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environment
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Institut de Mathématiques de Marseille, UMR 7373, 13453 Marseille, France

Abstract

This paper is devoted to reaction-diffusion equations with bistable nonlinearities

depending periodically on time. These equations admit two linearly stable states.

However, the reaction terms may not be bistable at every time. These may well be

a periodic combination of standard bistable and monostable nonlinearities. We are

interested in a particular class of solutions, namely pulsating fronts. We prove the

existence of such solutions in the case of small time periods of the nonlinearity and

in the case of small perturbations of a nonlinearity for which we know there exist

pulsating fronts. We also study uniqueness, monotonicity and stability of pulsating

fronts.

Keywords: Bistable reaction diffusion equation; Pulsating front; Time periodicity.

1 Introduction and main results

In this paper we investigate equations of the type

ut − uxx = fT (t, u), t ∈ R, x ∈ R, (1)

where
fT (t + T, u) = fT (t, u), ∀t ∈ R, ∀u ∈ [0, 1],

and
fT (t, 0) = fT (t, 1) = 0, ∀t ∈ R. (2)

Throughout this article, we assume the function fT : R × [0, 1] → R is of class C1 with
respect to t uniformly for u ∈ [0, 1], and C2 with respect to x uniformly for t ∈ R. The
main hypotheses imposed on the function fT are the following

1

T

∫ T

0
fT

u (s, 0)ds < 0 and
1

T

∫ T

0
fT

u (s, 1)ds < 0. (3)

We say the function fT is bistable on average if it satisfies hypotheses (2) and (3).

∗Address correspondence to Benjamin Contri: benjamin.contri@univ-amu.fr
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We begin by recalling the definition of monostable and bistable homogeneous nonlinear-
ities. A function f : [0, 1] → R is said monostable if it satisfies f(0) = f(1) = 0 and
f > 0 on (0,1). If in addition to this we have f(u) ≤ f ′(0)u on (0, 1), we say that f is of
KPP type. A function f : [0, 1] → R is called bistable if there exists θ ∈ (0, 1) such that
f(0) = f(θ) = f(1) = 0, f < 0 on (0, θ) and f > 0 on (θ, 1).

We give now two examples of bistable on average functions fT : R × [0, 1] → R. The first
example is a bistable homogeneous function balanced by a periodic function depending
only on time. Namely, if g : [0, 1] → R is a bistable function and m : R → R is a T -periodic
function, then the function fT defined by fT (t, u) = m(t)g(u) is bistable on average if and
only if the quantity 1

T

∫ T
0 m(s)ds is positive and both g′(0) and g′(1) are negative. The

second example of bistable on average function is a combination of a bistable homogeneous
function and a monostable homogeneous function, both balanced by periodic functions
(with the same period) depending only on time. Namely, if g1 : [0, 1] → R is a monostable
function, g2 : [0, 1] → R is a bistable function, and m1, m2 : R → R are two T -periodic
functions, then the function fT defined by fT (t, u) = m1(t)g1(u) + m2(t)g2(u) is bistable
on average if and only if we have µ1g′

1(0) + µ2g′

2(0) < 0 and µ1g
′

1(1) + µ2g
′

2(1) < 0,
where µi := 1

T

∫ T
0 mi(s)ds. It is important to note that for a bistable on average func-

tion, there can very well exist times t for which the homogeneous function fT (t, ·) is
not a bistable function in the sense of homogeneous nonlinearities. Indeed, if we set
in the previous case g1(u) = u(1 − u), g2(u) = u(1 − u)(u − θ) with 0 < θ < 1,
m1(t) = sin(2πt) and m2(t) = 1 − sin(2πt), we can notice that although the function
f 1(t, u) = m1(t)g1(u) + m2(t)g2(u) is bistable on average, the homogeneous function
f 1(1/4, ·) is of KPP type.

Context

The study of reaction-diffusion equations began in the 1930’s. Fisher [12] and Kolmogorov,
Petrovsky and Piskunov [17] were interested in the equation

ut − uxx = f(u), t ∈ R, x ∈ R, (4)

with a nonlinearity f of KPP type. They proved existence and uniqueness (up to trans-

lation) of planar fronts Uc of speed c, for all speeds c ≥ c∗ := 2
√

f ′(0), that is, for all

c ≥ c∗, there exists a function uc satisfying (4) and which can be written uc(t, x) =
Uc(x − ct), with 0 < Uc < 1, Uc(−∞) = 1 and Uc(+∞) = 0. Numerous articles have
been dedicated to the study of existence, uniqueness, stability, and other properties of
planar fronts for various nonlinearities, see e.g. [2, 11, 16, 18, 24]. In particular, for
bistable nonlinearities, there exists a unique (up to translation) planar front U(x − ct)
and a unique speed c solution of (4). When the nonlinearity is not homogeneous, there
are no planar front solutions of (1) anymore. For equations with coefficients depending on
the space variable, Shigesada, Kawasaki and Teramoto [28] defined in 1986 a notion more
general than the planar fronts, namely the pulsating fronts. This notion can be extended
for time dependent equations as follows.

Definition 1.1. A pulsating front connecting 0 and 1 for equation (1) is a solution u :
R × R → [0, 1] such that there exists a real number c and a function U : R × R → [0, 1]
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verifying






u(t, x) = U(t, x − ct), ∀t ∈ R, ∀x ∈ R,

U(·, −∞) = 1, U(·, +∞) = 0, uniformly on R,

U(t + T, x) = U(t, x), ∀t ∈ R, ∀x ∈ R.

So, a pulsating front connecting 0 and 1 for equation (1) is a solution couple (c, U(t, ξ))
of the problem







Ut − cUξ − Uξξ − fT (t, U) = 0, ∀(t, ξ) ∈ R × R,

U(·, −∞) = 1, U(·, +∞) = 0, uniformly on R,

U(t + T, ξ) = U(t, ξ), ∀(t, ξ) ∈ R × R.

(5)

For an environment depending on space only, we can refer to [4, 5, 6, 7, 8, 10, 15, 19, 29, 30,
31] for some existence, uniqueness and stability results. As far as environments depending
on time (and possibly on space), Nolen, Rudd and Xin in [22] were interested in equations
with a homogenous nonlinearity and an advection coefficient depending periodically on
space and on time. Frejacques in [13] proved the existence of pulsating fronts in the case
of a time periodic environment with positive and combustion nonlinearities. Nadin in [21]
proved the existence of pulsating fronts in an environment depending on space and time
with KPP type nonlinearity. If we consider Nadin’s results in the context of our equation,
he imposes in his existence results that the steady state 0 is unstable in the sense that
the principal eigenvalue associated with the equilibrium 0 is negative. Yet, we shall see in
section 2 that hypotheses (2) and (3) in our paper are equivalent to the fact that 0 and
1 are stable steady states, that is, the principal eigenvalues associated with equilibria 0
and 1 are positive. Shen in [25] and [26] defined and proved the existence of pulsating
fronts in the case of an almost-periodic environment with a bistable nonlinearity, that is,
for functions f which satisfy f(·, 0) = f(·, 1) = 0 and are negative near the equilibrium 0
and positive near the equilibrium 1 for any time. More exactly, it is assumed that there
exists γ > 0 and δ ∈ (0, 1/2) such that







f(t, u) ≤ −γu, ∀(t, u) ∈ R × [0, δ],

f(t, u) ≥ γ(1 − u), ∀(t, u) ∈ R × [δ, 1].

Alikakos, Bates and Chen in [1] (in the case of a periodic nonlinearity) and Shen in [27]
(in the case of an almost periodic nonlinearity) consider as in our paper the equation (1).
They impose the Poincaré map associated with the function fT has exactly two stable
fixed points and one unstable fixed point in between. They prove under this hypothesis
there exists a unique pulsating front (U, c) solution of the problem (5). They show that for
each t, the function U(t, ·) is monotonic and that U , Uξ and Uξξ exponentially approach
their limits as ξ → ±∞. They also prove a global exponential stability result. In section
3, we will see that hypotheses (2) and (3) are equivalent to the fact that 0 and 1 are
two stable fixed points of the Poincaré map associated with fT . Let us note that in this
paper, we do not impose the uniqueness of intermediate fixed points between 0 and 1.

We now give the main results of the paper.

Uniqueness and monotonicity of pulsating fronts

In this paper, we begin by showing the monotonicity of pulsating front solving (5). Then
we use this result to prove the uniqueness (up to translation) of the pair (U, c) solving
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(5). For that purpose, we use some new comparison principles adapted to hypotheses (2)
and (3), that we show using sliding methods. We have the following theorem.

Theorem 1.1. There exists at most one couple (c, U) solution of problem (5), the function
U(t, ξ) being unique up to shifts in ξ. In this case, we have that

Uξ(t, ξ) < 0, ∀t ∈ R, ∀ξ ∈ R.

Asymptotic stability of pulsating fronts

We now investigate global stability of pulsating fronts. In case of homogeneous bistable
nonlinearities, Fife and McLeod in [11] proved the global stability of planar fronts. For
heterogeneous bistable nonlinearities, Alikakos, Bates and Chen [1] (in case depending on
time variable) and Ding, Hamel and Zhao [8] (in case depending on space variable) also
proved a global exponential stability result. In our case with assumptions (2) and (3),
the following stability result is proved.

Theorem 1.2. Assume there exists a pulsating front U with speed c solution of (5). We
consider a solution u of the Cauchy problem







ut − uxx = fT (t, u) ∀t > 0, ∀x ∈ R,

u(0, x) = h(x), ∀x ∈ R,

where the initial condition h : R → [0, 1] is uniformly continuous. We denote v(t, ξ) =
u(t, x) = u(t, ξ + ct). There exists a constant γ ∈ (0, 1) depending only on fT such that if

lim inf
ξ→−∞

h(ξ) > 1 − γ and lim sup
ξ→+∞

h(ξ) < γ,

then, there exists ξ0 ∈ R such that

lim
t→+∞

(

v(t, ξ) − U(t, ξ + ξ0)
)

= 0, uniformly for ξ ∈ R.

Roughly speaking, if the initial condition h "looks like" a front, then v converges to a front
as t → +∞. To prove this theorem we use the method of sub- and supersolution. We
adapt here some ideas used in [11] in case of a bistable homogeneous nonlinearity to our
equation (1) with assumptions (2) and (3).

Existence and convergence of pulsating fronts for small periods

We are interested here in understanding the role of the period T of the function fT in the
limit of small periods. We consider nonlinearities of the form

fT (t, u) = f(
t

T
, u), ∀t ∈ R, ∀u ∈ [0, 1].

The function f is 1-periodic in time, and hypothesis (3) becomes
∫ 1

0
fu(s, 0)ds < 0 and

∫ 1

0
fu(s, 1)ds < 0.

Consequently, the sign of the quantities (3) do not depend on the period T . In order to
understand the homogeneization limit as T → 0+, we define the averaged nonlinearity

g : [0, 1] → R

u 7→
∫ 1

0
f(s, u)ds

(6)
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We assume that the function g is a bistable function, that is, there exists θg ∈ (0, 1) such
that 





g(0) = g(θg) = g(1) = 0,

g(u) < 0, ∀u ∈ (0, θg), g(u) < 0, ∀u ∈ (θg, 1).

We also assume that

g′(θg) > 0. (7)

Let us noticing that according to (3), one gets g′(0) < 0 and g′(1) < 0. We have the
following existence theorem.

Theorem 1.3. Under the above assumptions, there exists Tf > 0 such that for all T ∈
(0, Tf), there exists a unique pulsating front (UT (t, ξ), cT ) solving







(UT )t − cT (UT )ξ − (UT )ξξ = fT (t, UT ), on R × R,

UT (·, −∞) = 1, UT (·, +∞) = 0, uniformly on R,

UT (t + T, ξ) = UT (t, ξ), ∀(t, ξ) ∈ R × R,

UT (0, 0) = θg.

We are then interested in the convergence of the couple (cT , UT ) as T → 0. We recall
from [2] that for the bistable nonlinearity g, there exists a unique planar fronts (cg, Ug)
solving







U ′′

g + cgU ′

g + g(Ug) = 0, on R,

Ug(−∞) = 1, Ug(+∞) = 0,

Ug(0) = θg.

For any 1 ≤ p ≤ +∞, we define

W 1,2;p
loc (R2) =

{

U ∈ Lp
loc(R

2) | ∂tU, ∂ξU, ∂ξξU ∈ Lp
loc(R

2)
}

.

For any k ∈ N and any α ∈ (0, 1), we also define Ck,α(R2) the space of functions of class
Ck(R2) with the kth partial derivatives α-Hölder.

In terms of convergence, we extend the function Ug on R
2 by Ug(t, ξ) = Ug(ξ) for any

(t, ξ) ∈ R
2, and we have the following result

Theorem 1.4. As T → 0, the speed cT converges to cg and UT converges to UT in
W 1,2;p

loc
(R2) weakly and in C0,α

loc
(R2), for any 1 < p < +∞ and for any α ∈ (0, 1).

Let us mention that for nonlinearities depending only on space variable, such convergence
results were proved by Ding, Hamel and Zhao [8] in the bistable case and by El Smaily
[9] in the KPP case.

Existence and convergence of pulsating fronts for small perturbations

In this part, we consider some families of functions fT,ε : R × [0, 1] → R having the same
regularity as fT and such that







fT,ε(t, 0) = fT,ε(t, 1) = 0, ∀t ∈ R,

fT,ε(t, u) = fT,ε(t + T, u), ∀(t, u) ∈ R × [0, 1].
(8)
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We also suppose that there exists a bounded function ω(ε) : (0, +∞) → R satisfying

ω(ε)
ε→0
−−→ 0 and such that

|fT
u (t, u) − fT,ε

u (t, u)| ≤ ω(ε), ∀(t, u) ∈ [0, T ] × [0, 1]. (9)

We will first show that if fT satisfies the hypotheses of existence and uniqueness theorem
of Alikakos, Bates and Chen [1], then for ε > 0 small enough, the Poincaré map associated
with fT,ε also verifies it. As consequence, the following theorem holds.

Theorem 1.5. We suppose the Poincaré map associated to fT has exactly two stable fixed
points 0 and 1 and one unstable fixed point α0 between both.

Then, there exists ε0 > 0 such that for all ε ∈ (0, ε0), there exists a unique pulsating front
(Uε(t, ξ), cε) solving







(Uε)t − cε(Uε)ξ − (Uε)ξξ − fT,ε(t, Uε) = 0, on ∈ R × R,

Uε(·, −∞) = 1, Uε(·, +∞) = 0, uniformly on R,

Uε(t + T, ξ) = Uε(t, ξ), ∀(t, ξ) ∈ R × R,

Uε(0, 0) = α0.

(10)

Let us note that by hypothesis on fT , there exists a unique pulsating front (UT , cT ) solving
problem (5) with UT (0, 0) = α0. We have then the following convergence result

Theorem 1.6. As ε → 0, the speed cε converges to cT and Uε converges to UT in
W 1,2;p

loc
(R2) weakly and in C0,α

loc
(R2), for any 1 < p < +∞ and for any α ∈ (0, 1).

