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Introduction

A sequence P j , j = 1, 2, • • • of trigonometric polynomials of L 2 norm one is said to be flat if the sequence |P j |, j = 1, 2, • • • of their absolute values converges to the constant function 1 in some sense. The sense of convergence varies according to the situation. Littlewood problem requires that the convergence be in the sup norm and the individual polynomials in the sequence have coefficients of same absolute value [START_REF] Littlewood | On polynomials n z m , n m=0 e αi z m , z = e θi[END_REF], [START_REF] Kahane | Sur les polynômes à coefficients unimodulaires[END_REF], [START_REF] Queffelec | On Bernstein's Inequality and Kahane's Ultraflat Polynomials[END_REF], [START_REF] Bombieri | On Kahane's ultraflat polynomials[END_REF], [START_REF] Newman | An L 1 extremal problem for polynomials[END_REF], [START_REF] Borwein | Barker sequences and flat polynomials[END_REF], [START_REF] Borwein | Wiefrich pairs and Barker sequences II[END_REF], [START_REF] Borwein | Polynomials with coefficients from a finite set[END_REF], [START_REF] Aistleitner | On a problem of Bourgain concerning the L 1 -norm of exponential sums[END_REF]. When the convergence required is uniform, the sequence of polynomial is often called ultraflat. In problems connected with Barker sequences, the L 4 norm of the polynomials is required to be close to 1 [START_REF] Downarowich | Merit Factors and Morse Sequences Theoretical Computer Science[END_REF]. Our interest in flat sequence of polynomials comes from spectral questions about rank one transformations in ergodic theory where the polynomials are required to have nonnegative coefficients and their L 1 norms close to one or they converge in absolute value to 1 almost everywhere. It is an open question if such a flat sequence of polynomials exists in a non-trivial sense [START_REF] Bourgain | On the spectral type of Ornstein class one transformations[END_REF], [START_REF] Guenais | Morse cocycles and simple Lebesgue spectrum[END_REF], [START_REF] El Abdalaoui | Calculus of Generalized Riesz Products[END_REF], [START_REF] Host | Non-singular transformations and spectral analysis of measures[END_REF], [START_REF] Nadkarni | Spectral theory of dynamical systems[END_REF]. In these notes we give, among other results, a necessary condition for a sequence of absolute values of such polynomials to converge almost everywhere to 1. This in turn connects this problem with some question in combinatorial number theory (see Section 5).

Ultraflat Sequence of Polynomials

Definition 2.1. Let S 1 denote the circle group and let dz denote the normalized Lebesgue measure on it. A sequence P n , n = 1, 2, • • • of analytic trigonometric polynomials with L 2 (S 1 , dz) norm 1 and their constant terms positive, is said to be ultraflat if |P j (z)| → 1 uniformly as j → ∞. It is said to be flat a.e. (dz) if |P n (z)| converges to 1 a.e. (dz).

The sequence P j (z) = 1, j = 1, 2, • • • is obviously ultraflat. More generally let

P j (z) = 1 + Z j (z), j = 1, 2, • • •
where each Z j is an analytic trigonometric polynomial with zero constant term and such that || Z j || ∞ → 0 as j → ∞. Then | Pj (z) ||Pj ||2 , j = 1, 2, • • • is a sequence of ultraflat polynomials which we call a perturbation of the sequence of constant ultraflat polynomials P j , j = 1, 2, • • • .

Let P (z) be a polynomial and let E denote its set of its zeros strictly inside the unit disk, F the set of zeros of P on or outside unit circle. Let

B(z) = γ α∈E z -α 1 -αz , Q(z) = γ α∈E (1 -αz) α∈F (z -α),
where γ is a constant of absolute value 1 such that constant term of Q(z) is positive. The function B(z) which is of absolute value 1 on S 1 is called the inner part of P (z) and Q(z) the outer part of P (z). We note that P = BQ. This factoring of P is in fact Beurling's factoring of an H 2 function applied to the polynomial P . A function of the form B is called finite Blaschke product.

Proposition 2.2. Given any sequence P j , j = 1, 2, • • • of ultraflat polynomials, their outer parts Q j , j = 1, 2, • • • form a sequence of ultraflat polynomials which is a perturbation of the constant ultraflat sequence. Moreover for all j, |P j (z

)| = |Q j (z)| on S 1 . Proof. That | P j (z) |=| Q j (z) |, j = 1, 2 • • •
follows from the construction of inner and outer factors of P j . Since | P j |, j = 1, 2, • • • converges to 1 uniformly, we may assume without loss of generality that P j 's, hence Q j 's, do not vanish on S 1 . Also, being outer, Q j 's have no zeros inside the the unit disk. Therefore, for each j, log | Q j | is the real part of the holomorphic function log Q j on an open set containing the closed unit disk. By the mean value property of harmonic function we see that

log | Q j (0) |= S 1 log | Q j (z) | dz → 0 as j → ∞, since | P j (z) |→ 1 uniformly as j → ∞. Also, by construction Q j (0) is positive, we see that Q j (0) =| Q j (0) |→ 1 as j → ∞. Clearly then Q j , j = 1, 2, • • • is a perturbation of the sequence of constant ultraflat polynomials.
Despite rather trivial nature of a sequence of ultraflat polynomials when divided by their inner factors, their importance stems from the following questions raised by J. E. Littlewood [START_REF] Littlewood | On polynomials n z m , n m=0 e αi z m , z = e θi[END_REF].

