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ABSTRACT 

In this paper, we look at the robustness and recovery of connected critical infrastructures (CIs) 

under a system-of-systems (SoS) framework taking into account i) the dependencies among 

the components of an individual CI and the interdependencies among different CIs; ii) the 

variability in component performance, by a multi-state model; iii) the epistemic uncertainty in 

the probabilities of transitions between different components states and in the mean values of 

the holding times distributions, by means of intervals. We adopt the Goal Tree Success Tree – 

Dynamic Master Logic Diagram (GTST-DMLD) for system modelling and perform the 

quantitative assessment by Monte Carlo simulation. We illustrate the approach by way of a 

simplified case study consisting of two interdependent infrastructures (electric power system 

and gas network) and a supervisory control and data acquisition (SCADA) system connected 

to the gas network.  
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1. INTRODUCTION 

Critical infrastructures (CIs), e.g., transportation, electric power, water, gas, communication 

systems, interact on the basis of complex relationships that cross the single infrastructure 

boundary. This exposes CIs to the risk that a failure in an infrastructure can have negative 

impacts on another interconnected one. For example, CIs are getting more and more 

dependent on information technologies that, on one hand, provide control and support their 

increasing efficiency, but, on the other hand, create new vulnerabilities [1]. As additional 

example from the field, the widespread power electric blackout that occurred in the Midwest 

and Northeast of the United States and Ontario, Canada, on August 2003, affected the 

serviceability of the water system at Cleveland, OH, due to the lack of power needed to 

operate the water pumping stations [2]. Analyzing and understanding the interdependences 

existing among infrastructure systems is fundamental for the safe operation and control of 

these “systems of systems”.  

 

We adopt a system-of-systems (SoS) framework of analysis to evaluate the SoS robustness 

and recovery properties, considering the dependencies among the components of a critical 

infrastructure and the interdependencies among different CIs. For a more realistic 

representation, we utilize a multi-state model for consideration of the different degrees of 

damage that the individual components may experience [3]. Transitions between different 

states of damage occur stochastically (aleatory uncertainty) and epistemic uncertainty affects 

the associated transition probabilities due to insufficient knowledge and information on the 

components degradation behavior [4-6]. Indeed, safety-CIs are highly reliable and, thus, 

undergo few degradations to failure, so that it is difficult to estimate damage levels and 

transition probabilities [7-11].  
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For illustration purpose, we adapt the framework of analysis to a case study proposed in [1], 

in which the system considered consists of two interdependent infrastructures (gas and 

electric power networks), and a supervisory control and data acquisition (SCADA) system 

connected to the gas network. To measure the robustness and recovery capacity of the system, 

we look at the steady-state probability distributions of the supply of gas and electricity at the 

demand nodes and the time needed to recover the SoS from the worst scenario to a level in 

which all the demand nodes are satisfied, respectively. 

 

We propose a hierarchical model description of the system logic and functionality by Goal 

Tree Success Tree – Dynamic Master Logic Diagram (GTST-DMLD) [12], extending its 

representation characteristics to evaluate the physical flows of gas and electricity through the 

interdependent infrastructures. We adopt intervals to describe the epistemic uncertainty in the 

probabilities of transition between different components states and in the mean values of the 

holding time distributions [13-21] and we use interval analysis to calculate the (uncertain) 

probabilities of the states of all the components of the CIs [22-27]. Finally, we employ Monte 

Carlo simulation [28, 29] for the probabilistic evaluation of the SoS performance. 

 

The paper is organized as follows. In Section 2, the case study is presented; in Section 3, the 

SoS modelling by GTST-DMLD is illustrated; in Section 4, details of the procedural steps to 

evaluate the SoS performance under epistemic uncertainty are given; in Section 5, the results 

of the analysis are shown and discussed; in Section 6, conclusions are provided. Finally, in 

Appendix A, a brief overview of imprecise probabilities is given and in Appendix B further 

details of the operative steps to process the epistemic uncertainty by interval analysis are 

reported. 
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2. CASE STUDY 

The case study is taken from [1] and it deals with two interconnected infrastructures, i.e., a 

natural gas distribution network and an electricity generation/distribution network (Figure 1 

top, solid and dashed lines, respectively). The gas distribution network is supported by a 

SCADA system (Figure 1 top, dotted lines). The objective of this interconnected system of 

systems (SoS) is to provide the necessary amount of gas and electricity (hereafter also called 

“product”) to four demand nodes (end-nodes), namely D1 and D2 (gas) and L1 and L2 

(electricity).  