Outline

Section 2 of this paper is devoted to some equivalent formulations of hypotheses (2)
and (3), in particular using Poincaré map and principal eigenvalue. In the following
two sections, we prove uniqueness, monotonicity and uniform stability of pulsating front
solution of (1) that is, Theorems 1.1 and 1.2. In Section 5, we prove Theorems 1.3 and
1.4 on the homogenization limit. In Section 6, we prove Theorems 1.5 and 1.6 on a small
perturbation of a given pulsating front.

2 Preliminaries on the characterization of the asymp-

totic stability of equilibrium state

This part is devoted to the study of various characterizations of bistable on average
functions. As we mentioned it previously, it is necessary to know its various points of
view to be able to place the results of our paper in the literature already existing. We
begin by defining the notion of equilibrium state.

Definition 2.1. Consider the problem







∂tU − c∂ξU − ∂ξξU = fT (t, U) on R
2,

U(t, ξ) = U(t + T, ξ), ∀t ∈ R, ∀ξ ∈ R.
(11)

The T -periodic solutions of the equation y′ = fT (t, y) are called equilibrium states of (11).
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Indeed, if U : R
2 → [0, 1] is a solution of (11) and if there exists a function t 7→ θ(t)

such that |U(t, ξ) − θ(t)|
ξ→∞
−−−→ 0 for all t ∈ R, then, by standard parabolic estimates, the

function θ is a T -periodic solution of the equation y′ = fT (t, y) on R. We recall the notion
of uniformly asymptotic stability of such an equilibrium state.

Definition 2.2. Let t 7→ θ(t) be an equilibrium state of (11). Let (t, ξ) 7→ U(t, ξ) be
another solution of the same equation. We say that θ is a uniformly asymptotic stable
equilibrium if there exists η > 0 such that

(

∀ξ ∈ R, |U(0, ξ) − θ(0)| < η
)

=⇒ lim
t→+∞

|U(t, ·) − θ(t)| = 0 unif. on R.

If θ is not a uniformly asymptotic stable equilibrium, we say it is a uniformly asymptotic
unstable equilibrium.

We approach now the notion of principal eigenvalue.

Proposition 2.1. [14],[20] Let t 7→ θ(t) an equilibrium state of (11). There exists a
constant λθ,fT and a function Φθ,fT ∈ C1,2(R × R,R) such that







∂tΦθ,fT − c∂ξΦθ,fT − ∂ξξΦθ,fT = fT
u (t, θ(t))Φθ,fT + λθ,fT Φθ,fT on R

2,

Φθ,fT > 0 on R
2,

Φθ,fT (·, ξ) is T − periodic, ∀ξ ∈ R,

Φθ,fT (t, ·) is 1 − periodic, ∀t ∈ R.

(12)

The real number λθ,fT is unique. It is called the principal eigenvalue associated with the
function fT and the equilibrium state θ. The function Φθ,fT is unique up to multiplication
by a positive constant. It is called the principal eigenfunction associated with the function
fT and the equilibrium state θ.

We give an explicit formulation of the principal eigenvalue.

Proposition 2.2. The function Φθ,fT does not depend on the variable ξ, and the constant
λθ,fT is given by

λθ,fT = −
1

T

∫ T

0
fT

u (s, θ(s))ds.

Proof. We know that Φθ,fT is unique up to multiplication by a positive constant. Let us
suppose for example that ‖Φθ,fT ‖∞ = 1. Let ξ0 ∈ R. The function Φθ,fT (t, ξ + ξ0) is also
a positive solution of the problem (12). Yet ‖Φθ,fT (·, · + ξ0)‖∞ = 1. So, by uniqueness
Φθ,fT (t, ξ + ξ0) = Φθ,fT (t, ξ) for any (t, ξ) in R

2. Since ξ0 is arbitrary, it follows that Φθ,fT

does not depend on the variable ξ. Furthermore, the first equation in (12) becomes

∂tΦθ,fT = fT
u (t, θ(t))Φθ,fT + λθ,fT Φθ,fT , ∀t ∈ R.

We divide this equation by Φθ,fT , then we integrate between 0 and T . According to
the fact that Φθ,fT is a T -periodic function, we obtain the expression of λθ,fT given in
Proposition 2.2.

We give a characterization of the uniformly asymptotic stability of the equilibrium state
θ from the principal eigenvalue λθ,fT .

Proposition 2.3. If λθ,fT > 0 (resp. < 0), then the equilibrium state θ is uniformly
asymptotically stable (resp. unstable).
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Proof. We are going to handle the case where λθ,fT > 0. We consider a solution U(t, ξ)
of (11). We saw that the function Φθ,fT = Φθ,fT (t) satisfies







∂tΦθ,fT = fT
u (t, θ(t))Φθ,fT + λθ,fT Φθ,fT on R,

Φθ,fT > 0,

Φθ,fT is T − periodic.

There exists ε0 > 0 small enough such that for any t ≥ 0 we have

−
λθ,fT

4
ε0e

−
λ

θ,fT

2
tΦθ,fT (t) ≤ fT (t, θ(t) + ε0e

−
λ

θ,fT

2
tΦθ,fT (t))−

fT (t, θ(t)) − fT
u (t, θ(t))ε0e

−
λ

θ,fT

2
tΦθ,fT (t) ≤

λθ,fT

4
ε0e

−
λ

θ,fT

2
tΦθ,fT (t).

We note χ(t) = θ(t) + ε0e
−

λ
θ,fT

2
tΦθ,fT (t). For any t ≥ 0, we have

χt(t) − cχξ(t) − χξξ(t) − fT (t, χ(t)) ≥ ε0e
−

λ
θ,fT

2
tΦθ,fT (t)[λθ,fT −

λθ,fT

2
−

λθ,fT

4
] > 0.

If we suppose that for any ξ in R, we have U(0, ξ) ≤ θ(0) + ε0Φ0,fT (0), then, applying the
maximum principle, we have that

U(t, ξ) ≤ θ(t) + ε0e
−

λ
θ,fT

2
tΦθ,fT (t), ∀t ≥ 0, ∀ξ ∈ R.

In the same way, possibly reducing ε0, one can show that if we suppose for any ξ ∈ R that
we have θ(0) − ε0Φ0,fT (0) ≤ U(0, ξ), then

θ(t) − ε0e−
λ

θ,fT

2
tΦθ,fT (t) ≤ U(t, ξ), ∀t ≥ 0, ∀ξ ∈ R.

Consequently, lim
t→+∞

|U(t, ξ) − θ(t)| = 0 uniformly on R.

We are now interested in case where λθ,fT < 0. Let η > 0. There exists ε0,T > 0 small
enough such that ε0,T ≤ η

Φ
θ,fT (0)

and, for any t ∈ [0, T ] and any ε ∈ (0, ε0,T ) we have

λθ,fT

4
εe−

λ
θ,fT

2
tΦθ,fT (t) ≤ fT (t, θ(t) + εe−

λ
θ,fT

2
tΦθ,fT (t))−

fT (t, θ(t)) − fT
u (t, θ(t))εe−

λ
θ,fT

2
tΦθ,fT (t) ≤ −

λθ,fT

4
εe−

λ
θ,fT

2
tΦθ,fT (t).

We note χε(t) = θ(t)+εe−
λ

θ,fT

2
tΦθ,fT (t). The same calculations as previously give us that

for any t ∈ [0, T ] we have

(χε)t(t) − c(χε)ξ(t) − (χε)ξξ(t) − fT (t, χε(t)) ≤ 0.

We define Uε : R+ × R → R solution of the Cauchy problem






(Uε)t − c(Uε)ξ − (Uε)ξξ − fT (t, Uε) on R
+ × R,

Uε(0, ·) = χε(0) on R.

Applying the maximum principle on [0, T ] × R to the function Uε and χε, we obtain that
Uε ≥ χε on [0, T ]×R. In particular, since χε is a nondecreasing function on [0, T ], we have

Uε(T, ·) ≥ χε(0) on R. (13)
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The function Uε(· + T, ·) satisfies the same equation as Uε. According to (13), we can
apply the maximum principle on [0, T ] × R to the function Uε(· + T, ·) and χε. We obtain
for t = T that

Uε(2T, ·) ≥ χε(T ) ≥ χε(0) on R.

For any n ∈ N
∗, we can show by induction that

Uε(nT, ·) ≥ χε(0) on R.

According to the fact that χε(0) > θ(0), and that θ(nT ) = θ(0) we have that lim
t→+∞

(Uε(t, ·)−

θ(t)) 6= 0 for any ξ ∈ R, although we have |Uε(0, ξ) − θ(0)| ≤ η, for any ξ ∈ R

Finally, we connect now the previous notions with the notion of Poincaré map associated
with the function fT .

Definition 2.3. For any α ∈ [0, 1], let w(α, ·) be the solution of the Cauchy problem






y′ = fT (t, y),

y(0) = α.
(14)

The Poincaré map associated with fT is the function P : [0, 1] → [0, 1] such that

P (α) := w(α, T ).

Let αT be a fixed point of P . We say that αT is stable (resp. unstable) if P ′(αT ) < 1
(resp. P ′(αT ) > 1).

We give the link between equilibrium states of (11) and fixed points of the Poincaré map
associated with fT . First of all, it follows from the definition of P that a real number
α ∈ [0, 1] is a fixed point of P if and only if w(α, ·) is an equilibrium state of (11).

Proposition 2.4. Let α be a fixed point of P . We have

P ′(α) = e−T λ
ω(α,·),fT .

Proof. We have
∂tw(α, t) = fT (t, w(α, t)), ∀t ∈ R.

Differentiating with respect to α, we obtain that ∂αw(α, ·) solves the linear ODE y′ =
yfT

u (s, w(α, s)). It follows that

∂αw(α, t) = ∂αw(α, 0)e
∫ t

0
fT

u (s,w(α,s))ds, ∀t ∈ R.

If we take t = T , we have that ∂αw(α, T ) = ∂αw(α, 0)e
∫ T

0
fT

u (s,w(α,s))ds, and since ∂αw(α, 0) =

1, we infer that ∂αw(α, T ) = e
∫ T

0
fT

u (s,w(α,s))ds. In other words, by Proposition 2.2, P ′(α) =
e−T λ

ω(α,·),fT .

Consequently, the fact that a fixed point α of the Poincaré map associated with fT is
stable (resp. unstable) in the sense of Definition 2.3 is equivalent to the fact that the
principal eigenvalue associated with w(α, ·) and fT is positive (resp. negative), that is,
by Proposition (2.3), the solution w(α, ·) of (14) is a uniformly asymptotic stable (resp.
unstable) equilibrium of (11).

In particular, in our paper, the hypothetis (2) implies that 0 and 1 are two fixed points
of the Poincaré map associated with fT , and the condition (3) is a condition of positivity
of the principal eigenvalues associated with 0 and 1. In this way, the equilibria 0 and 1
are uniformly asymptotically stable for the equation (1).
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3 Uniqueness and monotonicity of pulsating front

This section is devoted to the proof of Theorem 1.1.

3.1 Two comparison principles

Lemma 3.1. Let us fix c ∈ R, R+ ∈ R and α ∈ (0, 1). We consider two functions g and
g of class C1(R × [0, 1],R), T-periodic and such that

g(t, u) ≤ g(t, u), ∀t ∈ R, ∀u ∈ [0, 1]. (15)

We assume g satisfies the hypothesis (2) and the first inequality of (3).

Suppose there exist two functions v : R × [R+, +∞) → [0, 1], (t, ξ) 7→ v(t, ξ) and v :
R × [R+, +∞) → [0, 1], (t, ξ) 7→ v(t, ξ) of class C1, α

2 (R) in t uniformly for ξ ∈ [R+, +∞)
and of class C2,α([R+, +∞)) in ξ uniformly for t ∈ R, and such that

∂tv − c∂ξv − ∂ξξv ≥ g(t, v) on R × [R+, +∞), (16)

∂tv − c∂ξv − ∂ξξv ≤ g(t, v) on R × [R+, +∞), (17)

v(t, R+) ≤ v(t, R+), ∀t ∈ R, (18)

v(·, +∞) = 0 uniformly on R. (19)

There exists δ+ ∈ (0, 1) depending only on g such that if we have

v(t, ξ) ≤ δ+, ∀t ∈ R, ∀ξ ∈ [R+, +∞), (20)

then

v(t, x) ≤ v(t, x), ∀t ∈ R, ∀ξ ∈ [R+, +∞).

Proof. Let us first introduce a few notations. We denote λ0,g and Φ0,g the principal eigen-
value and the principal eigenfunction associated with the function g and the equilibrium
0. We saw in Section 2 that Φ0,g depends only on t (and not on ξ). Consequently, we
have

Φ′

0,g(t) = (λ0,g + gu(t, 0))Φ0,g(t), ∀t ∈ R, (21)

We also saw in Section 2 that λ0,g > 0. Since g is of class C1(R × [0, 1],R) and periodic in
t, there exists δ+ > 0 such that

∀t ∈ R, ∀(u, u′) ∈ [0, 1], |u − u′| ≤ δ+ ⇒ |gu(t, u) − gu(t, u′)| <
λ0,g

2
. (22)

The general strategy to prove Lemma 3.1 consists in using a sliding method. To do so,
we define

ε∗ = inf
{

ε ≥ 0 |
v − v

Φ0,g

+ ε ≥ 0 on R × [R+, +∞)
}

.

We note that ε∗ is a real number since v and v are bounded and minR Φ0,g > 0. Further-
more, by continuity

v − v

Φ0,g

+ ε∗ ≥ 0 on R × [R+, +∞). (23)
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We are going to show bwoc that ε∗ = 0. Thus let us suppose that ε∗ > 0. We consider

a sequence (εn)n satisfying εn
n→+∞
−−−−→ ε∗ and 0 < εn < ε∗. There exists (tn, ξn) ∈

R × [R+, +∞) such that

v(tn, ξn) − v(tn, ξn)

Φ0,g(tn)
+ εn < 0. (24)

We write tn = knT + t′

n, with kn ∈ Z and |t′

n| < T . Since (t′

n)n is bounded, we thus have

up to extraction of a subsequence that t′

n

n→+∞
−−−−→ t∗. Furthermore, the sequence (ξn)n is

also bounded. Indeed, let us suppose it is not the case. So, according to (19), there exists
R ∈ R such that

∀n ∈ N, ∀ξ ≥ R, 0 ≤ v(tn, ξ) ≤
ε∗

4
min
R

Φ0,g.

Now, if (ξn)n is not bounded, there exists N ∈ N such that ξN ≥ R and εN > ε∗

2
. So,

v(tN , ξN) − εNΦ0,g(tN) ≤ v(tN , ξN) −
ε∗

2
min
R

Φ0,g ≤
ε∗

4
min
R

Φ0,g −
ε∗

2
min
R

Φ0,g < 0.

Now, by (24) we have v(tN , ξN) ≤ v(tN , ξN) − εNΦ0,g(tN). Hence v(tN , ξN) < 0, which
contradicts the fact that v ∈ [0, 1]. We thus have up to extraction of a subsequence that

ξn
n→+∞
−−−−→ ξ∗ ∈ [R+, +∞). We define vn(t, ξ) = v(t + knT, ξ), and vn(t, ξ) = v(t + knT, ξ).