(1) Does there exist a sequence of ultraflat polynomials P j , j = 1, 2, • • • such that for each j, the coefficients of P j are all equal in absolute value? (2) Can these coefficients in addition be real ? J-P. Kahane [START_REF] Kahane | Sur les polynômes à coefficients unimodulaires[END_REF] has answered the first question in the affirmative. The second question remains open. Also flat sequence of polynomials, in particular ultraflat sequence of polynomials, appear naturally in discussion of some spectral questions in ergodic theory. The papers of Bourgain [START_REF] Bourgain | On the spectral type of Ornstein class one transformations[END_REF] and M. Guenais [START_REF] Guenais | Morse cocycles and simple Lebesgue spectrum[END_REF] are the two early papers connecting L 1 (S 1 , dz) flatness with spectral questions. Solution of some of these problems depends of the existence of certain kind of flat sequence of polynomials [START_REF] El Abdalaoui | Calculus of Generalized Riesz Products[END_REF] (see Remarks ). Kahane's solution can be viewed in the following way: there is an ultraflat sequence of outer polynomials Q j , j = 1, 2, • • • which when multiplied by appropriate inner functions yields an ultraflat sequence of polynomials P j , j = 1, 2, • • • such that for each j, the coefficients of P j are equal in absolute value.

It may seem natural to conjecture, in the light of the proposition above, that if P j , j = 1, 2, • • • is a flat sequence a.e (dz) then the constant terms of their outer parts converge to 1. This however is false since for any given λ, -∞ < λ ≤ 0, it is possible to give a sequence P j , j = 1, 2, • • • of polynomials which is flat a.e. (dz) and such that

S 1 log | P j (z) | dz → λ as j → ∞ ; the sequence Q j , j = 1, 2, • • • of
their outer parts will be flat a.e.(dz) with the same property.

We will derive here a necessary condition for a sequence of polynomials to be ultraflat.

Consider an analytic trigonometric polynomial

P (z), with n terms, of L 2 (S 1 , dz) norm 1, P (0) > 0. Then for all z ∈ S 1 , 1 -ǫ ≤| P (z) | 2 ≤ 1 + ǫ where ǫ = sup z∈S 1 ||P (z)| 2 -1|. For any continuous f on S 1 , (1 -ǫ) S 1 | f | 2 dz ≤ S 1 | f (z) | 2 | P (z) | 2 dz ≤ (1 + ǫ) S 1 | f (z) | 2 dz; in particular, if f (z) = k j=1 z mj , a sum of characters of S 1 , then (1 -ǫ)k ≤ k i=1 k j=1 S 1 z mi-mj | P (z) | 2 dz ≤ (1 + ǫ)k, (1) 
Now

1 -ǫ ≤| P (z) | 2 = 1 + N j=-N j =0 b j z nj ≤ 1 + ǫ,
for some suitable non-zero b j = b -j , and integers n j = -n -j , -N ≤ j ≤ N, j = 0. Note that N ≤ n(n -1). Putting z = 1 we get

-ǫ ≤ N j=-N j =0 b j ≤ ǫ N j=-N j =0 b j 2 ≤ ǫ 2 < ǫ, (2) 
Consider now the functions z njb j , -N ≤ j ≤ N, j = 0. The gram matrix of these vectors in L 2 (S 1 , | P (z) | 2 dz) has entries

S 1 z ni-nj | P (z) | 2 dz -b i b j .
Sum of these entries, denoted by r = r(P ), can be seen to satisfy (by equations ( 1) and (2) above):

2N (1 -ǫ) -ǫ ≤ r ≤ 2N (1 + ǫ) + ǫ
Thus the sum of the entries of the gram matrix in question is of order N and diagonal entry of the ith row is 1

-|b i | 2 .
We record this calculation as: Proposition 2.3. Let P (z) be an analytic polynomial of L 2 (S 1 , dz) norm 1 and let | P (z) | 2 = 1 + N j=-N,j =0 b j z nj , ∀j, b j = 0. Let r(P ) denote the sum of the entries of the gram matrix of the random variable

z nj -b j , -N ≤ j ≤ N, j = 0. Then 2N (1 -ǫ) -ǫ ≤ r ≤ 2N (1 + ǫ) + ǫ where ǫ = sup z∈S 1 || P (z) | 2 -1 |. Corollary 2.4. Let P n , n = 1, 2, • • • be a sequence of polynomials of L 2 (S 1 , dz) norm 1. Let | P n (z) | 2 = 1 + Nn j=-Nn,j =0 b j,n z kj,n , ∀j, b j,n = 0. Then (a) if P n , n = 1, 2, • • • are uniformly bounded then so are the ratios r(Pn) Nn , n = 1, 2, • • • , (b) if the sequence P n , n = 1, 2, • • • is ultraflat then r(Pn)
2Nn → 1 as n → ∞. In particular this holds for any ultraflat sequence of Kahane polynomials.

