similar looking condition using

Peyrière’s method, and then use them to derive similar looking necessary conditions
for the some classes of polynomials to admit flat (a.e (dz)) sequences. These classes
include B but do not contain any ultraflat sequence of polynomials.

Lemma 4.1. If Pj(z), j = 1, 2, · · · is a sequence of polynomials of L2(S1, dz)
norm 1 such that
(i) the squares of their absolute values are dissociated

(ii)
Nj

L2
j

, j = 1, 2, · · · are bounded, (iii)
∑∞

j=1 min
(

1,
√

Nj

rj

)

= ∞ then the weak limit

µ of the measures
∏n

j=1 | Pj(z) |2 dz, n = 1, 2, · · · , is singular to Lebesgue measure.

Proof. Write sj = min
{

1,
√

Nj

rj

}

. Since
∑∞

j=1 sj = ∞, by Banach-Steinhaus

theorem there is an l2 sequence λj , j = 1, 2, · · · of positive real numbers such that

∞
∑

j=1

λjsj = ∞. (5)

Consequently, since
Nj

L2
j

’s are assumed to be bounded,

∞
∑

j=1

λ2
js

2
j

L2
j

Nj < ∞ (6)

Let Aj = {nk,j : −Nj ≤ k ≤ Nj , k 6= 0}. Let Vj be the 1 × Aj matrix with

all entries equal to
λjsj
Lj

. The squared Euclidean norm of this vector is
λ2
js

2
j

L2
j

× 2Nj

which when summed over j is convergent by equation (6) above. Let Uj be the
1 × Aj matrix with entries u(nk, j) = ak,j ,−Nj ≤ k ≤ Nj , k 6= 0. Then the dot

product Uj ·Vj = Lj× λjsj
Lj

which diverges when summed over j by the choice of λj ’s.

Let

fn =

n
∑

j=1

∑

k∈Aj

λjsj

Lj

znk ,

gn =

n
∑

j=1

∑

k∈Aj

λjsj

Lj

(Xj(k)).

=

n
∑

j=1

∑

k∈Aj

λksj

Lj

(znk − ak,j)
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Now, for m < n ,
∫

S1

| fn − fm |2 dz =

n
∑

j=m+1

∑

k,l∈Aj

λ2
js

2
j

L2
j

∫

S1

znk−nldz =

n
∑

j=m+1

2
λ2
js

2
j

L2
j

Nj

→ 0 as m,n → ∞,

and under the assumption of dissociation of the polynomials | Pj |2, j = 1, 2, . . . ,

∫

S1

| gn − gm |2 dµ =

n
∑

j=m+1

∑

k,l∈Aj

λ2
js

2
j

L2
j

mj(k, l) ≤
n
∑

j=m+1

λ2
js

2
j

L2
j

rj

(since sj = min
{

1,
√

Nj

rj

}

, in case sj = 1, we have Nj ≥ rj , otherwise s2j =
Nj

rj
,)

≤
n
∑

j=m+1

λ2
j

L2
j

Nj → 0 as m,n → ∞

We conclude that fn’s converge in L2(S1, dz) to a function whose norm is
∑∞

j=1 2
λ2
js

2
j

L2
j

×Nj , and gn’s converge in L2(S1, dµ) to a function whose norm is no

more than
∑∞

j=1

λ2
j

L2
j

Nj . If µ is not singular to dz, then there is a sequence of lk, k =

1, 2, · · · of natural numbers and a z0 ∈ S1 such that flk(z0), glk(z0), k = 1, 2, · · ·
converge to a finite limits, which in turn implies that

flk(z0)− glk(z0) =

lk
∑

j=1

∑

u∈Aj

λjsj

Lj

au,j

=

lk
∑

j=1

λjsj

is convergent as k → ∞ contrary to equation (5).
�

Lemma 4.2. If (i) Lj, j = 1, 2, · · · are uniformly bounded away from 0 (ii)
∑∞

j=1

L2
j

Cj
= ∞, then µ is singular to its translate µu for every u ∈ S1 for which the

sequence | Pj(u) |→ 1, as j → ∞.

Proof. By Banach-Steinhaus theorem there exist bj , j = 1, 2, · · · , with their

sum of absolute squares finite such that for each j,
Lj

Cj
bj ≥ 0 and

∑∞
j=1

Lj√
Cj

bj = ∞.