As g and g are T−periodic, vn and vn satisfy respectively (16) and (17). Furthermore, vn

and vn converge up to extraction of a subsequence respectively to v∗ ∈ [0, 1] and v∗ ∈ [0, 1]
in C1,2

loc (R × [R+, +∞)). Passing to the limit in (23) we obtain

v∗ − v∗

Φ0,g

+ ε∗ ≥ 0 on R × [R+, +∞).

According to (24), we have

vn(t′
n, ξn) − vn(t′

n, ξn)

Φ0,g(t′
n)

+ εn < 0.

So, passing to the limit, we have

v∗(t∗, ξ∗) − v∗(t∗, ξ∗)

Φ0,g(t∗)
+ ε∗ = 0. (25)

We define the open set

Ω =
{

(t, ξ) ∈ R × [R+, +∞) | 0 ≤ v∗(t, ξ) < v∗(t, ξ)
}

.

This set is open by continuity and by (18). We note that (t∗, ξ∗) ∈ Ω because v∗(t∗, ξ∗) −
v∗(t∗, ξ∗) = −ε∗Φ0,g(t∗) < 0. Furthermore, according to (18), we have v∗(t∗, R+) −
v∗(t∗, R+) ≥ 0. So, ξ∗ > R+. We will apply a strong maximum principle to the non-
negative function

z =
v∗ − v∗

Φ0,g

+ ε∗.
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There exists θ : R × [R+, +∞) → [0, 1], (t, ξ) 7→ θ(t, ξ), with θ(t, ξ) between v∗(t, ξ) and
v∗(t, ξ) such that we have on R × [R+, +∞)

∂tz − c∂ξz − ∂ξξz ≥
g(t, v∗) − g(t, v∗)

Φ0,g

−
∂tΦ0,g(v∗ − v∗)

Φ2
0,g

((16) and (17))

≥
g(t, v∗) − g(t, v∗)

Φ0,g

−
(gu(t, 0) + λ0,g)(v∗ − v∗)

Φ0,g

((21) and (15))

=
1

Φ0,g

(gu(t, θ) − gu(t, 0) − λ0,g)(v∗ − v∗),

= (gu(t, θ) − gu(t, 0) − λ0,g(z − ε∗)gu(t, θ) − gu(t, 0) − λ0,g).

We define the bounded function α(t, ξ) := gu(t, θ(t, ξ)) − gu(t, 0) − λ0,g on R × [R+, +∞).
According to (20) we have v∗ ≤ δ+ on R × [R+, +∞). Furthermore, we have 0 ≤ v∗ < v∗

on Ω, whence |θ| ≤ δ+ on Ω. So, by (22) we have on Ω

∂tz − c∂ξz − ∂ξξz − α(t, ξ)z ≥ −ε∗(gu(t, θ) − gu(t, 0) − λ0,g) ≥
λ0,gε∗

2
> 0.

Furthermore, according to (23), we have z ≥ 0 on Ω and even on R × [R+, +∞). As
z(t∗, ξ∗) = 0 and (t∗, ξ∗) ∈ Ω, it follows from [23, Th2 p168] that

z ≡ 0 on Ω0, (26)

where Ω0 is the set of point (t, ξ) ∈ Ω such that there exists a continuous path γ :
[0, 1] → Ω such that γ(0) = (t, ξ) and γ(1) = (t∗, ξ∗), and the time component of γ(s) is
nondecreasing with respect to s ∈ [0, 1]. Now, we define

ξ = inf
{

ξ ≥ R+ | ∀ξ̃ ∈ (ξ, ξ∗], (t∗, ξ̃) ∈ Ω0

}

.

The equality (26) and the continuity of z imply that

z(t∗, ξ) = 0.

So, according to (18), we have ξ > R+ (because v∗(t∗, R+) ≥ v∗(t∗, R+)). Consequently,
the definition of ξ and the continuity of v∗ and v∗ imply that

v∗(t∗, ξ) = v∗(t∗, ξ).

Finally, the previous two displayed equalities imply that ε∗ = 0, which contradicts the
fact that ε∗ is positive. Consequently ε∗ = 0 and the lemma is proved.

With a similar proof, we can obtain the following lemma.

Lemma 3.2. Let us fix c ∈ R, R− ∈ R and α ∈ (0, 1). We consider two functions g and
g of class C1(R × [0, 1],R), T-periodic and such that

g(t, u) ≤ g(t, u), ∀t ∈ [0, T ], ∀u ∈ [0, 1].

We assume g satisfies the hypothesis (2) and the second inequality of (3).

Suppose there exist two functions v : R × (−∞, R−] → [0, 1], (t, ξ) 7→ v(t, ξ) and v :
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R × (−∞, R−] → [0, 1], (t, ξ) 7→ v(t, ξ) of class C1, α
2 (R) in t uniformly for ξ ∈ (−∞, R−]

and of class C2,α((−∞, R−]) in ξ uniformly for t ∈ R, and such that

∂tv − c∂ξv − ∂ξξv ≥ g(t, v) on R × (−∞, R−],

∂tv − c∂ξv − ∂ξξv ≤ g(t, v) on R × (−∞, R−],

v(t, R−) ≤ v(t, R−), ∀t ∈ R,

v(t, −∞) = 1 uniformly on R.

There exists δ− ∈ (0, 1) depending only on g such that, if we have

v(t, ξ) ≥ 1 − δ−, ∀t ∈ R, ∀ξ ∈ (−∞, R−],

then

v(t, x) ≤ v(t, x) ∀t ∈ R, ∀ξ ∈ (−∞, R−].

3.2 Monotonicity of the front

Let us consider (U, c) a solution of (5), with U : R × R → [0, 1]. We want to prove that
for all τ ≥ 0, we have

U(t, ξ) ≤ U(t, ξ − τ), ∀t ∈ R, ∀ξ ∈ R.

We start with the following lemma.

Lemma 3.3. There exists τ0 ≥ 0 such that for any τ ≥ τ0, we have

U(t, ξ) ≤ U(t, ξ − τ), ∀t ∈ R, ∀ξ ∈ R.

Proof. As U(·, +∞) = 0 uniformly on R, there exists a real R+ such that

U(t, ξ) ≤ δ+, ∀t ∈ R, ∀ξ ∈ [R+, +∞), (27)

with δ+ ∈ (0, 1) defined in Lemma 3.1 with g = g = f .
As U(·, −∞) = 1 uniformly on R, there exists τ0 ≥ 0 such that

U(t, ξ − τ) ≥ 1 − δ−, ∀τ ≥ τ0, ∀t ∈ R, ∀ξ ∈ (−∞, R+],

where δ− ∈ (0, 1) is defined in Lemma 3.2 with g = g = f .
Without loss of generality, we can assume that max {δ−, δ+} < 1/2, whence U(t, R+) ≤
U(t, R+ − τ) for all t ∈ R and τ ≥ τ0. We can apply Lemma 3.1 on R × [R+, +∞) and
Lemma 3.2 on R × (−∞, R+] to the functions v = U and v = U(·, · − τ) for any τ ≥ τ0,
and the lemma is proved.

Proposition 3.4. We have

∂ξU(t, ξ) < 0, ∀t ∈ R, ∀ξ ∈ R.
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Proof. We define R+ as in the previous proof. As U(·, −∞) = 1 uniformly on R, there
exists R− ≤ R+ such that

U(t, ξ) ≥ 1 − δ−, ∀t ∈ R, ∀ξ ∈ (−∞, R−].

Consequently,

U(t, ξ − τ) ≥ 1 − δ−, ∀τ ≥ 0, ∀t ∈ R, ∀ξ ∈ (−∞, R−]. (28)

We define

τ ∗ = inf
{

τ̃ ≥ 0 | U(t, ξ) ≤ U(t, ξ − τ), ∀τ ≥ τ̃ , ∀(t, ξ) ∈ R
2
}

.

The constant τ ∗ is a well defined real number according to Lemma 3.3. We will prove
that τ ∗ = 0 by contradiction. Let us suppose that τ ∗ > 0. The definition of τ ∗ and the
continuity of U imply that

U(t, ξ) ≤ U(t, ξ − τ ∗), ∀t ∈ R, ∀ξ ∈ R. (29)

We define
η := min

(t,ξ)∈[0,T ]×[R−,R+]
{U(t, ξ − τ ∗) − U(t, ξ)}.

Two cases can occur, either η > 0, or η = 0.

1st case : η > 0. By uniform continuity of U on [0, T ] × [R− − τ ∗, R+], there exists
τ ∈ (0, τ ∗) such that

U(t, ξ) < U(t, ξ − τ), ∀τ ∈ [τ , τ ∗], ∀t ∈ [0, T ], ∀ξ ∈ [R−, R+]. (30)

Let τ ∈ [τ , τ ∗]. According to (27) and (30), and since U is T -periodic in t, we can apply
Lemma 3.1 to U and U(·, · − τ) on R × [R+, +∞). We obtain

U(t, ξ) ≤ U(t, ξ − τ) ∀t ∈ [0, T ], ∀ξ ∈ [R+, +∞).

And according to (28) and (30), we can apply Lemma 3.2 to U and U(·, · − τ) on R ×
(−∞, R−]. We obtain

U(t, ξ) ≤ U(t, ξ − τ), ∀t ∈ [0, T ], ∀ξ ∈ (−∞, R−].

To summarize U(t, ξ) ≤ U(t, ξ − τ) for all t ∈ [0, T ], and ξ ∈ R. Consequently, since U is
T -periodic in t, we have

U(t, ξ) ≤ U(t, ξ − τ), ∀τ ∈ [τ , τ ∗] ∀t ∈ R, ∀ξ ∈ R.

That is
U(t, ξ) ≤ U(t, ξ − τ), ∀τ ≥ τ , ∀t ∈ R, ∀ξ ∈ R.

This contradicts the definition of τ ∗.

2nd case : η = 0. Let us begin by noting that there exists a couple (t∗, ξ∗) ∈ [0, T ] ×
[R−, R+] such that η = U(t∗, ξ∗ − τ ∗) − U(t∗, ξ∗). Consequently, we have U(t∗, ξ∗) =
U(t∗, ξ∗ − τ ∗). By applying the strong parabolic maximum principle on R

2, we infer that

U(t, ξ) = U(t, ξ − τ ∗) ∀t ∈ (−∞, t∗], ∀ξ ∈ R.
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This implies that U(t∗, ·) is a periodic function, which is impossible since U(·, −∞) = 1
and U(·, +∞) = 0.

So we have τ ∗ = 0, that is

U(t, ξ) ≤ U(t, ξ − τ), ∀τ ≥ 0, ∀t ∈ R, ∀ξ ∈ R.

In other terms ∂ξU(t, ξ) ≤ 0 for all t ∈ R and ξ ∈ R. We apply the strong maximum
principle to the equation satisfied by ∂ξU and obtain ∂ξU(t, ξ) < 0 for all (t, ξ) ∈ R

2

(otherwise ∂ξU would be identically equal to zero, which is impossible since U(·, −∞) = 1
and U(·, +∞) = 0).

3.3 Uniqueness of (U, c)

We consider (U1, c1) and (U2, c2) two solutions of problem (5), with U1, U2 : R×R → [0, 1].
Without loss of generality, we can assume c1 ≥ c2.

Lemma 3.5. There exists τ0 ≥ 0 such that for any τ ≥ τ0, we have

U1(t, ξ) ≤ U2(t, ξ − τ), ∀t ∈ R, ∀ξ ∈ R.

Proof. The function U2 is supersolution of problem (5) with speed c1 since ∂ξU2 < 0
(Prop. 3.4) and c1 ≥ c2. Indeed

∂tU2 − c1∂ξU2 − ∂ξξU2 = fT (t, U2) + (c2 − c1)∂ξU2 ≥ fT (t, U2) on R
2.

As U1(·, +∞) = 0 uniformly on R, there exists a real number R+ such that

U1(t, ξ) ≤ δ+, ∀t ∈ R, ∀ξ ∈ [R+, +∞), (31)

where δ+ ∈ (0, 1) is given by Lemma 3.1 with g = g = f and only depends on f ..
As U2(·, −∞) = 1 uniformly on R, there exists τ0 ≥ 0 such that for any τ ≥ τ0, we have

U2(t, ξ − τ) ≥ 1 − δ−, ∀t ∈ R, ∀ξ ∈ (−∞, R+],

where δ− ∈ (0, 1) is given by Lemma 3.2 with g = g = f and only depends on f .
We can apply Lemma 3.1 on R × [R+, +∞) and Lemma 3.2 on R × (−∞, R+] to the
functions v = U1 and v = U2(·, · − τ) for any τ ≥ τ0 to obtain the lemma.

Proposition 3.6. There exists τ ∗ ∈ R such that

U1(t, ξ) = U2(t, ξ − τ ∗), ∀t ∈ R, ∀ξ ∈ R.

And thus c1 = c2.

Proof. We define

τ ∗ = inf
{

τ ∈ R | U1(t, ξ) ≤ U2(t, ξ − τ) ∀(t, ξ) ∈ R
2
}

.

The set inside infimum is not empty according to Lemma 3.5. Furthermore, it is bounded
from below because as U2(0, +∞) = 0 and U1(0, 0) ∈ (0, 1), we can find a small enough τ1
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so that for any τ ≤ τ1, we have U2(0, −τ) < U1(0, 0). Consequently, τ ∗ is a well defined
real number. The definition of τ ∗ and the continuity of U1 and U2 imply that

U1(t, ξ) ≤ U2(t, ξ − τ ∗), ∀t ∈ R, ∀ξ ∈ R. (32)

We define R+ as in the proof of Lemma 3.5. As U2(·, −∞) = 1 uniformly on R, there
exists R− ≤ R+ such that

U2(t, ξ − τ) ≥ 1 − δ−, ∀τ ≥ τ ∗ − 1, ∀t ∈ R, ∀ξ ∈ (−∞, R−]. (33)

We define

η := min
(t,ξ)∈[0,T ]×[R−,R+]

{

U2(t, ξ − τ ∗) − U1(t, ξ)
}

.

Notice that η ≥ 0 by (32). If η > 0, by the uniform continuity of the function U2 on
[0, T ] × [R− − τ ∗, R+ − τ ∗ + 1], there exists τ ∈ (τ ∗ − 1, τ ∗) such that

U1(t, ξ) ≤ U2(t, ξ − τ), ∀t ∈ [0, T ], ∀ξ ∈ [R−, R+]. (34)

According to (31), (34) and the T -periodicity of U1 and U2 in t, we can apply Lemma 3.1
to the functions v = U1 and v = U2(·, · − τ) on R × [R+, +∞). We obtain

U1(t, ξ) ≤ U2(t, ξ − τ), ∀t ∈ R, ∀ξ ∈ [R+, +∞).

In the same way, according to (33) and (34), we can apply Lemma 3.2 to the functions
v = U1 and v = U2(·, · − τ ∗) on R × (−∞, R−]. We obtain

U1(t, ξ) ≤ U2(t, ξ − τ ), ∀t ∈ R, ∀ξ ∈ (−∞, R−].