The Gauss-Fresnel polynomials and Hardy-Littlewood polynomials are defined respectively as follows

G N (z) = 1 √ N N -1 k=0 g(k)z k , where g(k) = exp πik 2 N , H N (z) = 1 √ N 1 + N -1 k=1 v(k)z k , where v(k) = exp 2πi(ck ln(k)) .
Our terminology is due to the fact that the first polynomials are connected to the Gaussian sums and the Fresnel integral and the second are studied by Hardy-Littlewood in [START_REF] Hardy | Some Problems of Diophantine Approximation, A Remarkable Trigonometrical Series[END_REF]. Furthermore, it is well known that the Gauss-Fresnel polynomials and Hardylittlewood polynomials verify

G N (e 2πiθ ) ≤ 3C √ 2 + 1 √ 2 , ∀θ ∈ [0, 1), (3) 
and

H N (e 2πiθ ) ≤ K, ∀θ ∈ [0, 1) (4) 
.

where C and K are constants independent of N . These inequalities follow as an application of the van der Corput method. A nice account on this method can be found in [28, p.61-67], [27, p.31-37], [START_REF] Graham | van der Corput's method of exponential sums[END_REF], [22, p.15-18]. We present the proof of inequalities (3) and (4). The principal ingredient in the proof is the following lemma due to van der Corput [29, p.199], [22, p.15-18]. Lemma 2.5. Suppose that f is a real valued function with two continuous derivatives on [a, b]. Suppose also that there is some ρ > 0 such that

|f ′′ (u)| ≥ ρ, ∀u ∈ [a, b]. Then, a≤n≤b exp(2πif (n)) ≤ |f ′ (b) -f ′ (a)| + 2 4 √ ρ + 3 .
It suffice now to take in the first case

f (u) = uθ + u 2 2N with a = 0, b = N -1,
and in the second case

f (u) = cu ln(u) + uθ with [1, N ] = n-1 j=0 [2 j , 2 j+1 ] [2 n , N ], 2 n ≤ n < 2 N +1 .
We therefore have as a corollary of proposition 2.3 Theorem 2.6. The ratios r(GN ) N , r(HN ) N , N = 1, 2, • • • are bounded above. Newman in [START_REF] Newman | An L 1 extremal problem for polynomials[END_REF] established the L 1 -flatness of the Gauss-Fresnel polynomials. Besides, Littlewood proved in [START_REF] Littlewood | On the mean values of certain trigonometric polynomials[END_REF] that the Gauss-Fresnel polynomials converge in measure to 1. But, since the P N 's are bounded, Littlewood result implies convergence of || P N || 1 to 1 as N → ∞ hence Newman's result.

We further notice that Egorov theorem allows to see that for any sequence of polynomials (P n (z)) with

L 2 norm 1, |P n (z)| converge almost everywhere to 1 if and only if |P n (z)| 2 -1 converge to 0. Remarks. (1) Consider the linear fractional transformation f (z) = z-α 1-αz
where α is real positive and less than one. It maps S 1 onto itself and has power series expansion -α

+ ∞ k=1 (1 -α)α n z n whose sequence of partial sums S n , n = 1, 2, • • • converges uniformly to f (z). Thus the sequence of polynomials Sn ||Sn||2 , n = 1, 2, • • • is ultraflat. (2) Definition: Call a sequence P n (z) = a 0,n +a 1,n z +• • •+a kn,n z kn , n = 1, 2, • • • of analytic trigonometric polynomials, each P n of L 2 (S 1 , dz) norm 1, trivial if max{| a j,n |: 1 ≤ j ≤ k n } → 1 as n → ∞. If an ultraflat sequence P n (z) = a 0,n + a 1,n z + • • • + a kn,n z kn , n = 1, 2, • • •
has all its coefficients non-negative then it is necessarily trivial. This follows from the inequality (since a j,k 's are non-negative):

1 = kn j=0 a 2 j,n ≤ kn j=0 a j,n = P n (1) → 1
as n → ∞, which is same as 0 ≤ kn j=1 a j,n (1a j,n → 0 as n → ∞. Thus there are no nontrivial ultraflat sequences with all coefficients non-negative.

(3) Next we consider flat sequence in almost everywhere sense. If φ is a singular inner function, and if S n , n = 1, 2, • • • is the sequence of partial sums of its power series expansion, then

|Sn(z)| ||Sn||2 → 1 a.e. (dz) as n → ∞. The sequence Sn ||Sn||2 , n = 1, 2, • •
• is therefore a flat sequence in a.e (dz). sense, but not an ultraflat sequence.

(4) Call a function φ of absolute value 1 a.e. (dz) trivial if it is of the type cz n for some integer n, c will then be necessarily of absolute value 1. We note that if φ is a measurable function on S 1 of absolute value one a.e. (dz) with all its Fourier coefficients non-negative, then φ is necessarily trivial. This follows by comparing the Fourier coefficients of two sides of the identity 1 = φφ a.e.. Indeed if φ is non-trivial and has all its Fourier coefficients non-negative then φ has at least two Fourier coefficients positive which in turn implies that φφ has at least two Fourier coefficients positive, which is a contradiction. It is therefore not possible to get a non-trivial flat sequence P j , n = 1, 2, • • • in a.e. sense with coefficients of each P j non-negative and such that that the sequence P j , j = 1, 2, • • • itself converges to a function of absolute value a.e. (dz).

(5) This brings us to one of the main open question about flat sequence of polynomials in a.e. sense, namely, whether there exists an non-trivial flat sequence of polynomials in almost everywhere sense with all coefficients non-negative ? It is known that if there is such a sequence then there exists non-dissipative, ergodic nonsingular transformations with simple Lebesgue spectrum for the associated unitary operator [START_REF] El Abdalaoui | Calculus of Generalized Riesz Products[END_REF].