Fix a v ∈ S1 such that | Pj(v) |→ 1 as j → ∞. Note that

∞
∑

j=1

(

Nj
∑

k=−Nj

k 6=0

aj
(

1− vnk,j
)

)

=

∞
∑

j=1

(

Lj −
(

| Pj(v) |2 −1
)

)

.
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Since | Pj(v) |2→ 1 as j → ∞, the series
∑∞

l=1

(

L−(|Pj(v)|2−1)√
Cj

)

bj diverges. Let Bj

be the 1× 2Nj with all entries equal to
bj√
Cj

, j = 1, 2, · · · . Then

(MjBj , Bj) =
rj | bj |2

Cj

≤| bj |2,

whence
∑∞

j=1(MjBj , Bj) is a finite sum, which in turn implies that the series in j

∞
∑

j=1

Nj
∑

k=−Nj

k 6=0

bj
√

Cj

(znk,j − ak,j)

converges a.e. (µ) over a subsequence.

Consider now the translated measure µv(·) = µ(v(·)). We have
∫

S1

znk,jdµv = v−nk,jak,j .

The covariance matrix Mv,j of the random variables znk,j − v−nk,jak,j ,−Nj ≤ k ≤
Nj, k 6= 0 with respect to the translated measure µv has entries v−(nk,j−nl,j)Mk,l,
which can be seen to be unitarily equivalent to Mj . Indeed,

Mv,j = U−1
j MjUj ,

where Uj is a 2Nj × 2Nj diagonal matrix with entries

vn−Nj,j , vn−Nj+1,j , · · · , vn−1,j , vn1,j · · · , vnNj−1,j , vnNj,j ,

along the diagonal in that order.

We note that
∞
∑

j=1

(Mv,jBj , Bj)

=

∞
∑

j=1

rv,j

Cj

| bj |2< ∞,

where rv,j is the sum of the entries of the of the matrix Mv,j, j = 1, 2, · · · . It is
clear that for all j, |rv,j | ≤ Cj .

As before we conclude that the series

∞
∑

j=1

(

Nj
∑

k=−Nj,

k 6=0

bj
√

Cj

(

znk,j − v−nk,jak,j
)

)

converges a.e µv over a subsequence subsequence.
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If µ and µv are not mutually singular, then there exist an z0 ∈ S1 and an
increasing sequence of natural Kp, p = 1, 2, · · · of natural numbers such that the
sequences (with p = 1, 2, · · · )

Kp
∑

j=1

Nj
∑

k=−Nj

k 6=0

bj
√

Cj

(z
nk,j

0 − ak,j)

Kp
∑

j=1

Nj
∑

k=−Nj

k 6=0

bj
√

Cj

(z
nk,j

0 − v−nk,jak,j)

converge to a finite number as p → ∞. The difference of the two partial sums
is

Kp
∑

j=1

Nj
∑

k=−Nj

k 6=0

bj
√

Cj

ak,j(1− v−nk,j ),

which diverges as p → ∞. The contradiction shows that µ and µv are singular.
�

The following theorem is proved in [1].

Theorem 4.3. Let Pj , j = 1, 2, · · · be a sequence of non-constant polynomi-
als of L2(S1, dz) norm 1 such that limj→∞ | Pj(z) |= 1 a.e. (dz) then there
exists a subsequence Pjk , k = 1, 2, · · · and natural numbers l1 < l2 < · · · such
that the polynomials Pjk(z

lk), k = 1, 2, · · · are dissociated and the infinite product
∏∞

k=1 |Pjk(z
lk)|2 has finite nonzero value a.e (dz).

We are now in a position to give two similar looking but distinct necessary
conditions for a sequence of polynomials in certain classes to be flat in a.e (dz)
sense. The class B is included in both these classes.

Theorem 4.4. (i) If
Nj

L2
j

, j = 1, 2, · · · remain bounded and lim
j→∞

|Pj(z)| = 1

a.e. (dz) then
rj
Nj

→ ∞ as j → ∞. (ii) If Lj, j = 1, 2, · · · are uniformly bounded

away from 0 and lim
j→∞

|Pj(z)| = 1 a.e. (dz) then
Cj

m2
j

→ ∞ as j → ∞

Proof. Under the hypothesis of part (i) of the theorem , by theorem 4.3 we
get a subsequence Pjk = Qk, k = 1, 2, · · · and natural numbers l1 < l2 < · · ·
such that the polynomials | Qk(z

lk) |2, k = 1, 2, · · · are dissociated and the infinite
product

∏∞
k=1 | Qk(z

lk) |2 has finite non-zero limit a.e. (dz). Also, since the

absolute squaredQk(z
lk)’s are dissociated, the measures µn

def
=

∏n
k=1 | Qk(z

lk) |2 dz
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converge weakly to a measure µ on S1 for which dµ
dz

> 0 a.e (dz), indeed

dµ

dz
=

∞
∏

k=1

| Q(zlk) |2 a.e.(dz)

Since the map z 7−→ zlk preserves the Lebesgue measure on S1, the mjk(u, v)’s for

| Pjk (z
lk) |2 dz remains the same as for | Pjk(z) |2 dz. If

∑∞
k=1

√

Njk

rjk
= ∞, then

by Lemma 4.1 µ will be singular to (dz) which is not true. So
∑∞

k=1

√

Njk

rjk
< ∞.