To summarize U1(t, ξ) ≤ U2(t, ξ − τ ) for all t ∈ [0, T ] and ξ ∈ R. This contradicts the
definition of τ ∗. Consequently, we have η = 0. So, there exists a couple (t∗, ξ∗) ∈
[0, T ] × [R−, R+] such that

U1(t∗, ξ∗) = U2(t∗, ξ∗ − τ ∗).

By applying the strong maximum principle on R
2, we get that

U1(t, ξ) = U2(t, ξ − τ ∗), ∀t ∈ (−∞, t∗], ∀ξ ∈ R.

By periodicity in t, the previous inequality is true on R
2.

Now, if we substract the equation satisfied by U1 to the equation satisfied by U2(·, · − τ ∗),
we obtain that

(c2 − c1)∂ξU2(t, ξ − τ ∗) = 0, ∀t ∈ R, ∀ξ ∈ R.

Since ∂ξU2 < 0, we get c1 = c2 and the proof of Proposition 3.6 is complete.

4 Asymptotic stability of pulsating waves

This section is devoted to the proof of Theorem 1.2. To simplify the notations, we note
λ0 (resp. λ1) the principal eigenvalue associated with the function fT and the equilibrium
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0 (resp. 1). The condition (3) implies that λ0 > 0 and λ1 > 0. Furthermore, according
to Section 2, there exists a unique positive T -periodic function Φ0(t) such that







Φ′

0(t) =
(

λ0 + fT
u (t, 0)

)

Φ0(t), ∀t ∈ R,

Φ0(0) = 1.

Also, there exists a unique positive T -periodic function Φ1(t) such that






Φ′

1(t) =
(

λ1 + fT
u (t, 1)

)

Φ1(t), ∀t ∈ R,

Φ1(0) = 1.

Assume there exists a pulsating front U with speed c solving (5). We consider a solution
u of the Cauchy problem







ut − uxx = fT (t, u) on (0, +∞) × R,

u(0, x) = h(x), ∀x ∈ R,

where the initial condition h : R → [0, 1] is uniformly continuous. We denote v(t, ξ) =
u(t, x) = u(t, ξ + ct). The function v satisfies the Cauchy problem







∂tv − c∂ξv − ∂ξξv = fT (t, v) on (0, +∞) × R,

v(0, ξ) = h(ξ), ∀ξ ∈ R.
(35)

Our basic lemma is the following.

Lemma 4.1. There exists a constant γ ∈ (0, 1) depending only on fT and U , such that if

lim inf
ξ→−∞

h(ξ) > 1 − γ and lim sup
ξ→+∞

h(ξ) < γ,

then, there exist some real numbers q0 > 0, ξ0 and ξ
0
, such that

U(t, ξ + ξ0) − q0(‖Φ0‖∞ + ‖Φ1‖∞)e−µt ≤ v(t, ξ) ≤ U(t, ξ + ξ
0
) + q0(‖Φ0‖∞ + ‖Φ1‖∞)e−µt,

(36)
for any real number ξ and for any t positive.

Proof. We are only going to prove the left inequality, the other is similar. We begin by
defining parameters which are independant of h and from which we are going to build a
subsolution of (35) on R

+ × R. We define

µ = min
{

λ0

2
,
λ1

2

}

> 0.

The regularity of the function fT implies that there exists u0 > 0 such that

∀u ∈ [0, u0], ∀t ∈ R,







|fT
u (t, u) − fT

u (t, 0)| ≤
λ0 − µ

4
,

|fT
u (t, 1) − fT

u (t, 1 − u)| ≤
λ1 − µ

4
.

(37)

Since U(·, +∞) = 0 and U(·, −∞) = 1 uniformly on R, there exist ξ+ > 0 and ξ− < 0
such that

∀t ∈ R, ∀ξ̃ ≥ ξ+, U(t, ξ̃) ≤ u0, (38)
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∀t ∈ R, ∀ξ̃ ≤ ξ−, 1 − U(t, ξ̃) ≤ u0. (39)

We consider a nondecreasing function χ in C2(R) such that

∀ξ̃ ≥ ξ+, χ(ξ̃) = 1 and ∀ξ̃ ≤ ξ−, χ(ξ̃) = 0.

According to the fact that the function Uξ is continuous, negative and T -periodic, one has
sup

R×[ξ−,ξ+]

Uξ > 0, and there exist q̃0 > 0 and C1 > 0 (depending only on fT and U) such

that

∀q ∈ [0, q̃0], ∀t ∈ R
+, ∀ξ̃ ∈ [ξ−, ξ+], Uξ(t, ξ̃) + qe−µtχ′(ξ̃)

(

Φ1(t) − Φ0(t)
)

< −C1. (40)

There exists C2 > 0 such that

∀t ∈ R, ∀ξ̃ ∈ [ξ−, ξ+], χ(ξ̃)Φ0(t) +
(

1 − χ(ξ̃)
)

Φ1(t) <
C2

‖fT
u ‖∞

. (41)

There exists C3 > 0 such that

∀t ∈ R, ∀ξ̃ ∈ [ξ−, ξ+], χ(ξ̃)Φ0(t)
(

µ − λ0 − fu(t, 0)
)

+
(

1 − χ(ξ̃)
)

Φ1(t)
(

µ − λ1 − fu(t, 1)
)

+
(

cχ′(ξ̃) + χ′′(ξ̃)
)(

Φ0(t) − Φ1(t)
)

< C3. (42)

We define

ω =
C2 + C3

µC1

> 0. (43)

From the continuity and the T -periodicity of fT
u , there exists γ ∈ (0, min{q̃0, 1}) (depend-

ing only on fT and U) such that

∀t ∈ R, ∀(u, u′) ∈ [0, 1]2, |u − u′| ≤ γ max{‖Φ0‖∞, ‖Φ1‖∞} ⇒

|fT (t, u) − fT (t, u′) − fT
u (t, u′)(u − u′)| ≤ min

{
λ0 − µ

4
,
λ1 − µ

4

}

|u − u′|. (44)

We now consider a uniformly continuous function h : R → [0, 1] such that

lim inf
ξ→−∞

h(ξ) > 1 − γ and lim sup
ξ→+∞

h(ξ) < γ,

and we denote v the solution of (35). We consider a real number q0 > 0 such that
1 − lim inf

ξ→−∞
h(ξ) < q0 < γ. We thus have lim inf

ξ→−∞
h(ξ) > 1 − q0. Consequently, there exists

ξm ∈ R such that for all ξ ≤ ξm we have h(ξ) ≥ 1−q0. Yet, since h ≥ 0 and U(0, +∞) = 0,
there exists ξ ∈ R such that for all ξ ≥ ξm, we have h(ξ) ≥ U(0, ξ + ξ) − q0. According to
the fact that U ≤ 1 and that for all ξ ∈ R we have χ(ξ +ξ)Φ0(0)+(1−χ(ξ +ξ))Φ1(0) = 1,
we have that

∀ξ ∈ R, h(ξ) ≥ U(0, ξ + ξ) − q0

[

χ(ξ + ξ)Φ0(0) + {1 − χ(ξ + ξ)}Φ1(0)
]

. (45)

Finally, we define
Λ(t) = ωq0(1 − e−µt) + ξ.

We are going to show that the function defined by

u(t, ξ) = max
{

0, U
(

t, ξ + Λ(t)
)

− q0e−µt

[

χ
(

ξ + Λ(t)
)

Φ0(t) +
{

1 − χ
(

ξ + Λ(t)
)}

Φ1(t)
]}

.
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is a subsolution of (35) on R
+ × R. We begin by noticing that according to (45), for any

ξ ∈ R, we have u(0, ξ) ≤ v(0, ξ). We divide now the space into three zones:

Ω− =
{

(t, ξ) ∈ (0, +∞) × R | ξ + Λ(t) < ξ−, and u(t, ξ) > 0
}

,

Ω+ =
{

(t, ξ) ∈ (0, +∞) × R | ξ + Λ(t) > ξ+, and u(t, ξ) > 0
}

,

Ω0 =
{

(t, ξ) ∈ (0, +∞) × R | ξ + Λ(t) ∈ [ξ−, ξ+], and u(t, ξ) > 0
}

.

Since fT (t, 0) = 0, we only have to show that ut −cuξ −uξξ −fT (t, u) ≤ 0 on Ω+ ∪Ω− ∪Ω0.
1st step: we show that ut − cuξ − uξξ − fT (t, u) ≤ 0 on Ω+. We have

∀(t, ξ) ∈ Ω+, u(t, ξ) = U
(

t, ξ + Λ(t)
)

− q0e
−µtΦ0(t).

Consequently, for all (t, ξ) ∈ Ω+, then we have

ut(t, ξ) − cuξ(t, ξ) − uξξ(t, ξ) − fT
(

t, u(t, ξ)
)

= fT
(

t, U
(

ξ + Λ(t)
))

− fT
(

t, u(t, ξ)
)

+ q0e−µtΦ0(t)
[

µ − λ0 − fT
u (t, 0)

]

+ Λ′(t)Uξ

(

t, ξ + Λ(t)
)

.

We have

fT
(

t, U
(

t, ξ + Λ(t)
))

− fT
(

t, u(t, ξ)
)

=
{

fT
(

t, U
(

t, ξ + Λ(t)
))

− fT
(

t, u(t, ξ)
)

+ fT
u

(

t, U
(

t, ξ + Λ(t)
))[

u(t, ξ) − U
(

t, ξ + Λ(t)
)]}

+
{[

fT
u

(

t, U
(

t, ξ + Λ(t)
))

− fT
u (t, 0)

][

U
(

t, ξ + Λ(t)
)

− u
(

t, ξ
)]}

+fT
u (t, 0)

{

U
(

t, ξ + Λ(t)
)

− u(t, ξ)
}

.

According to the fact that 0 < q0 ≤ γ, (44) yields

fT
(

t, U
(

t, ξ + Λ(t)
))

− fT
(

t, u(t, ξ)
)

+ fT
u

(

t, U
(

t, ξ + Λ(t)
))[

u(t, ξ) − U
(

t, ξ + Λ(t)
)]

≤
λ0 − µ

4
q0Φ0(t)e−µt.

Furthermore, according to (37) and (38), we have

[

fT
u

(

t, U
(

t, ξ + Λ(t)
))

− fT
u (t, 0)

][

U
(

t, ξ + Λ(t)
)

− u
(

t, ξ
)]

≤
λ0 − µ

4
q0Φ0(t)e−µt.

So, since Λ′ ≥ 0 and Uξ < 0, we have

ut(t, ξ) − cuξ(t, ξ) −uξξ(t, ξ) −fT
(

t, u(t, ξ)
)

≤
[

µ −λ0 +
λ0 − µ

4
+

λ0 − µ

4

]

q0Φ0(t)e−µt ≤ 0.

2nd step: we show that ut − cuξ − uξξ − fT (t, u) ≤ 0 on Ω−. We have

∀(t, ξ) ∈ Ω−, u(t, ξ) = U
(

t, ξ + Λ(t)
)

− q0e
−µtΦ1(t).

Hence, for all (t, ξ) ∈ Ω−,

ut(t, ξ) − cuξ(t, ξ) − uξξ(t, ξ) − fT
(

t, u(t, ξ)
)

= fT
(

t, U
(

ξ + Λ(t)
))

− fT
(

t, u
(

t, ξ
))

+ q0e−µtΦ1(t)
[

µ − λ1 − fT
u (t, 1)

]

+ Λ′(t)Uξ

(

t, ξ + Λ(t)
)

.
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In the same way as previously, since Λ′ ≥ 0 and Uξ < 0, we have that

ut(t, ξ) − cuξ(t, ξ) −uξξ(t, ξ) −fT
(

t, u(t, ξ)
)

≤
[

µ −λ1 +
λ1 − µ

4
+

λ1 − µ

4

]

q0Φ1(t)e−µt ≤ 0.

3rd step: we show that ut − cuξ − uξξ − fT (t, u) ≤ 0 on Ω0. For all (t, ξ) ∈ Ω0 there holds

ut(t, ξ) − cuξ(t, ξ) − uξξ(t, ξ) − fT
(

t, u(t, ξ)
)

= fT
(

t, U
(

t, ξ + Λ(t)
))

− fT
(

t, u(t, ξ)
)

+q0e−µtΦ0(t)χ
(

ξ + Λ(t)
){

µ − λ0 − fT
u (t, 0)

}

+q0e−µtΦ1(t)
{

1 − χ
(

ξ + Λ(t)
)}{

µ − λ1 − fT
u (t, 1)

}

+q0e−µt
{

cχ′
(

ξ + Λ(t)
)

+ χ′′
(

ξ + Λ(t)
)}{

Φ0(t) − Φ1(t)
}

+Λ′(t)
{

Uξ

(

t, ξ + Λ(t)
)

+ q0e−µtχ′
(

ξ + Λ(t)
)(

Φ1(t) − Φ0(t)
)}

.

(46)

We have

fT
(

t, U
(

t, ξ + Λ(t)
))

− fT
(

t, u
(

t, ξ
))

≤ ‖fT
u ‖∞

∣
∣
∣U

(

t, ξ + Λ(t)
)

− u
(

t, ξ
)∣

∣
∣.

According to (41) applied with ξ̃ = ξ + Λ(t), it occurs that

fT
(

t, U
(

t, ξ + Λ(t)
))

− fT
(

t, u
(

t, ξ
))

≤ C2q0e−µt. (47)

According to (42) applied with ξ̃ = ξ + Λ(t), we have

q0e−µtΦ0(t)χ
(

ξ + Λ(t)
){

µ − λ0 − fT
u (t, 0)

}

+q0e−µtΦ1(t)
{

1 − χ
(

ξ + Λ(t)
)}{

µ − λ1 − fT
u (t, 1)

}

+q0e−µt
{

cχ′
(

ξ + Λ(t)) + χ′′
(

ξ + Λ(t)
)}{

Φ0(t) − Φ1(t)
}

≤ C3q0e
−µt.

(48)

Finally, remembering that Λ′ > 0 and according to (40) applied with ξ̃ = ξ + Λ(t), it
follows that

{

Uξ

(

t, ξ + Λ(t)
)

+ q0e−µtχ′
(

ξ + Λ(t)
)(

Φ1(t) − Φ0(t)
)}

Λ′(t) < −C1Λ
′(t). (49)

Consequently, according to (43), (46), (47), (48) and (49) we obtain for all (t, ξ) ∈ Ω0,

ut(t, ξ) − cuξ(t, ξ) − uξξ(t, ξ) − fT
(

t, u(t, ξ)
)

≤ −C1Λ
′(t) + (C2 + C3)q0e−µt ≤ 0.

We conclude from the maximum principle that

∀t ∈ R
+, ∀ξ ∈ R, v(t, ξ) ≥ u(t, ξ).