 

Figure 1: Top: Interdependent gas (solid lines) and electric (dashed lines) infrastructures and 

SCADA system (dotted lines) [1]; the quantities demanded by the end-nodes D1, D2, L1, L2 

are reported in bold. Bottom: deterministic and stochastic arc capacities.  

The gas distribution network, supplied by two sources of gas (namely, S1 and S2, that are 

connected to the network by arcs S1_DS1 and S2_DS2, respectively), provides gas to the end-

nodes D1 and D2 and to two nodes of the electricity network (E1 and E2). Once the gas enters 
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into nodes E1 and E2, it is transformed into electrical energy that flows through arcs E1_G1 

and E2_G2 (representing the electric power generation stations) to supply the end-nodes of 

electricity (L1 and L2); notice that the demand L2 can be supplied by both electrical 

generations E1_G1 and E2_G2. The assumption is made that the gas-electricity 

transformation occurs with a constant coefficient, i.e., 100 cu. ft. of natural gas produces 1 

MWh of electricity [1].  

A SCADA system controls the gas flow through arcs a_b, b_c, c_d and d_e. It is assumed 

that: i) the SCADA has two core subsystems controlling different sets of arcs (in particular, 

the first one – SUB1 – refers to links a_b and b_c, whereas the second one – SUB2 – controls 

arcs c_d and d_e); ii) the SCADA is always provided with electric power [1]. 

 

The capacities of the arcs of the gas and electricity networks (determining the maximum 

flows of gas or electricity supported by the arcs) can be deterministic (i.e., fixed constant 

values) or stochastic (i.e., randomly evolving in time) (Figure 1 bottom). The stochastic 

capacities give rise to a multi-state model that reflects the possibly different degrees of 

damage of the arcs. On the contrary, the SCADA system state is defined by a binary random 

variable, whose values 1 and 0 represent its complete and partial functioning, respectively. 

For example, when the state of the SCADA subsystem SUB1 (controlling arcs a_b and b_c) is 

0, the capacity of these arcs decreases because of the incorrect information provided by the 

SCADA subsystem (even if the arcs are not subject to a direct damage). On the basis of the 

two states of the SCADA subsystems, two different vectors of capacities are identified for 

each arc a_b, b_c, c_d and d_e as illustrated in Figure 1 bottom. 

In the following, we generically denote the value of the state of a component (i.e., the 

capacity of the arcs) as ζ
c,i

 , i  {1,2,…,S
c
}, where c indicates the component of interest and i 

the state number (when i = 1, the component is in the worst state, whereas when i = S
c
, it is in 
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the best state); S
c
 is the total number of states for that component. For example, component 

S1_DS1 has S
S1_DS1

 = 4 possible states of gas capacity: ζ
S1_DS1,1

 = 90000 cu. ft., ζ
S1_DS1,2

 = 

95000 cu. ft., ζ
S1_DS1,3

 = 100000 cu. ft., ζ
S1_DS1,4

 = 105000 cu. ft. The total number of 

components in the SoS is referred to as NC. 

 

Changes in the arc capacities are due to random failures or recovery actions. The state 

transitions over time are modeled by Markov and semi-Markov processes as in [1]. Semi-

Markov processes are adopted to represent the evolution of the capacities of the gas supply 

links (S1_DS1 and S2_DS2), whereas Markov processes are used for all the others arcs. Both 

Markov and semi-Markov processes for a generic component c, c = 1, 2, ..., NC, are defined 

by a transition probability matrix }..., ,2 ,1, :{P cc
ij

c
Sjip  , where c

ijp  is the one-step 

probability of transition from state i to state j. In addition, the semi-Markov processes are 

characterized by a matrix of continuous probability distribution (e.g. Normal), 

}S..., ,2 ,1, :),({T cc
ij

c
ij

c
ij

c
jiNth   , for the holding time, i.e., for the time of residence in 

state i before performing a transition to state j. The total number of components in the SoS 

described by the semi-Markov processes is referred to as NS. 

Differently from [1], we take into account the epistemic uncertainty affecting the transition 

probabilities and the holding time distributions of the Markov and semi-Markov processes, 

respectively. In particular, intervals  ],[ c
ij

c

ij
pp , c = 1, 2, ..., NC, i,j = 1, …, S

c
, (instead of fixed 

constant values) are used to describe the state transition probabilities for both Markov and 

semi-Markov processes (matrices 
c

P , c = S1_DS1, S2_DS2, a_b, b_c, c_d d_e, SCADA, 

E1_G1 and E2_G2, in Figure 2 with respect to the states defined in Figure 1 bottom) [30-35]. 