If
√

Njk

rjk
, j = 1, 2, · · · does not tend to 0 as j → ∞ then over a subsequence these

ratios remain bounded away from 0. But by the above considerations, over a further

subsequence these ratios have a finite sum, which is a contradiction. So
Nj

rj
→ 0 as

j → ∞
Part (ii) of the theorem is proved similarly, applying Lemma 4.2 this time.

�

Remarks. Over a subsequence the Gauss-Fresnel polynomialsGN , N = 1, 2, · · ·
are uniformly bounded away from 1 in absolute value at z = 1. Over a further sub-
sequence they converge to 1 in absolute value a.e. (dz) since they are L1(S1, dz)

flat. By Theorem 4.4 (ii) we see that the ratios C(GN)
N2 , N = 1, 2, · · · are unbounded

(see Theorem 2.6).

5. Connection with combinatorial number theory

In this section we discuss the ratios C
m2 for the class B. In particular we give a

sequence Pj , j = 1, 2, · · · from this class for which
C(Pj)

m2
j

, j = 1, 2, · · · diverges but

Pj , j = 1, 2, · · · is not flat in a.e. (dz) sense.

For a given polynomial P (z) = 1√
m
(1 + zR1 + zR2 + · · · + zRm−1) of class B,

with

| P (z) |2= 1 +

N
∑

j=1

aj(z
nj + z−nj ),

we know that C(P )
m2 has the same order as

2
∑

N
j=1

ajDj

m2 . However just ensuring that
each Dj receives maximum possible value, namely N − j, is not enough to ensure

that 2
∑N

j=1 ajDj is large in comparison with m2. For consider the case when for
each j, Rj = j, so that

P (z) =
1√
m
(1 + z + z2 + · · ·+ zm−1)

| P (z) |2= 1 +
1

m

m−1
∑

j=1

(m− j)(zj + z−j)
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Now each Dj = m− j, so that

2

m−1
∑

j=1

ajDj =
1

m

m−1
∑

j=1

(m− j)2 =
1

m

m−1
∑

j=1

j2 =
(m+ 1)(2m+ 1)

6

which is of order m2.

One can ensure C large in comparison with m2 if each Dj has its maximum
possible value, namely, N − j, and N is of higher order than m. Using some com-
binatorial number theory one can arrange this.

Let R be a natural number > 2 and let m ≥ 2 be a natural number ≤ R. Write
R0 = 0. Let R0 < R1 < R2 < · · · < Rm−1 = R be a set of m integers between 0
and R. Denote it by S. Note that 0 and R are in S. Let

T = {(Ri, Rj) : i < j, 0 ≤ i, j ≤ m− 1}.
Let [0, R] be the set of integers from 0 to R. Define F : T → [0, R] as follows:

F (Ri, Rj) = Rj −Ri, (Ri, Rj) ∈ T.

Since F depends on S, we will write FS for F when needed.
For any r ∈ [0, R], write d(r) =| F−1(r) | = the cardinality of F−1(r). Note

that F is one-one if and only of d(r) ≤ 1 for all r. If F is one-one, then S is called
Sidon subset of [0, R]. As pointed out to us by R. Balasubramanian, if S is a Sidon
set, then F can not be onto (unless R ≤ 6.). This is a consequence of a well known
result of Erdös and Turan [13] which says, that if S ⊂ [1, R] is a Sidon set then

| S | is at most R
1
2 + R

1
4 + 1, see [19]. So, if S is a Sidon set then the cardinality

| T | of T is 1
2 | S | (| S | −1) < R.

Let M(S) = maxi∈[0,R] d(i). The quantities M(S) and | FS(T ) | are in some sense
‘balanced’ in that if one is large the other is small, and M(S) | FS(T ) | seems to be
of order | S |2. This is clearly is true when S is a Sidon set and the other extreme
case when S = [0,m− 1]
Let

λ(R) = min
{

| S |: S ⊂ [0, R], FS is onto
}

.

It can be shown that λ(R) ≤ 2[R
1
2 ] + 2, where [R

1
2 ] denotes the integral part of

R
1
2 . We show that C

m2 is not bounded over the class B. For a given positive integer
R > 2 choose S ⊂ [0, R] of cardinality λ(R) and such that FS(T ) = [0, R]. Let m
denote λ(R), let R0 < R1 < · · · < Rm−1 = R be the set S. Let

P (z) =
1√
m
(1 + zR1 + zR2 + · · ·+ zRm−1)

| P (z) |2= 1 +
1

m

R
∑

j=1

d(j)(zj + z−j)
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Now

C(P ) ≥ A(P ) = 2

R
∑

j=1

1

m
d(j)Dj > 2

R
∑

j=1

1

m
Dj

=

R
∑

j=1

1

m
(R− j) =

1

m

1

2
(R − 1)R

≥ 1

16
(R − 1)R

1
2 ,

since m = λ(R) ≤ 2
√
R+ 2

Clearly, therefore, C
m2 is unbounded over the class B.