If As Bourgain [START_REF] Bourgain | On the spectral type of Ornstein class one transformations[END_REF] has shown the spectrum of a measure preserving rank one transformation is given (up to possibly some discrete points) by a generalized Riesz product made out of such polynomials. It is not known if there is a measure preserving rank one transformation with simple Lebesgue spectrum. This is equivalent to the question if there exist a flat sequence of polynomials in a.e. sense from the class B [START_REF] El Abdalaoui | Calculus of Generalized Riesz Products[END_REF]. We will give below a necessary condition for a sequence of polynomials from the class B to be flat a.e. (dz) which contrasts with the necessary condition for ultraflat sequences derived in section 1. Consider a sequence of distinct polynomials P j , j = 1, 2, • • • of the type

P n , n = 1, 2, • • • is a flat sequence of polynomials in a.e. sense then the constant term of | P n | 2 is one, but all other coefficients of | P n | 2 tend to zero uniformly as n → ∞. Indeed if k = 0 then S 1 z k | P n (z) | 2 dz = S 1 z k (| P n (z) | 2 -1)dz ≤ S 1 || P n (z) | 2 -1 | dz → 0 as n → 0, since | P n (z) | 2 → 1 as n → ∞.
P j (z) = 1 √ m j 1 + mj -1 k=1 z R k,j , (3) 
Such a sequence can not be ultraflat since P j (1) = √ m j → ∞ as j → ∞. As mentioned above it is not known if such a sequence can be flat a.e. (dz). However, we will show in next section that if a sequence of polynomials P j , j = 1, 2, • • • of this type converges to 1 a.e.(dz) then rj Nj → ∞ as j → ∞. This will follow from a more general result we prove below (Theorem 4.3). We will need some ideas and results about generalized product [START_REF] El Abdalaoui | Calculus of Generalized Riesz Products[END_REF] which we give the next section.

(8) An inequality due to D. J. Newman [START_REF] Newman | An L 1 extremal problem for polynomials[END_REF] is

f 2 2 f 4 3 4 ≤ f 2 3 1 ,
which is obtained by applying Hölder's inequality as follows: Since

S 1 | f | 2 dz = S 1 | f | 4 3 | f | 2 3 dz,
we get the required inequality by applying Hölder's inequality with p = 3, q = 3 2 . This inequality immediately implies that if P n , n = 1, 2, • • • is a sequence of polynomials of L 2 (S 1 , dz) norm 1, and if it is flat in L 4 -norm,, then it is flat in L 1 sense, hence over a subsequence it is flat in a.e. (dz)-sense. However this sufficiency criterion for flat sequence of polynomials is not applicable to a sequence of polynomials from the class B since for any polynomial P from the class, P 4 4 ≥ 2 [10].

Dissociated Polynomials and Generalized Riesz Products

Consider the following two products:

(1 + z)(1 + z) = 1 + z + z + z 2 = 1 + 2z + z 2 , (1 + z)(1 + z 2 ) = 1 + z + z 2 + z 3 .
In the first case we group terms with the same power of z, while in the second case all the powers of z in the formal expansion are distinct. In the second case we say that the polynomials 1 + z and 1 + z 2 are dissociated. More generally we say that a set of trigonometric polynomials is dissociated if in the formal expansion of product of any finitely many of them, the powers of z in the non-zero terms are all distinct [START_REF] El Abdalaoui | Calculus of Generalized Riesz Products[END_REF].

If P (z) = m j=-m a j z j , Q(z) = n j=-n
b j z j , m ≤ n, are two trigonometric polynomials then for some N , P (z) and Q(z N ) are dissociated. Indeed

P (z) • Q(z N ) = m i=-m n j=-n a i b j z i+N j .
If we choose N > 2n, then we will have two exponents, say i+N j and u+N v, equal if and only if i-u = N (v-j) and since N is bigger than 2n, this can happen if and only if i = u and j = v. More generally, given any sequence

P 1 , P 2 , • • • of polynomials one can find integers 1 = N 1 < N 2 < N 3 < • • • , such that P 1 (z N1 ), P 2 (z N2 ), P (z N3 ), • • • are dissociated.
Note that since the map z -→ z Ni is measure preserving, for any p > 0 the L p (S 1 , dz) norm of P i (z) and P i (z Ni ) remain the same, as also their logarithmic integrals, i.e, S 1 log

| P i (z) | dz = S 1 | log | P i (z Ni ) | dz. Now let P 1 , P 2 , • • • be a sequence of polynomials, each P i being of L 2 (S 1 , dz) norm 1. Then the constant term of each | P i (z) | 2 is 1. If we choose 1 = N 1 < N 2 < N 3 • • • so that | P 1 (z N1 ) | 2 , | P 2 (z N2 ) | 2 , | P 3 (z N3 ) | 2 , • • • are dissociated, then the constant term of each finite product n j=1 | P j (z Nj ) | 2
is one so that each finite product integrates to 1 with respect to dz. Also, since | P j (z Nj ) | 2 , j = 1, 2, • • • are dissociated, for any given k, the k-th Fourier coefficient of n j=1 | P j (z Nj ) | 2 is either zero for all n, or, if it is non-zero for some n = n 0 (say), then its remains the same for all n ≥ n 0 . Thus the measures (

n j=1 |P j (z Nj )| 2 )dz, n = 1, 2, • • • admit a weak limit on S 1 . It is called the gener- alized Riesz product of the polynomials | P j (z Nj ) | 2 , j = 1, 2, • • • . Let µ denote this measure. It is known [1] that k j=1 |P j (z Nj )|, k = 1, 2, • • • , converge in L 1 (S 1 , dz) to dµ dz as k → ∞. It follows from this that if k j=1 | P j (z Nj ) |, k = 1, 2, • • • converge a.e.
(dz) to a finite positive value then µ has a part which is equivalent to Lebesgue measure.