The holding time distributions for the components modeled by the semi-Markov processes are 

considered normal with epistemically-uncertain mean (described by an interval  ],[ c
ij

c

ij
 ) and 
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fixed standard deviation, c
ij , (matrices 

c
T , c = S1_DS1, S2_DS2, in Figure 2); this level-2 

hierarchical representation produces a family of Normal probability distributions 

characterized by the same standard deviation, but different mean values: such a bundle of 

distributions is often referred to as distributional probability-box (p-box) [36-41]. Notice that 

we have considered a single value instead of an interval of values for the standard deviation 

just to reduce the computational time of the simulation, but this does not represent a limitation 

of the approach. 

 

Figure 2: Holding time distributions (matrices 
c

T ) for the arcs described by semi-Markov 

processes: each element of the matrix represents a Normal distribution with uncertain 

(interval) mean and fixed standard deviation. State transition probability matrices (
c

P ) for 

the arcs described by Markov and semi-Markov processes: each element of the matrix 

represents an interval for the corresponding transition probability. 

In the present work, the demand nodes are not given the same importance: in particular, D1 is 

more important than L1; on its turn, L1 is more important than both D2 and L2 (which instead 
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are equally important). These assumptions are made to illustrate and motivate the logical 

repartition of electricity and gas flows in the network and its representation in the GTST-

DMLD given in the next Section 3. 

 

The objectives of the analysis are to determine the cumulative distribution functions of i) the 

product delivered to the demand nodes (i.e., D1, D2, L1, L2) at the steady state and ii) the 

time needed to recover the SoS from the worst scenario. Since the state transition probabilities 

of the network components are affected by epistemic uncertainty and are described by 

intervals,  ],[ c
ij

c

ij
pp , c = 1, 2, ..., NC, i,j = 1, …, S

c
, the corresponding component steady-state 

probabilities are also affected by epistemic uncertainty and represented by intervals of 

possible values, [ icic ,
max

,
min, ], c = 1, 2, ..., NC, i = 1, 2, ..., S

c
. As a consequence, a set of 

cumulative distribution functions corresponding to the set of possible steady-state 

probabilities within the intervals [ icic ,
max

,
min, ], c = 1, 2, ..., NC, i = 1, …, S

c
, is obtained for 

each demand node. For the same reason (i.e., for the presence of the epistemic uncertainty in 

the state transition probabilities and in the mean of the components holding time distributions) 

a set of cumulative distribution functions for the recovery time of the system is obtained in 

correspondence of the set of possible state transition probabilities. 

3. SYSTEM-OF-SYSTEMS MODELLING 

3.1. Goal Tree Success Tree – Dynamic Master Logic Diagram: basic concepts 

The Goal Tree Success Tree – Dynamic Master Logic Diagram (GTST-DMLD) is a goal-

oriented method based on a hierarchical framework [12]. It gives a comprehensive description 

of the systems in terms of functions (qualities), objects (parts) and their relationships 

(interactions). The first description is provided by the Goal Tree (GT), the second by the 
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Success Tree (ST) and the third by the DMLD [12]. 

The GT identifies the hierarchy of the qualities of the system composing the objective of the 

analysis, i.e., the goal, organizing them in functions that are in turn subdivided into other 

functions and so on. The hierarchy is built by answering questions on “how” the subfunctions 

can attain the parent functions (looking at the hierarchy from top to bottom) and on “why” the 

functions are needed (looking at the hierarchy from bottom to top). Two types of qualities, 

i.e., main and support functions, are considered: the former directly contribute to achieving 

the goal, whereas, the latter support the realization of the former [42].  

The ST represents the hierarchy of the objects of the system, from the entire system to the 

parts necessary to attain the last levels of the GT. This hierarchy is built identifying the 

elements that are “part of” the parent objects. As for the GT, two types of objects are 

distinguished also in the ST: main and support. The former are directly contributing to 

achievement of the main functions, whereas the latter are needed for the operation of the 

former [42].  

The DMLD is an extension of the Master Logic Diagram (MLD) [12] introduced to model the 

dynamic behavior of a physical system. It describes the interactions between parts, functions 

and parts and functions, in the form of a dependency matrix, and it includes the dynamics by 

means of time-dependent fuzzy logic rules [12].  

A conceptual sketch of GTST-DMLD is given in Figure 3. 
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Figure 3: Conceptual sketch of GTST-DMLD: the filled dots indicate the possible 

dependencies between the objects (filled dot on the left) and between the objects and functions 

(filled dot on the right), the logic gates indicate how a given function depends on the input 

values. 