So, as Uξ < 0 on R
2 and Λ′ ≥ 0 on R

+, if we define the real number ξ0 = ξ + ωq0, it occurs
that for all t ≥ 0 and ξ ∈ R

v
(

t, ξ
)

≥ U
(

t, ξ + Λ(t)
)

− q0e−µt
[

χ
(

ξ + Λ(t)
)

Φ0(t) +
{

1 − χ
(

ξ + Λ(t)
)}

Φ1(t)
]

≥ U
(

t, ξ + ξ0
)

− q0

(

‖Φ0‖∞ + ‖Φ1‖∞

)

e−µt.
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It is exactly the same scheme to prove the right inequality of (36), namely we begin by
showing that there exists a constant ξ such that

∀ξ ∈ R, h(ξ) ≤ U(0, ξ + ξ) + q0

[

Φ0(0)χ(ξ + ξ) + Φ1(0)
(

1 − χ(ξ + ξ)
)]

.

Then we can show that there exists a positive constant ω (ω could actually be equal to ω
without loss of generality) such that if we take Λ(t) = −ωq0(1 − e−µt) + ξ (we need here

that Λ
′
≤ 0), and if we define

u(t, ξ) = min
{

1, U
(

t, ξ + Λ(t)
)

+ q0e−µt

[

χ
(

ξ + Λ(t)
)

Φ0(t) +
{

1 − χ
(

ξ + Λ(t)
)}

Φ1(t)
]}

,

then, for all (t, ξ) ∈ (0, +∞) × R such that u(t, ξ) < 1 we have

ut(t, ξ) − cuξ(t, ξ) − uξξ(t, ξ) − fT
(

t, u(t, ξ)
)

≥ 0,

If we define the real number ξ
0

= ξ − ωq0, we conclude that for all t ≥ 0 and ξ ∈ R, we
have

v(t, ξ) ≤ U
(

t, ξ + Λ(t)
)

+ q0e−µt
[

χ
(

ξ + Λ(t)
)

Φ0(t) +
{

1 − χ
(

ξ + Λ(t)
)}

Φ1(t)
]

≤ U(t, ξ + ξ
0
) + q0

(

‖Φ0‖∞ + ‖Φ1‖∞

)

e−µt.

And the proof of Lemma 4.1 is complete.

Lemma 4.2. Let γ ∈ (0, 1) be as in Lemma 4.1. There exists a positive real number D
such that if for some constant ξ♯ and some 0 < ε < γ, we have

∀ξ ∈ R, |v(0, ξ) − U(0, ξ + ξ♯)| ≤ ε,

then,
∀t ∈ R

+, ∀ξ ∈ R, |v(t, ξ) − U(t, ξ + ξ♯)| ≤ Dε.

Proof. We can adapt the previous proof. If we take q0 = ε, then, , for all ξ ∈ R, we have

U(0, ξ + ξ♯) − q0 ≤ h(ξ) = v(0, ξ) ≤ U(0, ξ + ξ♯) + q0.

We can then choose ξ and ξ equal to ξ♯. Consequently, if we denote D = ‖Uξ‖∞ω+‖Φ0‖∞+

‖Φ1‖∞ (independent of ε), the conclusion of Lemma 4.1 with ξ0 = ξ + ωq0 = ξ♯ + ωε and

ξ
0

= ξ − ωq0 = ξ♯ − ωε becomes

∀t ∈ R
+, ∀ξ ∈ R, U(t, ξ + ξ♯) − Dε ≤ v(t, ξ) ≤ U(t, ξ + ξ♯) + Dε,

The proof of Lemma 4.2 is complete.

Before carrying out the proof of Theorem 1.2, we need an additional Liouville type lemma
for the solution which are trapped between two shifts of a front.

Lemma 4.3. Let v ∈ C1+ α
2

,2+α(R × R, (0, 1)) (with 0 < α < 1) be a solution of ∂tv −
c∂ξv − ∂ξξv = fT (t, v) on R

2 such that

∀(t, ξ) ∈ R
2, U(t, ξ) ≤ v(t, ξ) ≤ U(t, ξ − a). (50)

where (U(t, ξ), c) is a pulsating front solution of (5), and a is a nonnegative real number.
Then there exists b ∈ [0, a] such that

∀(t, ξ) ∈ R
2, v(t, ξ) = U(t, ξ − b).
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Proof. According to (50), we have that v(·, −∞) = 1 and v(·, +∞) = 0 uniformly on R.
We are going to show that v(·, ξ) is a T -periodic function for any real ξ. Let ε ∈ {−1, 1}.
As v(·, +∞) = 0 uniformly on R, there exists a real number R+ such that

∀t ∈ R, ∀ξ ∈ [R+, +∞), v(t, ξ) ≤ δ+,

where δ+ ∈ (0, 1) is defined in Lemma 3.1, with g = g = fT .
As v(·, −∞) = 1 uniformly on R, there exists a real σε such that

∀t ∈ R, ∀ξ ∈ (−∞, R+], v(t + εT, ξ − σε) ≥ 1 − δ−,

where δ− ∈ (0, 1) is defined in Lemma 3.2, with g = g = fT .
We apply the comparison principles of Lemma 3.1 on R × [R+, +∞) and of Lemma 3.2
on R × (−∞, R+] to the functions v(t, ξ) = v(t, ξ) and v(t, ξ) = v(t + εT, ξ − σε)

∀t ∈ R, ∀ξ ∈ R, v(t, ξ) ≤ v(t + εT, ξ − σε). (51)

We define

σ∗

ε := inf{σε ∈ R | ∀t ∈ R, ∀ξ ∈ R, v(t, ξ) ≤ v(t + εT, ξ − σε)},

which is a well defined real number such that σ∗

ε ≤ σε by (51). We have by continuity

∀t ∈ R, ∀ξ ∈ R, v(t, ξ) ≤ v(t + εT, ξ − σ∗

ε). (52)

As v(·, −∞) = 1 uniformly on R, there exists R− < R+ such that

∀σ ≥ σ∗

ε − 1, ∀t ∈ R, ∀ξ ∈ (−∞, R−], v(t + εT, ξ − σ) ≥ 1 − δ−,

where δ− ∈ (0, 1) is as above.
We define

η := inf
(t,ξ)∈R×[R−,R+]

{v(t + εT, ξ − σ∗

ε) − v(t, ξ)}.

Two cases can occur, either η is positive, or η is equal to zero. If η > 0, since ∂ξv is
globally bounded in R × R by standard parabolic estimates, there exists σε ∈ (σ∗

ε − 1, σ∗

ε)
such that

∀t ∈ R, ∀ξ ∈ [R−, R+], v(t, ξ) < v(t + εT, ξ − σε).

We can apply Lemma 3.1 to the functions v and v(· + εT, · − σε) on R × [R+, +∞). We
obtain

∀t ∈ R, ∀ξ ∈ [R+, +∞), v(t, ξ) ≤ v(t + εT, ξ − σε).

In the same way, we can apply Lemma 3.2 to the functions v and v(· + εT, · − σε) on
R × (−∞, R−]. We obtain

∀t ∈ R, ∀ξ ∈ (−∞, R−], v(t, ξ) ≤ v(t + εT, ξ − σε).

To summarize,
∀t ∈ R, ∀ξ ∈ R, v(t, ξ) ≤ v(t + εT, ξ − σε).

This contradicts the definition of σ∗

ε . Consequently, we have η = 0. So, there exists a
sequence (tn, ξn)n ⊂ R × [R−, R+] such that

v(tn + εT, ξn − σ∗

ε ) − v(tn, ξn)
n→+∞
−−−−→ 0. (53)
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We write tn = knT + t′

n, with kn ∈ Z and t′

n ∈ (0, T ]. The sequences (t′

n)n and (ξn)n

are bounded. We thus have up to extraction of a subsequence that t′

n

n→+∞
−−−−→ t∗ ∈ R

and ξn
n→+∞
−−−−→ ξ∗ ∈ R. We define vn(t, ξ) = v(t + knT, ξ). As fT is T−periodic, vn

satisfies the same equation as v. Furthermore, we have 0 ≤ vn ≤ 1. Consequently,
as (fT (·, vn))n is bounded in L∞(R2), the parabolic regularity theory implies that for
1 ≤ p < +∞, (vn)n is bounded in W 1,2;p

loc (R2). Yet W 1,2;p
loc (R2) embeds compactly into

C0,α
loc (R2) for α ∈ (0, 1 − 2/p) for p > 2. So, there exists v∗ such that up to extraction of a

subsequence, (vn)n converges to v∗ in W 1,2;p
loc (R2) weakly and in C0,α

loc (R2) for all 1 < p < +∞
and for all α ∈ (0, 1). The function 0 ≤ v∗ ≤ 1 thus satisfies in the sense of distribution
the equation ∂tv

∗ − c∂ξv
∗ − ∂ξξv

∗ = fT (t, v∗) on R
2. Actually, by parabolic regularity

theory, the function v∗ is in fact of class C1,2(R2) and it satisfies the previous equation in
the classical sense. According to (53), we thus have

v∗(t∗ + εT, ξ∗ − σ∗

ε ) = v∗(t∗, ξ∗).

Since on the other hand v∗(t + εT, ξ − σ∗

ε ) ≥ v∗(t, ξ), for all (t, ξ) ∈ R × R by (52), the
strong maximum principle implies that

∀t ∈ (−∞, t∗], ∀ξ ∈ R, v∗(t, ξ) = v∗(t + εT, ξ − σ∗

ε ).

As t∗ ∈ [0, T ], the previous equality is true on R− × R, and in particular, we have

∀k ∈ N, v∗(0, 0) = v∗(−kT, εkσ∗

ε ). (54)

According to (50) and (54) we have that

∀k ∈ N, U(0, εkσ∗

ε) = U(−kT, εkσ∗

ε ) ≤ v∗(−kT, εkσ∗

ε) = v∗(0, 0) ≤ U(0, −a) < 1. (55)

In the same way, we have that

∀k ∈ N, 0 < U(0, 0) ≤ v∗(0, 0) = v∗(−kT, εkσ∗

ε) ≤ U(−kT, εkσ∗

ε − a) = U(0, εkσ∗

ε − a).
(56)

We suppose that εσ∗

ε < 0. So, we have εkσ∗

ε

k→+∞
−−−−→ −∞. Consequently, as U(0, −∞) = 1,

we obtain a contradiction in (55) if we pass in the limit when k tends to +∞.

We suppose that εσ∗

ε > 0. So, we have εkσ∗

ε

k→+∞
−−−−→ +∞. Consequently, as U(0, +∞) = 0,

we obtain a contradiction in (56) if we pass in the limit when k tends to +∞.

Consequently, we have σ∗

ε = 0, and the equation (52) rewrites

∀t ∈ R, ∀ξ ∈ R, v(t, ξ) ≤ v(t + εT, ξ).

For ε = 1, the previous inequality rewrites

∀t ∈ R, ∀ξ ∈ R, v(t, ξ) ≤ v(t + T, ξ). (57)

And, for ε = −1, we have v(t, ξ) ≤ v(t − T, ξ), for all (t, ξ) ∈ R
2. If we define t′ = t − T ,

we have
∀t′ ∈ R, ∀ξ ∈ R, v(t′ + T, ξ) ≤ v(t′, ξ). (58)

According to (57) and (58), we get that

∀t ∈ R, ∀ξ ∈ R, v(t, ξ) = v(t + T, ξ).

which is the desired conclusion.

23



We can now prove Theorem 1.2.

Proof. Let γ ∈ (0, 1) be as in Lemma 4.1 and let u be as in the statement of Theorem
1.2. We define vn(t, ξ) = v(t + nT, ξ). Up to extraction of a subsequence, (vn)n converges
locally uniformly to a C1+ α

2
,2+α(R2) solution v∞ of ∂tv∞ − c∂ξv∞ − ∂ξξv∞ = fT (t, v∞), for

α ∈ (0, 1). According to Lemma 4.1, there exist some real numbers ξ0 and ξ
0

such that

∀t ∈ R, ∀ξ ∈ R, U(t, ξ + ξ0) ≤ v∞(t, ξ) ≤ U(t, ξ + ξ
0
).

Consequently, Lemma 4.3 implies that there exists ξ0 between ξ0 and ξ
0

such that

∀ξ ∈ R, ∀t ∈ R, v∞(t, ξ) = U(t, ξ − ξ0).

Let ε ∈ (0, γ) be fixed. According to the fact that U(·, −∞) = 1 and U(·, +∞) = 0, and
according to Lemma 4.1, there exists an integer n0 such that

∀ξ ∈ R, |v(n0T, ξ) − U(0, ξ − ξ0)| ≤ ε.

Lemma 4.2 yields

∀t ∈ R
+, ∀ξ ∈ R, |v(n0T + t, ξ) − U(t, ξ − ξ0)| ≤ Dε.

where D is independent of ε. Since ε > 0 could be arbitrary small, we get that

lim
t→+∞

v(t, ξ) − U(t, ξ − ξ0) = 0, uniformly on R.

That concludes the proof of the theorem.

Once the global stability of pulsating fronts is established, the uniqueness result in The-
orem 1.1 is an easy corollary. This method was used in [27]. In the present paper, we
preferred to prove first the uniqueness in Section 3 because the proof uses some new
comparison principle (which have their own interest) and which lead to the monotonicity
result.

Proof. One has to show that if (U1, c1) and (U2, c2) are two pulsating fronts solving (5),
then c1 = c2 and U1 and U2 are equal up to shift in space. Theorem 1.2 yields the existence
of ξ0 ∈ R such that

sup
ξ∈R

∣
∣
∣U2

(

t, ξ + (c1 − c2)t
)

− U1

(

t, ξ + ξ0

)∣
∣
∣

t→+∞
−−−−→ 0. (59)

Let k ∈ Z, and (t, ξ) ∈ R
2. By T -periodicity of U1 and U2 we have

∣
∣
∣U2

(

t+kT, ξ+(c1−c2)(t+kT )
)

−U1

(

t+kT, ξ+ξ0

)∣
∣
∣ =

∣
∣
∣U2

(

t, ξ+(c1−c2)(t+kT )
)

−U1

(

t, ξ+ξ0

)∣
∣
∣.

(60)
If c1 6= c2, we pass to the limit when k → +∞. According to (59), the first term of (60)
converges to zero, whereas the second term converges to 1 − U1(t, ξ + ξ0) > 0 if c1 < c2,
and to U1(t, ξ + ξ0) > 0 if c1 > c2. Consequently we have c1 = c2, and (60) becomes

∣
∣
∣U2

(

t + kT, ξ
)

− U1

(

t + kT, ξ + ξ0

)∣
∣
∣ =

∣
∣
∣U2

(

t, ξ
)

− U1

(

t, ξ + ξ0

)∣
∣
∣.

By passing to the limit when k → +∞, we get that U2(t, ξ) = U1(t, ξ + ξ0). Hence, the
proof of the uniqueness result in Theorem 1.2 is complete.
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5 Pulsating fronts for nonlinearities of small periods

In this section, we focus on the dependance on T for the pulsating fronts solving

∂tu − ∂xxu = fT (t, u), ∀t ∈ R, ∀x ∈ R.

where fT (t, u) = f(
t

T
, u), with f(·, u) a 1-periodic function.

Let α ∈ [0, 1]. We denote wT (α, ·) the solution of the Cauchy problem







y′ = fT (t, y) on R,

y(0) = α.

We remind the reader that the Poincaré map associated with fT is the function PT :
[0, 1] → [0, 1] defined by

PT (α) = wT (α, T ).