Flat a.e.(dz) Sequence of Polynomials: Necessary Conditions

Consider a polynomial of norm 1 in L 2 (S 1 , dz). Such a polynomial with m non-zero coefficients can be written as:

P (z) = ǫ 0 √ p 0 + ǫ 1 √ p 1 z R1 + • • • + ǫ m-1 √ p m-1 z Rm-1 , (4) 
where each p i is positive and their sum is 1, and where ǫ i 's are complex numbers of absolute value 1. Such a P gives a probability measure | P (z) | 2 dz on the circle group which we denote by ν. Now | P (z) | 2 can be written as

| P (z) | 2 = 1 + N k=-N, k =0 a k z n k ,
where each n k is of the form R i -R j , and each a k is a sum of terms of the type

ǫ i ǫ j √ p i √ p j , i = j, with R j -R i = n k , a k = a -k , 1 ≤ k ≤ N . We will write L = N k=-N, k =0 a k =| P (1) | 2 -1.
Consider the special case when each ǫ i = 1. Then

L = 0≤i,j≤m-1, i =j √ p i √ p j , is a function of probability vectors (p 0 , p 1 , p 2 , • • • p m-1
), which attains its maximum value when each p i = 1 m , and the maximum value is m(m-1) m = m -1. We conclude therefore that | L |≤ m -1, irrespective of whether ǫ i 's all one or not. We also note that m -1 ≤ N ≤ m(m -1). So, when p i 's are all equal and = 1 m we have

N L 2 ≤ m m -1 ≤ 2 for m ≥ 2.
Note that, in general, if N L 2 is bounded then L can not be close to zero, which in turn implies that a sequence of such polynomials stays away from 1 in absolute value at z = 1, and so can not ultraflat.

For each k, -N ≤ k ≤ N, k = 0, let D k denote the cardinality of the set of pairs (i, j), i = j, -N ≤ i, j ≤ N, i, j = 0, such that n j -

n i = n k . For each k, D k ≤ 2N -2 | k | +2 ≤ m(m -1), whence N k=-N k =0 a k D k ≤ m(m -1) N k=-N k =0 |a k | < m 3
We write

A(P ) = A = N k=-N k =0 a k D k , B(P ) = B = -N ≤i,j≤N 0 =i,j a i a j = (|P (1)| 2 -1) 2 .
Consider the random variables X(k) = z n ka k with respect to the measure ν. We write m(k, l) = S 1 X(k)X(l)dν, -N ≤ k, l ≤ N, k, l = 0 and M for the correlation matrix with entries m(k, l), -N ≤ k, l ≤ N, k, l = 0. We call M the covariance matrix associated to | P (z) | 2 . Since linear combination of X(k), -N ≤ k ≤ N, k = 0, can vanish at no more than a finite set in S 1 , and, ν is non discrete, the random variables X(k), -N ≤ k ≤ N, k = 0 are linearly independent, whence the covariance matrix M is non-singular.

Note that

m i,j = S 1 z ni-nj dν -a i a j , m i,i = 1-| a i | 2
Let r(P ) = r denote the sum of the entries of the matrix M . We have

r = N k=-N k =0 {i,j,ni-nj =n k ,i,j =0} m i,j + N k=-N k =0 m k,k = N k=-N k =0 {i,j,ni-nj=n k ,i,j =0} (a k -a i a j ) + 2N - N i=-N i =0 | a i | 2 = N k=-N k =0 a k D k + 2N - -N ≤i,j≤N i,j =0 a i a j = A + 2N + | L | 2
Since |A| is of order at most m 3 , N ≤ 1 2 m(m -1), and | L | 2 are of order m 2 , we see that r is of order at most m 3 . We also note that the quantity

C(P ) = C = {(i,j),-N ≤i,j≤N,i,j =0} | m i,j | is also of order at most m 3 . Indeed C ≤ N k=-N k =0 D k | a k | + {(i,j):i-j=k,i,j =0} | a i a j | + 2N,
which shows that C is of order at most m 3 .

We will now consider a sequence P j (z), j = 1, 2, • • • of polynomials, each P n of L 2 (S 1 , dz) norm 1. The quantities A(P j ), C(P j ) etc will now written as A j , C j etc. It will follow from our considerations below that if a sequence of polynomials

P j , j = 1, 2, • • • from the class B is flat then C(Pj ) m 2 j → ∞ as j → ∞
We will first prove two singularity lemmas under similar looking condition using Peyrière's method, and then use them to derive similar looking necessary conditions for the some classes of polynomials to admit flat (a.e (dz)) sequences. These classes include B but do not contain any ultraflat sequence of polynomials.

Lemma 4.1. If P j (z), j = 1, 2, • • • is a sequence of polynomials of L 2 (S 1 , dz) norm 1 such that (i) the squares of their absolute values are dissociated (ii) Nj L 2 j , j = 1, 2, • • • are bounded, (iii) ∞ j=1 min 1, Nj rj = ∞ then the weak limit µ of the measures n j=1 | P j (z) | 2 dz, n = 1, 2, • • • , is singular to Lebesgue measure. Proof. Write s j = min 1, Nj rj . Since ∞ j=1 s j = ∞, by Banach-Steinhaus theorem there is an l 2 sequence λ j , j = 1, 2, • • • of positive real numbers such that ∞ j=1 λ j s j = ∞. (5) 
Consequently, since

Nj L 2 j 's are assumed to be bounded, ∞ j=1 λ 2 j s 2 j L 2 j N j < ∞ (6) 
Let A j = {n k,j : -N j ≤ k ≤ N j , k = 0}. Let V j be the 1 × A j matrix with all entries equal to λj sj Lj . The squared Euclidean norm of this vector is

λ 2 j s 2 j L 2 j × 2N j
which when summed over j is convergent by equation ( 6) above. Let U j be the 1 × A j matrix with entries u(n k , j) = a k,j , -N j ≤ k ≤ N j , k = 0. Then the dot product

U j •V j = L j × λj sj
Lj which diverges when summed over j by the choice of λ j 's.