The GT is drawn at the top, the ST tree on the left and the DMLD is represented by filled dots 

at the intersections between vertical and horizontal lines, to indicate the possible dependencies 

between the elements on the left and on the top. Several types of logic gates can be used to 

represent the time-dependent fuzzy logic rules, and different dependency-matrix nodes to 

describe the probabilities and degrees of truth in the relationships [12]. Figure 4 gives an 

example of dependency of an element C on two elements A and B by the “AND” gate in a 

DMLD [12]. In this case, the output value of the element C is the minimum value between the 

inputs A and B. Replacing the “AND” gate with an “OR” gate, the output value will be the 

maximum between the input values. 

 

Figure 4: Example of an element C that depends on two elements A and B by an “AND” gate. 

Further details on the construction of the GTST-DMLD modeling and its applications are not 

given here for brevity sake: the interested reader is referred to the cited literature [12, 42]. In 

the next Section 3.2, the adaptation of the GTST-DMLD for modeling interconnected 

networked infrastructures is illustrated. 
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3.2. Goal Tree Success Tree – Dynamic Master Logic Diagram for interconnected 

networked infrastructures  

In this Section, we adapt the GTST-DMLD presented in Section 3.1, in general terms, for an 

adequate representation of interconnected networked infrastructures, and in particular of the 

ones making the SoS of our case study of Section 2. Specifically, we introduce new concepts 

in order to model in the diagram not only the dependency relations between the components, 

but also the ways in which the flows of gas and electricity are partitioned into the network on 

the basis of i) the importance of the demand nodes, ii) the amount of product necessary to 

satisfy each demand, iii) the constraints of the arc capacities and iv) the information provided 

by the SCADA system. In the following, first we explain the notation adopted in the GTST-

DMLD and, then, we apply it to the case study of interest. 

 

In the present work, we distinguish between three main types of dependency: direct, indirect 

and constraint-based dependencies, as illustrated in Figures 5 and 6. The first ones, pictorially 

represented by a dot, express the fact that the product of the element on the bottom passes 

straight into the element on the top. Indirect dependencies, represented by a hexagon, capture 

the relations between arcs that share the same input flow, but whose outputs are not related. 

This type of dependencies is important for the optimal allocation of the product in the 

network: for example, it is used to describe those cases where the flow exceedance in an arc 

can be better partitioned into another arc that is not directly connected to it, but that shares 

one of the inputs (see the example of Figure 5 b). Finally, constraint-based dependencies, 

depicted by a triangle, are employed to take into account those relations that do not involve an 

exchange of physical product, but rather a transfer of information which may impact the state 

of the connected element. Finally, it is worth noting that in the model, we adopt the symbol of 

triangle also to represent some physical constraints posed by the problem, like the maximum 
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flow required by a demand node. 

It is worth mentioning that since in the present case we are interested in analyzing the flows 

passing through the network (and not just the dependency relations), the inputs of an arc are 

flows and the output is (generally) the sum of the flow inputs. For this reason, in this context 

the “AND” gate assumes a different meaning than that in [12] (see the previous Section 3.1): 

in particular, the output value is the sum of the input values and it is represented by a “+” in 

the middle of the gate, as shown in the following examples (Figures 5 and 6). We can then 

distinguish between the “logical” gates studied by Hu and Modarres [12] and the “physical” 

gates proposed in the present work: the first ones are needed to highlight the logical 

connections between the elements that take part/role in a given structure or function of 

interest; the second ones are used to evaluate the physical flow distribution in the system. 

Examples of the types of dependencies (direct, indirect and constraint-based) associated to the 

physical gates are shown in the following. 

 

For clarity of illustration, in Figure 5, examples of two types of direct and indirect 

dependencies are given, with respect to different graph representations. Notice that nodes are 

neglected and just the relations between arcs are considered. Figure 5 a. shows the 

dependence of arc C on two input arcs A and B: arc C receives all the input products from A 

and B (e.g., if the flows in arcs A and B are 50 and 70 units, respectively, the flow in arc C is 

120 units); this complete direct dependence is depicted by a black dot. Figures 5 b. and c. 

describe the same "physical" situation (i.e., an input arc A and two output arcs B and C), but 

with different relative importance of the arcs. Two different cases are illustrated. In the first 

case (Figure 5 b.) arc B is more important than C: thus, in this situation, the flow from A 

supplies first arc B until its demand is satisfied, and then arc C: e.g., if the flow in arc A is 100 

units and both arcs B and C need 80 units, arc B will receive 80 units – demand fully satisfied 
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– and arc C the rest, i.e., 20 units, – demand partially satisfied. Arc C is dependent on arc B 

since the flow that can reach C depends on the quantity given to B. In the second case (Figure 

5 c.), arcs B and C are equally important: thus, the input flow (A) is divided into equal parts 

on the basis of the number of output arcs (i.e., two in this example); with respect to the 

numeric example above, both arcs B and C will receive 50 units – demands partially satisfied. 