5.1 Existence and uniqueness

This subsection is devoted to proving Theorem 1.3. We are going to show that for T > 0
small enough, the Poincaré map associated with the function fT admits exactly one
unstable fixed point which is strictly included between 0 and 1. Then, by [1], there exists
a pulsating front solving (5). We begin by proving the existence of a fixed point of the
Poincaré map between 0 and 1.

Lemma 5.1. Let T > 0.There are solutions of the problem







y′ = fT (t, y) on R,

0 < y < 1 on R,

y(0) = y(T ).

(61)

Proof. We define ΦT (α) = PT (α) − α. By hypotheses, 0 and 1 are stable fixed points of
PT . So,







ΦT (0) = 0,

Φ′

T (0) < 0,
and







ΦT (1) = 0,

Φ′

T (1) < 0.

By continuity, there exists αT ∈ (0, 1) such that ΦT (αT ) = 0, that is PT (αT ) = αT . So,
the function wT (αT , ·) satisfies Problem (61) as a consequence of the Cauchy-Lipschitz
theorem.

Let t 7→ θT (t) be a solution of Problem (61). We remind that θT (0) is a fixed point of the
Poincaré map associated with fT . It is unstable if P ′

T (θ(0)) > 1. We saw in Section 2
that this condition is equivalent to the fact that the principal eigenvalue associated with
fT and θT is negative. We are thus interested in the sign of

λθT ,fT = −
1

T

∫ T

0
fT

u (s, θT (s))ds = −
∫ 1

0
fu(t, θT (tT ))dt. (62)

We consider a sequence of positive real numbers (Tn)n such that Tn
n→+∞
−−−−→ 0.
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Lemma 5.2. The sequence (θTn
)n converges up to extraction of a subsequence uniformly

on R to a constant function θ0.

Proof. Let K be a positive constant such that

|θ′

Tn
(t)| ≤ K, ∀t ∈ R, ∀n ∈ N.

Let t ∈ R and n ∈ N. There exists an integer kn such that t ∈ [knTn, (kn + 1)Tn). As
θn(0) ∈ (0, 1), there exists a real number θ0 such that up to extraction of a subsequence

θTn
(0) = θTn

(knTn)
n→∞
−−−→ θ0.

Yet, by the mean value theorem, we get that

|θTn
(t) − θTn

(knTn)| ≤ K|t − knTn| ≤ KTn, ∀t ∈ R, ∀n ∈ N.

Since Tn
n→∞
−−−→ 0, for all t ∈ R, we have

|θTn
(t) − θ0| ≤ |θTn

(t) − θTn
(knTn)| + |θ0 − θTn

(knTn)| ≤ KTn + |θ0 − θTn
(knTn)|

n→∞
−−−→ 0,

and the proof of Lemma 5.2 is complete.

Lemma 5.3. Up to extraction of a subsequence, we have

λθTn ,fTn

n→∞
−−−→ −

∫ 1

0
fu(s, θ0)ds.

Proof. Let us note that (θTn
(·Tn))n converges up to extraction of a subsequence uniformly

on R to θ0. Indeed, for any ε > 0, there exists n0 ∈ N such that

|θTn
(s) − θ0| ≤ ε, ∀n ≥ n0, ∀s ∈ R.

So,
|θTn

(tTn) − θ0| ≤ ε, ∀n ≥ n0, ∀t ∈ R.

We can then move the limit inside the integral (62).

Consequently, for n large enough (ie Tn small enough), λθn,fTn has the same sign as

h(θ0) := −
∫ 1

0
fu(s, θ0)ds.

The function h satisfies h = −g′, where g is the function defined in (6).

Lemma 5.4. The real number θ0 satisfies

g(θ0) = 0.

Proof. We have
θ′

Tn
(t) = fTn(t, θTn

(t)), ∀n ∈ N, ∀t ∈ R.

We integrate this equation between 0 and Tn

θTn
(Tn) − θn(0) =

∫ Tn

0
fTn(s, θTn

(s))ds, ∀n ∈ N.
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Consequently
∫ Tn

0
fTn(s, θTn

(s))ds = 0, ∀n ∈ N.

By changing the variable t =
s

Tn

, we get that

∫ 1

0
f(t, θTn

(tTn))dt = 0, ∀n ∈ N.

Finally, we pass to the limit and we obtain
∫ 1

0
f(t, θ0)dt = 0.

So g(θ0) = 0. Consequently, θ0 is equal to 0, θg or 1 . We are now going to justify that θ0

is different of 0 et 1.

Lemma 5.5. We have the following equality

θ0 = θg.

Proof. Let us begin by showing that θ0 is different from 0. We argue bwoc, supposing
that θ0 = 0. So Un(t) := θTn

(tTn) converges uniformly to the null function on R and we
have U ′

n = Tnf(t, Un), on R. We divide this equation by TnUn, then we integrate between
0 and 1

1

Tn

∫ 1

0

U ′
n(t)

Un(t)
dt =

∫ 1

0

f(t, Un(t))

Un(t)
dt, ∀n ∈ N.

So
1

Tn

[log(Un(1)) − log(Un(0))] =
∫ 1

0

f(t, Un(t)) − f(t, 0)

Un(t) − 0
dt, ∀n ∈ N.

Consequently
∫ 1

0

f(t, Un(t)) − f(t, 0)

Un(t) − 0
dt = 0, ∀n ∈ N.

We pass to the limit when n converges to infinity

∫ 1

0
fu(t, 0)dt = 0.

which contradicts the hypothesis (3). Consequently θ0 6= 0. To show that θ0 is different
from 1, the proof is similar but one has to divide by Tn(Un − 1) instead of TnUn.

The previous lemma implies that θg is the unique accumulation point of the sequence
(θTn

)n. Consequently, the convergences in Lemma 5.2 and in Lemma 5.3 are not up to
extraction of a subsequence, and we have

lim
Tn→0+

λθTn ,fTn = −g′(θg).

Actually, we have even
lim

T →0+
λθT ,fT = −g′(θg). (63)

According to (7) and (63), we can define Tf > 0 such that λθT ,fT < 0 for all T ∈ (0, Tf)
and for all θT solving (61). In other words, for all T ∈ (0, Tf), if a the function t 7→ θT (t)
solves (61), then it is an unstable equilibrium state and θT (0) is an unstable fixed point
of the Poincaré map associated with fT . To finish the proof of Theorem 1.3, we are going
to show the uniqueness of the fixed point in (0, 1), for T ∈ (0, Tf).
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Lemma 5.6. Let θT and ΨT be two solutions of Problem (61). For all T ∈ (0, Tf), we
have

θT (0) = ΨT (0) (ie θT ≡ ΨT ).

Proof. Let T ∈ (0, Tf). We define ΦT (α) = PT (α) − α. Let us suppose bwoc that
θT (0) 6= ΨT (0).We saw that







ΦT (θT (0)) = 0,

Φ′

T (θT (0)) > 0,
and







ΦT (ΨT (0)) = 0,

Φ′

T (ΨT (0)) > 0.

Necessarily, there exists αT between θT (0) and ΨT (0) such that ΦT (αT ) = 0 and Φ′

T (αT ) ≤
0. Consequently, PT (αT ) = αT and P ′

T (αT ) ≤ 1. This contradicts the fact that all fixed
points of the Poincaré map in (0, 1) are unstable.

To summarize, for all T ∈ (0, Tf), the Poincaré map associated with fT has a unique
fixed point θT (0) between 0 and 1, where θT is the unique solution of Problem (61).

Furthermore, θT (0)
T →0
−−−→ θg.

5.2 Convergence of the couple (cT , UT ) as T → 0.

We here prove Theorem 1.4. Let T ∈ (0, Tf) and M > 0. In [1], the couple (cT , UT ) is
built as limit when M tends to infinity of the couple (cM

T , UM
T ) solving







(UM
T )t − cM

T (UM
T )ξ − (UM

T )ξξ − fT (t, UM
T ) = 0, on R × (−M, M),

UM
T (t, −M) = 1, UM

T (t, +M) = 0, ∀t ∈ R,

UM
T (T, ξ) = UM

T (0, ξ), ∀ξ ∈ [−M, M ],

UM
T (0, 0) = θg.

We give a lemma which comes again from the article of Alikakos, Bates and Chen [1]
which is going to serve us to bound the speeds cT .

Lemma 5.7. [1] Let M > 1 be a fixed constant. If (Ũ , c̃) satisfies







Ũt − c̃Ũξ − Ũξξ − fT (t, Ũ) ≤ 0, on R × (−M, M),

Ũ(t, −M) ≤ 1, Ũ(t, +M) ≤ 0, ∀t ∈ R,

Ũ(T, ξ) ≤ Ũ(0, ξ), ∀ξ ∈ [−M, M ],

Ũ(0, 0) ≥ θg,

then, we have
cM

T ≤ c̃.

As f is of class C1(R × R,R), the function fu is bounded on [0, 1] × [0, 1]. Consequently,
there exists a function f KPP and a function f the opposite of which is KPP such that

f(u) ≤ f(t, u) ≤ f(u), ∀(t, u) ∈ [0, 1] × [0, 1].

There are planar fronts (c, U) and (c, U) solving







U ′′ + c U ′ + f(U) = 0 on R,

U(−∞) = 1, U(+∞) = 0,

U(0) = θg,

and







U
′′

+ c U
′
+ f(U) = 0 on R,

U(−∞) = 1, U(+∞) = 0,

U(0) = θg.
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We can again obtain these couples from the limits when M tends to infinity of the couples

(cM , UM) and (cM , U
M

) solving







(UM)′′ + cM (UM)′ + f(UM) = 0 on (−M, M),

UM(−M) = 1, UM(+M) = 0,

UM(0) = θg,







(U
M

)′′ + cM (U
M

)′ + f(U
M

) = 0 on (−M, M),

U
M

(−M) = 1, U
M

(+M) = 0,

U
M

(0) = θg.

For the detail of this construction, we can refer to the article of Berestycki and Chapuisat
[3]. The next proposition supplies bounds for the speed cT .

Proposition 5.8. Let T ∈ (0, Tf). The speed cT satisfies

c ≤ cT ≤ c.

Proof. Let M > 1 and T ∈ (0, Tf). We are going to twice apply Lemma 5.7. We have on
(−M, M)

(UM)t − (UM)ξξ − cM (UM)ξ − fT (t, UM) = f(UM) − fT (t, UM) ≤ 0.

Furthermore, UM(−M) = 1, UM(+M) = 0 and UM(0) = θg. Consequently

cM
T ≤ cM .

We define the functions f̃T : R × [0, 1] → R, (t, u) 7→ −fT (t, 1 − u) and V M
T : R ×

[−M, M ] → R, (t, ξ) 7→ 1 − U(t, −ξ). The couple (−cM
T , V M

T ) solves the problem







(V M
T )t − (−cM

T )(V M
T )ξ − (V M

T )ξξ − f̃T (t, V M
T ) = 0, on R × (−M, M),

V M
T (t, −M) = 1, V M

T (t, +M) = 0, ∀t ∈ R,

V M
T (T, ξ) = V M

T (0, ξ), ∀ξ ∈ [−M, M ],

V M
T (0, 0) = 1 − θg.

Since the nonlinearity f̃T satisfies the hypotheses of [1], Lemma 5.7 could be rewrites:
Let M > 1 be a fixed constant. If (Ũ , c̃) satisfies







Ũt − c̃Ũξ − Ũξξ − f̃T (t, Ũ) ≤ 0, on R × (−M, M),

Ũ(t, −M) ≤ 1, Ũ(t, +M) ≤ 0, ∀t ∈ R,

Ũ(T, ξ) ≤ Ũ(0, ξ), ∀ξ ∈ [−M, M ],

Ũ(0, 0) ≥ 1 − θg,

then, we have
−cM

T ≤ c̃.

Yet, defining V
M

(ξ) = 1 − U
M

(−ξ), we have for all ξ ∈ (−M, M)

V
M

t (ξ) − V
M

ξξ (ξ) − (−cM) V
M

ξ (ξ) − f̃T (t, V
M

(ξ))

= −
{

U
M

t (−ξ) − U
M

ξξ (−ξ) − cMU
M

ξ (−ξ)
}

+ fT (t, U
M

(−ξ))

= fT (t, U
M

(−ξ)) − f(U
M

(−ξ)) ≤ 0.

29



Furthermore, V
M

(−M) = 1, V
M

(+M) = 0 and V
M

(0) = 1 − θg. Consequently

−cM
T ≤ −cM .

We thus showed that
cM ≤ cM

T ≤ cM , ∀M > 1.

We pass to the limit when M tends to infinity, it occurs that c ≤ cT ≤ c.

Consequently, there exists a sequence (Tn)n, with Tn
n→+∞
−−−−→ 0 such that (cTn

)n converges
to a constant c∗ ∈ R.

Proposition 5.9. The sequence (UTn
)n converges up to extraction of a subsequence in

W 1,2;p
loc

(R2) weakly and in C0,α
loc

(R2) to a function U∗ for any 1 < p < +∞ and for any
α ∈ (0, 1).

Proof. UTn
is solution of (UTn

)t − cTn
(UTn

)ξ − (UTn
)ξξ − fTn(t, UTn

) = 0 on R
2 and satisfies

0 ≤ UTn
≤ 1. Consequently, as (cTn

)n is bounded in R and as (fTn(·, UTn
))n is bounded in

L∞

loc(R
2), the parabolic regularity theory implies that for 1 ≤ p < +∞, (UTn

)n is bounded
in W 1,2;p

loc (R2). Yet W 1,2;p
loc (R2) embeds compactly into C0,α

loc (R2) for α ∈ (0, 1 − 2/p), for
p > 2. So, there exists U∗ such that up to extraction of a subsequence, (UTn

)n converges
to U∗ in W 1,2;p

loc (R2) weakly and in C0,α
loc (R2) for any 1 < p < +∞ and for any α ∈ (0, 1).

Proposition 5.10. We have the following convergence result

fTn(·, UTn
)

n→+∞
−−−−→ g(U∗) in D′(R2) (up to extraction of a subsequence).

Proof. We still denote (UTn
)n the subsequence of (UTn

)n which converges to U∗. Let
φ ∈ C∞

c (R × R). There exist (a, b, ξ0, ξ1) ∈ R
4 such that the support of φ is included in

K = [a, b] × [ξ0, ξ1]. So we have

∫ +∞

ξ=−∞

∫ +∞

t=−∞

[

fTn(t, UTn
(t, ξ)) − g(U∗(ξ))

]

φ(t, ξ) dt dξ

=
∫ ξ1

ξ=ξ0

∫ b

t=a

[

fTn(t, UTn
(t, ξ)) − g(U∗(ξ))

]

φ(t, ξ) dt dξ.

Let (kn, pn) ∈ N
2 such that [knTn, pnTn] ⊂ [a, b], |a − knTn| ≤ Tn et |b − pnTn| ≤ Tn.

∫ ξ1

ξ0

∫ b

a

[

fTn(t, UTn
(t, ξ)) − g(U∗(ξ))

]

φ(t, ξ) dt dξ =
∫ ξ1

ξ0

∫ knTn

a
︸ ︷︷ ︸

In

+
∫ ξ1

ξ0

∫ pnTn

knTn
︸ ︷︷ ︸

Jn

+
∫ ξ1

ξ0

∫ b

pnTn
︸ ︷︷ ︸

Kn

.