Let

f n = n j=1 k∈Aj λ j s j L j z n k , g n = n j=1 k∈Aj λ j s j L j (X j (k)). = n j=1 k∈Aj λ k s j L j (z n k -a k,j )
Now, for m < n ,

S 1 | f n -f m | 2 dz = n j=m+1 k,l∈Aj λ 2 j s 2 j L 2 j S 1 z n k -n l dz = n j=m+1 2 λ 2 j s 2 j L 2 j N j
→ 0 as m, n → ∞, and under the assumption of dissociation of the polynomials | P j | 2 , j = 1, 2, . . . ,

S 1 | g n -g m | 2 dµ = n j=m+1 k,l∈Aj λ 2 j s 2 j L 2 j m j (k, l) ≤ n j=m+1 λ 2 j s 2 j L 2 j r j (since s j = min 1, Nj rj , in case s j = 1, we have N j ≥ r j , otherwise s 2 j = Nj rj ,) ≤ n j=m+1 λ 2 j L 2 j N j → 0 as m, n → ∞ We conclude that f n 's converge in L 2 (S 1 , dz) to a function whose norm is ∞ j=1 2 λ 2 j s 2 j L 2 j × N j , and g n 's converge in L 2 (S 1 , dµ) to a function whose norm is no more than ∞ j=1 λ 2 j L 2 j N j . If µ is not singular to dz, then there is a sequence of l k , k = 1, 2, • • • of natural numbers and a z 0 ∈ S 1 such that f l k (z 0 ), g l k (z 0 ), k = 1, 2, • • •
converge to a finite limits, which in turn implies that

f l k (z 0 ) -g l k (z 0 ) = l k j=1 u∈Aj λ j s j L j a u,j = l k j=1 λ j s j is convergent as k → ∞ contrary to equation (5). Lemma 4.2. If (i) L j , j = 1, 2, • • • are uniformly bounded away from 0 (ii) ∞ j=1 L 2 j Cj = ∞,
then µ is singular to its translate µ u for every u ∈ S 1 for which the sequence | P j (u) |→ 1, as j → ∞.

Proof. By Banach-Steinhaus theorem there exist b j , j = 1, 2, • • • , with their sum of absolute squares finite such that for each j,

Lj Cj b j ≥ 0 and ∞ j=1 Lj √ Cj b j = ∞. Fix a v ∈ S 1 such that | P j (v) |→ 1 as j → ∞. Note that ∞ j=1 Nj k=-N j k =0 a j 1 -v n k,j = ∞ j=1 L j -| P j (v) | 2 -1 . Since | P j (v) | 2 → 1 as j → ∞, the series ∞ l=1 L-(|Pj(v)| 2 -1) √ Cj b j diverges. Let B j be the 1 × 2N j with all entries equal to bj √ Cj , j = 1, 2, • • • . Then (M j B j , B j ) = r j | b j | 2 C j ≤| b j | 2 , whence ∞ j=1 (M j B j , B j
) is a finite sum, which in turn implies that the series in j

∞ j=1 Nj k=-N j k =0 b j C j (z n k,j -a k,j )
converges a.e. (µ) over a subsequence.

Consider now the translated measure µ v (•) = µ(v(•)). We have

S 1 z n k,j dµ v = v -n k,j a k,j .
The covariance matrix M v,j of the random variables z n k,jv -n k,j a k,j , -N j ≤ k ≤ N j , k = 0 with respect to the translated measure µ v has entries v -(n k,j -n l,j ) M k,l , which can be seen to be unitarily equivalent to M j . Indeed,

M v,j = U -1 j M j U j , where U j is a 2N j × 2N j diagonal matrix with entries v n-N j ,j , v n-N j +1,j , • • • , v n-1,j , v n1,j • • • , v nN j -1,j , v nN j ,j ,
along the diagonal in that order.

We note that

∞ j=1 (M v,j B j , B j ) = ∞ j=1 r v,j C j | b j | 2 < ∞,
where r v,j is the sum of the entries of the of the matrix M v,j , j = 1, 2, • • • . It is clear that for all j, |r v,j | ≤ C j .

As before we conclude that the series

∞ j=1 Nj k=-N j , k =0 b j C j z n k,j -v -n k,j a k,j
converges a.e µ v over a subsequence subsequence.

If µ and µ v are not mutually singular, then there exist an z 0 ∈ S 1 and an increasing sequence of natural K p , p = 1, 2, • • • of natural numbers such that the sequences (with p = 1, 2,

• • • ) Kp j=1 Nj k=-N j k =0 b j C j (z n k,j 0 -a k,j ) Kp j=1 Nj k=-N j k =0 b j C j (z n k,j 0 -v -n k,j a k,j )
converge to a finite number as p → ∞. The difference of the two partial sums is

Kp j=1 Nj k=-N j k =0 b j C j a k,j (1 -v -n k,j ),
which diverges as p → ∞. The contradiction shows that µ and µ v are singular.