We do not know if one can choose, for eachR, a suitable Sidon set in SR ⊂ [0, R],

with 0, R ∈ SR, such that ratios
C(PR,SR

)

|SR|2 , R = 1, 2, · · · are unbounded, where PR,SR

is the polynomial in class B with frequencies in SR, and if such a sequence of poly-
nomials can in addition be flat in a.e. (dz) sense.

We now give an example of a sequence Pj , j = 1, 2, · · · from the class B for

which
C(Pj)

m2
j

→ ∞ but the sequence Pj , j = 1, 2, . . . is not flat in a.e (dz) sense.

Let

Pj(z) =
1√
2j

(

j−1
∑

i=0

zi +

j
∑

i=1

zij
)

=
1√
2j

1− zj

1− z
+

1√
2j

1− zj
2

1− zj
,

then clearly, for a given z 6= 1, Pj(z) → 0 over every subsequence jn, n = 1, 2, · · ·
over which zjn , n = 1, 2 · · · stays uniformly away from 1, whence Pj(z), j = 1, 2, · · ·
is not a flat sequence in a.e. (dz) sense.

Note that the set Sj of indices in Pj is the interval of integers [0, j − 1] to-
gether with the integers j, 2j, · · · , (j − 1)j, j2. Also Sj has 2j elements, and,
FSj

(Tj) = [1, j2]. So, for each j, | Pj(z) |2 admits all the frequencies from 1 to

j2, whence, as seen above,
C(Pj)
j2

→ ∞ as j → ∞.

The equality FSj
(Tj) = [0, j2] in fact shows that λ(j2) ≤ 2j from which it is

easy to deduce that for any j, λ(j) ≤ 2
√
j + 2. We note that

j2 <
1

2
((
√
2)j + 1)(

√
2)j,

however we do not know if λ(j2) ≤ [(
√
2)j] + k for some positive integer k, inde-

pendent of j. Also not known is how small the the largest d(i) can be when S is of
cardinality λ(j2), and FS(T ) = [1, j2] ?

We give below some probabilistic considerations which need further investiga-
tion. Let R > 2 be an integer, and let S ⊂ [0, R2] of cardinality 2R, with 0, R ∈ S.
Let ΩR denote the the collection of all such subsets S in [0, R2]. Cardinality of ΩR
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is (R
2−1

2R−2). Equip Ω with uniform distribution, denoted by PR. Let P (R,S) denote
the polynomial of class B with frequencies in S. For a fixed ǫ > 0, one can consider
E(ǫ, R) = PR({S :|| (| P (R,S) |2 −1) ||1> ǫ}). If for every ǫ > 0, E(ǫ, R) → 0
as R → ∞, we will have a probabilistic proof of the existence of a sequence flat
polynomials (in a.e. (dz) sense) in the class B.

Acknowledgement. M. G. Nadkarni would like to thank University of Rouen
for a month long visiting appointment during which the paper was revised and
completed.

References

[1] E. H. el Abdalaoui and M. Nadkarni, Calculus of Generalized Riesz Products , Contemporary
Mathematics(AMS) 631 (2014), pp. 145-180.

[2] E. H. el Abdalaoui and M. Nadkarni, A non-singular transformation whose Spectrum has

Lebesgue component of multiplicity one, Ergodic Theory and Dynamical Systems, available on
CJO2014. doi:10.1017/etds.2014.85.

[3] C. Aistleitner, On a problem of Bourgain concerning the L1-norm of exponential sums, Math.
Z., 275 (2013), no. 3-4, 681–688.

[4] E. Bombieri & J. Bourgain, On Kahane’s ultraflat polynomials, J. Eur. Math. Soc. (JEMS)
11 (2009), no. 3, 627–703.

[5] J. Bourgain, On the spectral type of Ornstein class one transformations, Isr. J. Math. ,84
(1993), 53-63.

[6] P. Borwein, M. J. Mossinghoff, Barker sequences and flat polynomials, Number Theory and
Polynomials, 71-88, Lond. Math. Soc. Lecture Notes Series, 352, Cambridge Univ Press, Cam-
bridge, 2008.

[7] P. Borwein, M. J. Mossinghoff, Wiefrich pairs and Barker sequences II, LMS J. Comput.
Math., 17 (1) (2014), 24-32.
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