The integrals In et Kn are treated in the same way:

In =
∫ ξ1

ξ0

∫ knTn

a

[

fTn(t, UTn
(t, ξ)) − g(U∗(ξ))

]

φ(t, x)dt dξ

=
∫ +∞

−∞

∫ +∞

−∞

1[a,knTn]×[ξ0,ξ1](t, ξ)
[

fTn(t, UTn
(t, ξ)) − g(U∗(ξ))

]

φ(t, ξ) dt dξ.

The quantity
[

fTn(t, UTn
(t, ξ)) − g(U∗(ξ))

]

φ(t, ξ) is bounded independently of n, t and ξ.
So, by Lebesgue’s theorem, the integral tends to 0 when n tend to infinity. So

lim
n→+∞

In = lim
n→+∞

Kn = 0.
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Let us consider Jn:

Jn =
∫ ξ1

ξ0

∫ pnTn

knTn

[fTn(t, UTn
(t, ξ)) − g(U∗(ξ))]φ(t, ξ) dt dξ (s =

t

Tn

)

= Tn

∫ ξ1

ξ0

∫ pn

kn

[f(s, UTn
(sTn, ξ)) − g(U∗(ξ))] φ(sTn, ξ) ds dξ

= Tn

∫ ξ1

ξ0

pn−1
∑

q=kn

∫ q+1

q
[f(s, UTn

(sTn, ξ)) − g(U∗(ξ))] φ(sTn, ξ) ds dξ

= Tn

∫ ξ1

ξ0

pn−1
∑

q=kn

∫ 1

0
[f(s + q, UTn

(sTn + qTn, ξ)) − g(U∗(ξ))] φ(sTn + qTn, ξ) ds dξ

= Tn

∫ ξ1

ξ0

pn−1
∑

q=kn

∫ 1

0
[f(s, UTn

(sTn, ξ)) − g(U∗(ξ))] φ(sTn + qTn, ξ) ds dξ.

We split now the integral into two parts.

Jn = Tn

pn−1
∑

q=kn

∫ 1

0

∫ ξ1

ξ0

[f(s, U∗(ξ)) − g(U∗(ξ))] φ(sTn + qTn, ξ) dξ ds

︸ ︷︷ ︸

J1
n

+ Tn

∫ ξ1

ξ0

pn−1
∑

q=kn

∫ 1

0
[f(s, UTn

(sTn, ξ)) − f(s, U∗(ξ))]φ(sTn + qTn, ξ) ds dξ

︸ ︷︷ ︸

J2
n

.

We study J2
n:

Tn

∫ ξ1

ξ0

pn−1
∑

q=kn

∫ 1

0
[f(s, UTn

(sTn, ξ)) − f(s, U∗(ξ))]φ(sTn + qTn, ξ) ds dξ

≤ Tn(pn − kn)‖fu‖∞,[0,1]2‖φ‖∞

∫ 1

0
|UTn

(sTn, ξ) − U∗(ξ)| ds

≤ |b − a|‖fu‖∞,[0,1]2‖φ‖∞‖UTn
− U∗‖∞,[0,1]×[ξ0,ξ1]

n→+∞
−−−−→ 0 (according to Prop 5.9).

We study J1
n:

Let ε > 0. By uniform continuity of the function φ, there exists η > 0 such that

‖(t, ξ) − (s, ξ′)‖ ≤ η =⇒ |φ(t, ξ) − φ(s, ξ′)| ≤ ε.

For n large enough, we have

∀q ∈ [kn, pn − 1], ∀s ∈ [0, 1], ∀ξ ∈ [ξ0, ξ1], ‖(sTn + qTn, ξ) − (qTn, ξ)‖ ≤ η.

Consequently, we have |φ(sTn + qTn, ξ) − φ(qTn, ξ)| ≤ ε. We write then

J1
n = Tn

∫ ξ1

ξ0

pn−1
∑

q=kn

∫ 1

0

[

f(s, U∗(ξ)) − g(U∗(ξ))
][

φ(sTn + qTn, ξ) − φ(qTn, ξ)
]

ds dξ

︸ ︷︷ ︸

J3
n

+ Tn

∫ ξ1

ξ0

pn−1
∑

q=kn

∫ 1

0

[

f(s, U∗(ξ)) − g(U∗(ξ))
]

φ(qTn, ξ) ds dξ

︸ ︷︷ ︸

J4
n

.
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We start with J4
n:

J4
n = Tn

∫ ξ1

ξ0

pn−1
∑

q=kn

φ(qTn, ξ)
{∫ 1

0

[

f(s, U∗(ξ)) − g(U∗(ξ))
]

ds
}

dξ.

By definition of g, we have
∫ 1

0

[

f(s, U∗(ξ)) − g(U∗(ξ))
]

ds = 0. Consequently J4
n = 0.

We look now at J3
n:

|J3
n| ≤ Tn

∫ ξ1

ξ0

pn−1
∑

q=kn

∫ 1

0
|f(s, U∗(ξ)) − g(U∗(ξ))| |φ(sTn + qTn, ξ) − φ(qTn, ξ)| ds dξ.

The quantity |f(s, U∗(ξ)) − g(U∗(ξ))| is bounded by a constant M∗. Consequently

|J3
n| ≤ (ξ1 − ξ0)Tn(pn − kn)M∗ε ≤ (ξ1 − ξ0)(b − a)M∗ε.

So, we proved that lim
n→+∞

J3
n = 0. Consequently, we have lim

n→+∞
J1

n = 0, which concludes

the proof.

Proposition 5.11. The function U∗ is of class C1,2(R) and

(U∗)t − c∗(U∗)ξ − (U∗)ξξ − g(U∗) = 0 on R
2.

Proof. We know that UTn
is a function of class C1,2(R2) satisfying the equation

(UTn
)t − cn(UTn

)ξ − (UTn
)ξξ − fTn(t, UTn

) = 0, on R
2. (64)

We also know that (UTn
)n converges up to extraction of a subsequence to U∗ in W 1,2;p

loc (R2),
for any 1 < p < +∞. In particular, the convergence takes place for p = 2. Let φ ∈ C∞

c (R2).
Multiplying Equation (64) by φ, and integrating by parts on R

2, we obtain

−
∫

R
2
UTn

φt − cn

∫

R
2
(UTn

)ξφ +
∫

R
2
(UTn

)ξφξ −
∫

R
2
fTn(t, UTn

)φ = 0. (65)

We have
∣
∣
∣

∫

R
2
UTn

φt −
∫

R
2

U∗φt

∣
∣
∣ ≤ ‖UTn

− U∗‖L2(Supp(φ))‖φt‖L2(Supp(φ))

≤ ‖UTn
− U∗‖W 1,2,2(Supp(φ))‖φt‖L2(Supp(φ)).

Also ∫

R
2
(UTn

)ξφ
n→∞
−−−→

∫

R
2
(U∗)ξφ and

∫

R
2
(UTn

)ξφξ
n→∞
−−−→

∫

R
2
(U∗)ξφξ.

Furthermore, we showed in Lemma 5.10 that
∫

R
2

f(
t

Tn

, UTn
)φ

n→∞
−−−→

∫

R
2
g(U∗)φ.

Consequently, if we pass to the limit as n → +∞ in (65), we have that

−
∫

R
2
U∗φt − c∗

∫

R
2
(U∗)ξφ +

∫

R
2
(U∗)ξφξ −

∫

R
2
g(U∗)φ = 0.

Consequently U∗ is a weak solution of the equation

(U∗)t − c∗(U∗)ξ − (U∗)ξξ − g(U∗) = 0 on R
2.

By parabolic regularity theory, the function U∗ is in fact a function C1,2(R2), and it satisfies
the previous equation in the classical sense on R

2.
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Proposition 5.12. The function U∗ does not depend on t. In other terms

∂tU
∗(t, ξ) = 0, ∀t ∈ R, ∀ξ ∈ R.

Proof. Let (t, ξ) ∈ R
2 and n ∈ N. Let K be a compact set containing (t, ξ) and (0, ξ).

According to the previous proposition, there exists CK ∈ R such that ‖UTn
‖C1,2(K) ≤ CK .

Let kn ∈ Z such that |t − knTn| ≤ Tn. We have

|U∗(t, ξ) − U∗(0, ξ)| ≤ |U∗(t, ξ) − UTn
(t, ξ)| + |UTn

(t, ξ) − UTn
(0, ξ)| + |UTn

(0, ξ) − U∗(0, ξ)|.

The first and the third term of the previous inequality are smaller than ‖U∗ − UTn
‖∞,K.

Let us examine the second term of the sum above:

|UTn
(t, ξ) − UTn

(0, ξ)| = |UTn
(t − knTn, ξ) − UTn

(0, ξ)| ≤ ‖UTn
‖C1,2(K)|t − knTn| ≤ CKTn.

Passing to the limit when n tends to infinity, it occurs that

U∗(t, ξ) = U∗(0, ξ).

That is U∗ do not depend on t.

Proposition 5.13. We have c∗ = cg and U∗ ≡ Ug.

Proof. For all n ≥ 0, we have UTn
(0, 0) = θg. This thus implies that U∗(0) = θg. The

couple (c∗, U∗) satisfies in the classical sense the equation (U∗)′′ + c∗(U∗)′ + g(U∗) = 0 on
R. We are now going to justify that U∗(−∞) = 1 and that U∗(+∞) = 0. Knowing that
U∗(0) = θg, it could be possible a priori that U∗ ≡ θg. We are however going to show
bwoc that this situation cannot occur. We thus suppose that U∗ ≡ θg. As (UTn

)ξ < 0 on

R, there exists a unique positive real number ξn such that UTn
(0, ξn) = θg

2
. We thus define

the function Vn : R2 → R by Vn(t, ξ) = UTn
(t, ξ + ξn). Consequently, we have







Vn(0, 0) =
θg

2
,

Vn(t, ξ) ≤ UTn
(t, ξ) on R

2.
(66)

The sequence (Vn)n converges up to extraction of a subsequence in W 1,2;p
loc (R2) weakly and

in C0,α
loc (R2) for any 1 < p < +∞ and for any α ∈ (0, 1) to a function V ∗ ∈ C2(R) satisfying

(V ∗)′′ + c∗(V ∗)′ + g(V ∗) = 0 on R. (67)

If we pass to the limit as n tends to the infinity in (66), we obtain that






V ∗(0) =
θg

2
,

V ∗ ≤ θg on R.

Consequently, we have that V ∗(−∞) = θg and V ∗(+∞) = 0. We multiply (67) by (V ∗)′,
then we integrate on R. It occurs that

c∗

∫ +∞

−∞

[(V ∗)′(ξ)]2dξ = −
∫ +∞

−∞

g[(V ∗)(ξ)](V ∗)′(ξ)dξ =
∫ θg

0
g(s)ds < 0.

So,
c∗ < 0.
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The same reasoning on the function Wn defined by Wn(t, ξ) = UTn
(t, ξ + ξ̃n) such that

Wn(0, 0) = 1+θg

2
leads to the fact that c∗ has the same sign as

∫ 1
θg

g(s)ds, that is c∗ > 0.
We get to a contradiction. The situation U∗ ≡ θg can not occur. Consequently, U∗ is not
identically equal in θg. Applying the strong maximum principle, one gets

(U∗)′ < 0 on R.

As U∗(0) = θg, we have necessarily U∗(−∞) = 1 and U∗(+∞) = 0. To summarize, the
couple (c∗, U∗) satisfies







(U∗)′′ + c∗(U∗)′ + g(U∗) = 0 on R,

U∗(−∞) = 1, U∗(+∞) = 0,

U∗(0) = θg.

Knowing that this problem admits a unique solution, il occurs that c∗ = cg and U∗ ≡ Ug.

The uniqueness of accumulation point of (cTn
)n and (UTn

)n imply that cT
T →0
−−−→ cg and

UT
T →0
−−−→ Ug in W 1,2;p

loc (R2) weakly and in C0,α
loc (R2) for any 1 < p < +∞ and for any

α ∈ (0, 1).

6 Pulsating fronts for small perturbations of the non-

linearity

6.1 Existence of pulsating fronts

This section is devoted to the proof of Theorems 1.5 and 1.6. We remind the reader that
in this section, the Poincaré map associated with the function fT has exactly two stable
fixed points 0 and 1, and a unique unstable fixed point α0 between both. According to
[1], there exists a unique pulsating front (cT , UT ) solving (5) with UT (0, 0) = α0. We call
w0(t) the solution of the equation y′ = fT (t, y) satisfying y(0) = α0. We saw in Section 2
that w0 is a T -periodic function. Furthermore, we have

λw0,fT = −
1

T

∫ T

0
fu(s, w0(s))ds < 0.

We give a corollary of the Grönwall lemma.

Lemma 6.1. Let y : [a, b] → R a function of class C1 such that

∃α > 0, ∃β > 0, ∀t ∈ [a, b], |y′(t)| ≤ β + α|y(t)|.

So, we have

∀t ∈ [a, b], |y(t)| ≤ |y(a)|eα(t−a) +
β

α
(eα(t−a) − 1).

Proof. For all t in [a, b], we have

|y(t)| ≤ |y(a)| + |y(t) − y(a)| ≤ |y(a)| +
∫ t

a
|y′(s)|ds ≤ |y(a)| + β(t − a) +

∫ t

a
|y(s)|ds.

We then apply the Grönwall lemma.
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We denote by Pε (resp. P ) the Poincaré map associated with fT,ε (resp. fT ). We are
going to show here that Pε (resp. P ′

ε) converges uniformly on [0,1] to P (resp. P ′) when
ε tends to 0. Let us specify that according to (2), (8), (9) and the mean value theorem,
we have

|fT (t, u) − fT,ε(t, u)| ≤ ω(ε), ∀(t, u) ∈ [0, T ] × [0, 1]. (68)

Proposition 6.2. There exists three constants C1, C2 and C3 such that for any ε > 0,
we have

‖P − Pε‖∞,[0,1] < C1ω(ε). (69)

‖P ′ − P ′

ε‖∞,[0,1] < C2 sinh(C3ω(ε)). (70)

Proof. We show the first relation. Let α ∈ [0, 1] and ε > 0. We define uε = w(α, ·) −
wε(α, ·). There exist two positive constants C and C ′ such that for any t ∈ [0, T ], we have

|u′

ε(t)| = |fT (t, w(α, t)) − fT,ε(t, wε(α, t))|

≤ |fT (t, w(α, t)) − fT (t, wε(α, t))| + |fT (t, wε(α, t)) − fT,ε(t, wε(α, t))|

≤ C|uε(t)| + C ′ω(ε) (by (68)).

We apply Lemma 6.1. For all t ∈ [0, T ], we have |uε(t)| ≤
C ′ω(ε)

C
(eCt − 1).

Consequently, if we take t = T , and if we define C1 =
C ′

C
(eCT − 1), then we conclude

|P (α) − Pε(α)| < C1ω(ε).