The following theorem is proved in [START_REF] El Abdalaoui | Calculus of Generalized Riesz Products[END_REF]. We are now in a position to give two similar looking but distinct necessary conditions for a sequence of polynomials in certain classes to be flat in a.e (dz) sense. The class B is included in both these classes. 

P j k = Q k , k = 1, 2, • • • and natural numbers l 1 < l 2 < • • • such that the polynomials | Q k (z l k ) | 2 , k = 1, 2, • • • are dissociated and the infinite product ∞ k=1 | Q k (z l k ) | 2
has finite non-zero limit a.e. (dz). Also, since the absolute squared Q k (z l k )'s are dissociated, the measures

µ n def = n k=1 | Q k (z l k ) | 2 dz
converge weakly to a measure µ on S 1 for which dµ dz > 0 a.e (dz), indeed dµ dz

= ∞ k=1 | Q(z l k ) | 2 a.e.(dz)
Since the map z -→ z l k preserves the Lebesgue measure on S 1 , the m j k (u, v)'s for

| P j k (z l k ) | 2 dz remains the same as for | P j k (z) | 2 dz. If ∞ k=1 Nj k rj k = ∞, then
by Lemma 4.1 µ will be singular to (dz) which is not true. So

∞ k=1 Nj k rj k < ∞. If Nj k rj k , j = 1, 2, • • •
does not tend to 0 as j → ∞ then over a subsequence these ratios remain bounded away from 0. But by the above considerations, over a further subsequence these ratios have a finite sum, which is a contradiction. So Nj rj → 0 as j → ∞ Part (ii) of the theorem is proved similarly, applying Lemma 4.2 this time.

Remarks. Over a subsequence the Gauss-Fresnel polynomials G N , N = 1, 2, • • • are uniformly bounded away from 1 in absolute value at z = 1. Over a further subsequence they converge to 1 in absolute value a.e. (dz) since they are L 1 (S 1 , dz) flat. By Theorem 4.4 (ii) we see that the ratios C(GN ) N 2 , N = 1, 2, • • • are unbounded (see Theorem 2.6).

Connection with combinatorial number theory

In this section we discuss the ratios C m 2 for the class B. In particular we give a sequence P j , j = 1, 2, • • • from this class for which

C(Pj ) m 2 j , j = 1, 2, • • • diverges but P j , j = 1, 2, • • • is not flat in a.e. (dz) sense.
For a given polynomial P

(z) = 1 √ m (1 + z R1 + z R2 + • • • + z Rm-1 ) of class B, with | P (z) | 2 = 1 + N j=1 a j (z nj + z -nj ),
we know that C(P ) m 2 has the same order as

2 N j=1 aj Dj m 2
. However just ensuring that each D j receives maximum possible value, namely Nj, is not enough to ensure that 2 N j=1 a j D j is large in comparison with m 2 . For consider the case when for each j, R j = j, so that

P (z) = 1 √ m (1 + z + z 2 + • • • + z m-1 ) | P (z) | 2 = 1 + 1 m m-1 j=1 (m -j)(z j + z -j ) Now each D j = m -j, so that 2 m-1 j=1 a j D j = 1 m m-1 j=1 (m -j) 2 = 1 m m-1 j=1 j 2 = (m + 1)(2m + 1) 6 
which is of order m 2 .

One can ensure C large in comparison with m 2 if each D j has its maximum possible value, namely, Nj, and N is of higher order than m. Using some combinatorial number theory one can arrange this.

Let R be a natural number > 2 and let m ≥ 2 be a natural number

≤ R. Write R 0 = 0. Let R 0 < R 1 < R 2 < • • • < R m-1 =
R be a set of m integers between 0 and R. Denote it by S. Note that 0 and R are in S. Let

T = {(R i , R j ) : i < j, 0 ≤ i, j ≤ m -1}.
Let [0, R] be the set of integers from 0 to R. Define F : T → [0, R] as follows:

F (R i , R j ) = R j -R i , (R i , R j ) ∈ T.
Since F depends on S, we will write F S for F when needed.

For any r ∈ [0, R], write d(r) =| F -1 (r) | = the cardinality of F -1 (r). Note that F is one-one if and only of d(r) ≤ 1 for all r. If F is one-one, then S is called Sidon subset of [0, R]. As pointed out to us by R. Balasubramanian, if S is a Sidon set, then F can not be onto (unless R ≤ 6.). This is a consequence of a well known result of Erdös and Turan [START_REF] Erdös | On a Problem of Sidon in Additive Number Theory and and some related problems[END_REF] We do not know if one can choose, for each R, a suitable Sidon set in S R ⊂ [0, R], with 0, R ∈ S R , such that ratios C(PR,S R ) |SR| 2 , R = 1, 2, • • • are unbounded, where P R,SR is the polynomial in class B with frequencies in S R , and if such a sequence of polynomials can in addition be flat in a.e. (dz) sense. We now give an example of a sequence P j , j = 1, 2, • • • from the class B for which C(Pj ) m 2 j → ∞ but the sequence P j , j = 1, 2, . . . is not flat in a.e (dz) sense. Let

which says, that if S ⊂ [1, R] is a Sidon set then | S | is at most R 1 2 + R 1 4 + 1, see [19]. So, if S is a Sidon set then the cardinality | T | of T is 1 2 | S | (| S | -1) < R. Let M (S) = max i∈[0,R] d(i).
P j (z) = 1 √ 2j j-1 i=0 z i + j i=1 z ij = 1 √ 2j 1 -z j 1 -z + 1 √ 2j 1 -z j 2 1 -z j ,
then clearly, for a given z = 1, P j (z) → 0 over every subsequence j n , n = 1, 2, • • • over which z jn , n = 1, 2 • • • stays uniformly away from 1, whence P j (z), j = 1, 2, • • • is not a flat sequence in a.e. (dz) sense. Note that the set S j of indices in P j is the interval of integers [0, j -1] together with the integers j, 2j, • • • , (j -1)j, j 2 . Also S j has 2j elements, and, F Sj (T j ) = [1, j 2 ]. So, for each j, | P j (z) | 2 admits all the frequencies from 1 to j 2 , whence, as seen above,

C(Pj ) j 2
→ ∞ as j → ∞.

The equality F Sj (T j ) = [0, j 2 ] in fact shows that λ(j 2 ) ≤ 2j from which it is easy to deduce that for any j, λ(j) ≤ 2 √ j + 2. We note that j 2 < 1 2 (( √ 2)j + 1)( √ 2)j, however we do not know if λ(j 2 ) ≤ [( √ 2)j] + k for some positive integer k, independent of j. Also not known is how small the the largest d(i) can be when S is of cardinality λ(j 2 ), and F S (T ) = [1, j 2 ] ?

We give below some probabilistic considerations which need further investigation. Let R > 2 be an integer, and let S ⊂ [0, R 2 ] of cardinality 2R, with 0, R ∈ S.

Let Ω R denote the the collection of all such subsets S in [0, R 2 ]. Cardinality of Ω R is ( R 2 -1 2R-2 ). Equip Ω with uniform distribution, denoted by P R . Let P (R, S) denote the polynomial of class B with frequencies in S. For a fixed ǫ > 0, one can consider E(ǫ, R) = P R ({S :|| (| P (R, S) | 2 -1) || 1 > ǫ}). If for every ǫ > 0, E(ǫ, R) → 0 as R → ∞, we will have a probabilistic proof of the existence of a sequence flat polynomials (in a.e. (dz) sense) in the class B.

1 √

 1 This in turn implies that for a flat sequence P n , n = 1, 2, • • • in a.e. sense with coefficients of all P n non-negative, the second largest coefficient of P n (z) tends to zero as n → ∞, which means that all except possibly the largest coefficient of P n tend to zero uniformly as n → ∞. If the largest coefficient of P n tends to 1 as n → ∞ then P n , n = 1, 2, • • • is a trivial flat sequence. It is an open question whether there exists an a.e (dz) flat sequence P n , n = 1, 2, • • • with non-negative coefficients with largest of the coefficients of P n , n = 1, 2, • • • uniformly bounded away from 1. (6) Given a flat sequence of polynomials P n , n = 1, 2, • • • in a.e. sense, we can form the sequence M n , n = 1, 2, • • • of covariance matrices associated to it, and the sums r n , n = 1, 2, • • • of entries of M n , n = 1, 2, • • • . Since the sequence is flat in a.e. sense, we see, from the considerations above, that the diagonal terms of M n , n = 1, 2, • • • tend to 1 while the off diagonal terms converge to 0 uniformly. Thus M n , n = 1, 2, • • • converges to the infinite identity matrix entrywise, where, moreover, the off diagonal terms tend to zero uniformly. In what follows we will study the behavior of the sequence r n , n = 1, 2, • • • , for the case when the sequence P n , n = 1, 2, • • • is flat in a.e. sense. We will also bring into play a sequence C n , n = 1, 2, • • • where, for each n, C n is the sum of the absolute values of entries of M n , n = 1, 2, • • • (7) Consider now the class B of polynomials of the type

Theorem 4 . 3 .

 43 Let P j , j = 1, 2, • • • be a sequence of non-constant polynomials of L 2 (S 1 , dz) norm 1 such that lim j→∞ | P j (z) |= 1 a.e. (dz) then there exists a subsequenceP j k , k = 1, 2, • • • and natural numbers l 1 < l 2 < • • • such that the polynomials P j k (z l k ), k = 1, 2, • • • are dissociated and the infinite product ∞ k=1 |P j k (z l k )| 2 hasfinite nonzero value a.e (dz).

Theorem 4 . 4 . 2 j 2 j

 4422 (i) If Nj L , j = 1, 2, • • • remain bounded and lim j→∞ |P j (z)| = 1 a.e. (dz) then rj Nj → ∞ as j → ∞. (ii) If L j , j = 1, 2, • • • are uniformly bounded away from 0 and lim j→∞ |P j (z)| = 1 a.e. (dz) then Cj m → ∞ as j → ∞ Proof. Under the hypothesis of part (i) of the theorem , by theorem 4.3 we get a subsequence

1 2 1 2 1 2. 2

 1112 The quantities M (S) and | F S (T ) | are in some sense 'balanced' in that if one is large the other is small, and M (S) | F S (T ) | seems to be of order | S | 2 . This is clearly is true when S is a Sidon set and the other extreme case whenS = [0, m -1] Let λ(R) = min | S |: S ⊂ [0, R], F S is onto . It can be shown that λ(R) ≤ 2[R ] + 2, where [R ] denotes the integral part of R We show that C m 2 is not bounded over the class B. For a given positive integer R > 2 choose S ⊂ [0, R] of cardinality λ(R) and such that F S (T ) = [0, R]. Let m denote λ(R), let R 0 < R 1 < • • • < R m-1 = R be the set S. Let P (z) = 1 √ m (1 + z R1 + z R2 + • • • + z Rm-1 )| P (z) | 2 is unbounded over the class B.
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