We show the second relation. Let α ∈ [0, 1] and ε > 0.

P ′(α) − P ′

ε(α) = e
∫ T

0
fT

u (s,w(α,s))ds − e
∫ T

0
f

T,ε
u (s,wε(α,s))ds

= e
1
2

(
∫ T

0
fT

u (s,w(α,s))ds+
∫ T

0
f

T,ε
u (s,wε(α,s))ds

)

︸ ︷︷ ︸

(I)

×2 sinh
(1

2

∫ T

0
fT

u (s, w(α, s)) − fT,ε
u (s, wε(α, s))ds

︸ ︷︷ ︸

(II)

)

.

Knowing that wε(α, ·) ∈ [0, 1] and that fT,ε
u is bounded independently of ε on [0, T ]× [0, 1]

(because wε is bounded), the term (I) can be bounded by a constant which we shall de-
note C2. Let us now consider the term (II)

(II) =
∫ T

0
fT

u (s, w(α, s)) − fT
u (s, wε(α, s))ds +

∫ T

0
fT

u (s, wε(α, s)) − fT,ε
u (s, wε(α, s))ds.

According to (69) and the mean value theorem, there exists M > 0 such that

fT
u (s, w(α, s)) − fT

u (s, wε(α, s)) ≤ M |w(α, s) − wε(α, s)| ≤ MC1ω(ε).

Furthermore, according to (9), we have

fT
u (s, wε(α, s)) − fT,ε

u (s, wε(α, s)) ≤ ω(ε).

Consequently,
(II) ≤ (MC1 + 1)Tω(ε).

We define C3 = (MC1 + 1)T . Finally, we have

P ′(α) − P ′

ε(α) ≤ C2 sinh(C3ω(ε)),

and the proof of Proposition 6.2 is complete.
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Proposition 6.3. There exists ε0 > 0 small enough such that for all ε ∈ (0, ε0), Pε has
exactly two stable fixed points 0 et 1 and a unique unstable fixed point αε

0 ∈ (0, 1).

Proof. We begin by making some remarks on P . As P ′(0) < 1 (resp. P ′(1) < 1), by
continuity there exists an interval [0, x0] (resp. [x1, 1]) on which P ′ < 1 (resp. P ′ < 1).
As P ′(α0) > 1, there exists an interval [α0 − η, α0 + η] on which P ′ > 1.

The properties of P above can be extend to Pε. Indeed, according to (69) and (70), there
exists ε0 > 0 such that for any ε ∈ (0, ε0), P ′

ε < 1 on [0, x0], P ′

ε < 1 on [x1, 1], and P ′

ε > 1
on [α0 − η, α0 + η]. Consequently, for ε ∈ (0, ε0), as Pε(0) = Pε(1) = 0, the function Pε

has necessarily another fixed point αε
0 between both.

Let ε ∈ (0, ε0). The function Pε has no fixed point on [0, x0] and on [x1, 1]. We make
the proof for [0, x0]. Let α ∈ [0, x0]. According to Taylor-Lagrange’s formula, we have
Pε(α) = Pε(0) + αP ′

ε(α̂), where α̂ ∈ [0, α] ⊂ [0, x0]. According to the fact that Pε(0) = 0
and P ′

ε(α̂) < 1, we have Pε(α) < α.

The function Pε has no fixed point on [x0, α0 − η] and on [α0 + η, x1]. Indeed, we can find
ν0 such that for any α ∈ [x0, α0 − η], we have P (α) − α > ν0. Consequently, according to
(69), even if it means setting ε0 smaller, we can prove that for any α in [x0, α0 − η], we
have Pε(α) − α > ν0

2
.

Finally, Pε has a unique fixed point (on [α0 − η, α0 + η]). Indeed, if there was others, we
would have the existence of a point αε

1 for which P ′

ε(α
ε
1) < 1. It is contradictory to the

fact that P ′

ε > 1 on [α0 − η, α0 + η].

Consequently, if ε ∈ (0, ε0), then we are under the hypotheses of the existence and unique-
ness theorem of Alikakos, Bates and Chen [1]. In particular, there exists a pulsating front
(Uε, cε) solving (10).

6.2 Convergence of the couple (cε, Uε) as ε → 0.

This subsection is devoted to the proof of Theorem 1.6. By Theorem 1.5, for ε ∈ (0, ε0),
there exists a pulsating front (Uε, cε) solving (10). As in Section 5, we can show there
exists a couple (c∗, U∗) such that as ε → 0, cε converges to c∗ and Uε converges to U∗

in W 1,2;p
loc (R2) weakly and in C0,α

loc (R2) for any 1 < p < +∞ and any α ∈ (0, 1). We prove
then that (c∗, U∗) is solution, at first in the sense of distributions, but also in the classical
sense of the equation

(U∗)t − c∗(U∗)ξ − (U∗)ξξ = fT (t, U∗), on R
2.

We also have that U∗(T, ·) = U∗(0, ·) on R, and U∗(0, 0) = α0. Consequently, if we prove
that U∗(·, −∞) = 1 and U∗(·, +∞) = 0 uniformly on R, then the couple (c∗, U∗) solves
Problem (5) with U∗(0, 0) = α0. By uniqueness, we shall have c∗ = cT and U∗ = UT . We
can not prove this result in the same way as in Section 5 because here, we do not know
the sign of cT . We use a technique which comes from Lemma 6.5 of [4] where they are
interested in the exponential behavior of the front at infinity. After, we shall denote

U∗

±(t) = lim
ξ→±∞

U∗(t, ξ).

Knowing that U∗(0, 0) = w0(0) and ∂ξU
∗ ≤ 0, we have a priori that U∗

+ ≡ w0 or U∗

+ ≡ 0.
We suppose at first that U∗

+ ≡ w0. So, we have that U∗ ≥ w0. Since the two functions
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are equal on (0, 0), the strong maximum principle implies that

U∗(t, ξ) = w0(t), ∀t ≤ 0, ∀ξ ∈ R.

By periodicity, the equality is also true when t is positive. Consequently U∗ ≡ w0 on R
2.

As ∂ξUε < 0, there exists a unique positive real number ξε such that Uε(0, ξε) = α0

2
. We

define the function Vε : R2 → R by Vε(t, ξ) := Uε(t, ξ + ξε). We have so






Vε(0, 0) =
α0

2
,

Vε ≤ Uε on R
2,

∂ξVε < 0 on R
2.

We can show that Vε converges to a function V ∗ in W 1,2;p
loc (R2) weakly and in C0,α

loc (R2) for
1 < p ≤ +∞ and α ∈ (0, 1). Actually, V ∗ is in C1,2(R2) and satisfies in the classical sense
∂tV

∗ − c∗∂ξV
∗ − ∂ξξV

∗ = fT (t, V ∗) on R
2. Furthermore, we have







V ∗(0, 0) =
α0

2
,

V ∗ ≤ U∗ ≡ w0 on R
2,

∂ξV
∗ < 0 on R

2.

The last inequality is a consequence of the strong maximum principle. We define the
function Z : R2 → R by Z(t, ξ) = w0(t) − V ∗(t, ξ). The function Z is positive and satisfies

∂tZ − c∗∂ξZ − ∂ξξZ = α(t, ξ)Z on R
2,

where α(t, ξ) =







fT (t, w0(t)) − fT (t, V ∗(t, ξ))

w0(t) − V ∗(t, ξ)
if w0(t) 6= V ∗(t, ξ),

fT
u (t, w0(t)) otherwise.

We also have
Z(t + T, ξ) = Z(t, ξ), ∀t ∈ R, ∀ξ ∈ R.

We are going to show that
Zξ

Z
is bounded on R

2. Let (t, ξ) ∈ R
2. Standard parabolic

estimates imply that there exists a constant C1 independent of (t, ξ) (because the function
c is bounded) such that

0 ≤ Zξ(t, ξ) ≤ C1 max
[t−1,t]×[ξ−1,ξ+1]

Z. (71)

Furthermore, the parabolic Harnack’s inequality implies that there exists a constant C2

independent of (t, ξ) (because the function c is bounded) such that

max
[t−1,t]×[ξ−1,ξ+1]

Z ≤ C2Z(t + T, ξ) = C2Z(t, ξ). (72)

Inequalities (71) and (72) imply that

0 <
Zξ

Z
(t, ξ) < C1C2.

Consequently lim sup
ξ→−∞, t∈R

Zξ

Z
(t, ξ) is a finite and non negative real number called β. So,

there exists two sequences (tn)n and (ξn)n with ξn
n→+∞
−−−−→ −∞ such that

lim
n→+∞

Zξ

Z
(tn, ξn) = β. (73)
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Let us note that we can show in the same way that the quotient
Zt

Z
is bounded in R

2.

Let n ∈ N. We write tn = knT + t′

n, where kn is an integer and t′

n satisfies |t′

n| < T . We
define the function hn : R2 → R by

hn(t, ξ) :=
Z(t, ξ + ξn)

Z(tn, ξn)
.

Let us show that the function hn is locally bounded. Let K be a compact set of R
2, and

(t, ξ) ∈ K.

| ln(hn(t, ξ))| = | ln(Z(t, ξ + ξn)) − ln(Z(tn, ξn))|

= | ln(Z(t + knT, ξ + ξn)) − ln(Z(tn, ξn))|

≤ ‖(log(Z))t‖∞|t − t′

n| + ‖(log(Z))ξ‖∞|ξ|.

Let us specify that ‖(log(Z))t‖∞ and ‖(log(Z))ξ‖∞ are well defined because the two

quotients
Zξ

Z
and Zt

Z
are bounded on R

2. Consequently, the quantity above is bounded
because (t, ξ) ∈ K and |t′

n| < T . We have

(hn)t − c∗(hn)ξ − (hn)ξξ = αn(t, ξ)hn on R
2, (74)

where αn(t, ξ) =
fT (t, w0(t)) − fT (t, V ∗(t, ξ + ξn))

w0(t) − V ∗(t, ξ + ξn)
.

The sequence (αn)n is bounded by max(t,u)∈[0,T ]×[0,1] |fT
u | in L∞

loc(R
2) independently of n.

Furthermore (hn)n is locally bounded. Consequently, we can show that (hn)n converges
to a function h in W 1,2;p

loc (R2) weakly and in C0,α
loc (R2) for any 1 < p < +∞ and for any

α ∈ (0, 1). Actually, passing to the limit in the equation (74), h satisfies (at first in the
sense of distributions, but in fact in the classical sense using standard parabolic estimates)

ht − c∗hξ − hξξ = fT
u (t, w0(t))h on R

2. (75)

We have
(hn)ξ

hn

(t, ξ) =
Zξ

Z
(t, ξ + ξn), ∀t ∈ R, ∀ξ ∈ R.

As ξn
n→∞
−−−→ 0, we have that

lim
n→+∞

Zξ

Z
(t, ξ + ξn) ≤ lim sup

ξ→−∞ ; t∈R

Zξ

Z
(t, ξ) := β, ∀t ∈ R, ∀ξ ∈ R.

So

lim
n→∞

(hn)ξ

hn

(t, ξ) ≤ β, ∀t ∈ R, ∀ξ ∈ R.

We also have

lim
n→∞

(hn)ξ

hn

(t, ξ) =
hξ

h
(t, ξ), ∀t ∈ R, ∀ξ ∈ R.

Consequently
hξ

h
(t, ξ) ≤ β, ∀t ∈ R, ∀ξ ∈ R.

Furthermore, first we have that

(hn)ξ

hn

(t′

n, 0) =
Zξ

Z
(tn, ξn)

n→+∞
−−−−→ β,
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and second, as (t′

n)n is bounded, it converges up to extraction of a subsequence to a
constant t0 ∈ R. Consequently

hξ

h
(t0, 0) = β.

The function
hξ

h
satisfies on R

2 the equation

(
hξ

h
)t − c∗(

hξ

h
)ξ − (

hξ

h
)ξξ − 2(

hξ

h
)ξ(

hξ

h
) = 0.

So, applying the maximum principle and using the T -periodicity, we obtain that

hξ(t, ξ) = βh(t, ξ), ∀t ∈ R, ∀ξ ∈ R.

Consequently, there exists a T -periodic positive function Γ(t) such that

h(t, ξ) = eβξΓ(t), ∀t ∈ R, ∀ξ ∈ R.

We put back the previous expression in (75), then we simplify by eβξ. We obtain

Γ′(t) − βc∗Γ(t) − β2Γ(t) = fT
u (t, w0(t))Γ(t), ∀t ∈ R.

We divide then by Γ(t) and we integrate between 0 and T

∫ T

0

Γ′(t)

Γ(t)
dt − βTc∗ − β2T =

∫ T

0
fT

u (t, w0(t))dt.

According to the fact that
∫ T

0
Γ′(t)
Γ(t)

dt = 0, we have

β2 + c∗β − λw0,fT = 0.

Consequently, β is a a non negative root of X2 + c∗X + λw0,fT = 0.

As ∂ξUε < 0, there exists a unique negative ξε such that Uε(0, ξε) =
1 + α0

2
. We define

the function Wε : R2 → R by Wε(t, ξ) := Uε(t, x + ξε) We have







Wε(0, 0) =
α0 + 1

2
,

Wε ≥ Uε on R
2,

∂ξWε < 0 on R
2.

The function Wε converges to a function W ∗ in W 1,2;p
loc (R2) weakly and in C0,α

loc (R2) for
1 < p < +∞ and α ∈ (0, 1). Furthermore, W ∗ is in C1,2(R2) and satisfies ∂tW

∗ −
c∗∂ξW

∗ − ∂ξξW
∗ = fT (t, W ∗) on R

2. Consequently, we have







W ∗(0, 0) =
α0 + 1

2
,

W ∗ ≥ U∗ ≡ w0 on R
2,

∂ξW
∗ < 0 on R

2.

The fact that the last inequality is strict is a consequence of the strong maximum principle.
We define Z(t, ξ) = w0(t) − W ∗(t, ξ). We show using parabolic standards estimates and
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the parabolic Harnack’s inequality that the the negative function
Zξ

Z
is bounded on R

2.

Consequently lim sup
ξ→−∞ ; t∈R

Zξ

Z
(t, ξ) is a finite and a non positive real called δ. As previously,

we also demonstrate that δ is a non positive root of X2+c∗X−λw0,fT . Finally, the product
βδ is a non positive real number, but it is equal to −λw0,fT which is by hypothesis a positive
real number. So, we have a contradiction, and the hypothetis U∗

+ ≡ w0 is not valid. So
we have that U∗

+ ≡ 0. Consequently, we have U∗

− ≡ 1. Indeed, If it was not the case, we
would have U∗

− ≡ w0. So we would have

U∗(t, ξ) ≤ w0(t), ∀t ∈ R, ∀ξ ∈ R.

Yet, the two functions are equal on (0, 0), so, by the strong maximum principle we would
have

U∗(t, ξ) = w0(t), ∀t ≤ 0, ∀ξ ∈ R.

By periodicity, the equality would be true for all t ∈ R. This would contradict the fact
that U∗

+ ≡ 0.

So we have

U∗(·, −∞) = 1 and U∗(·, +∞) = 0,

and the proof of Theorem 1.6 is complete.
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