Arcs B and C are reciprocally dependent since the product distributed to one of them depends 

on that delivered to the other one. The dependency between arcs B and C is “indirect” for 

both cases since the output of an arc is not the input of the other one and vice versa. In the 

case of Figure 5 b., the flow that enters in C is given by the difference between the entire flow 

from A (direct dependency) and the flow given to B (indirect dependency); this concept is 

illustrated in the GTST-DMLD by the symbol of direct dependency from A to C (dot) and the 

symbol of indirect dependency from B to C (hexagon). In particular, for the quantitative 

evaluation of the model, a white hexagon is introduced to reduce the input flow from arc A by 

the quantity of product given to arc B: in this view, the white hexagon assumes the value of 

the flow in B with a negative sign. The flow given to B can be the entire flow of A or a lower 

value depending on the constraints and arc capacity (see the following example in Figure 6). 

In the case of Figure 5 c., the flow from A is divided into equal parts: this condition is 

represented by a grey dot. However, this equal partition of the flow may not represent the 

optimal one, since some output arcs may require less flow than the one allocated according to 

this criterion, e.g., if the flows in arc A is 100 units and arcs B and C need 80 and 20 units, 

respectively, giving 50 units to both arcs is not a good allocation of the resource since B is 

partially satisfied and some product (i.e., 30 units) given to arc C is wasted. Thus, to optimize 

the repartition of the flow, indirect dependencies are adopted: they are directed from an output 

arc to all the other output arcs that share the same input. In this case, the “surplus flow” is a 

positive quantity and it is represented by a grey hexagon (to distinguish it from the “negative” 
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white hexagon of the example in Figure 5 b). 

Notice that the graph representation of Figures 5 b. and 5 c. are identical; however, the 

partition of the flux from A is completely different in the two cases: this means that the graph 

representation alone cannot be used to describe the repartition of the flows in the network 

according to different criteria. On the contrary, the DMLD can capture and represent this 

aspect, which is useful in the quantitative evaluation of system performance. 

 

Figure 5: Examples of direct and indirect dependencies with respect to possible graph 

representations. 

In Figure 6, examples of two types of constraint-based dependencies are given, with respect to 

different possible graph representations. Figure 6 a. depicts the same situation as Figure 5 a., 

with an additional arc D whose behavior impacts on the state of arc C (however, notice that D 

is not an input to C). This dependency is represented by a grey triangle and it means that the 

output of C can be modified on the basis of the state of arc D. In the present case study, this 

constraint-based dependency is used to model the SCADA system that can decrease the actual 

flow of the controlled arc if it is in a damage state. Figure 6 b. represents the same situation of 

Figure 5 c. with the addition of another arc (D) sequential to arc C. In this case, there is not a 

“real dependency” from arc D to arc C, but we adopt the symbol of constraint-based 

dependency (triangle) as a partitioning constraint to represent the fact that the capacity (or the 

demand) of arc D can limit the amount of flow in input to arc C, e.g., if the flows in arc A is 

100 units, the capacity of arc C is 50 units and arcs B and D need 80 and 20 units, 
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respectively, the repartition of the flow is as follows: first 100 units from A are equally 

divided into arcs B and C (50 units each) and the surplus (if there is) is partitioned into arcs B 

and C, then the constraint-based dependency is considered (i.e., arc D needs 20 units) and the 

new surplus is given to arc B (i.e., the exceedance of 30 units from arc C is directed to arc B). 

This partitioning constraint is represented in the DMLD by a black triangle and it is needed to 

control the input flow partitioned in different arcs and guarantee that it is not higher than 

necessary. 

 

Figure 6: Examples of constraint-based dependencies with respect to possible graph 

representations. 

Finally, another type of constraint is taken into account, i.e., the one related to the capacity of 

the arcs: when the flow in input to an arc is higher than the capacity of the arc itself, the 

output flow will be equal to the capacity of the arc. The arc capacity can be deterministic or 

stochastic and in the GTST-DMLD it is represented by a grey or dot-filled rectangular, 

respectively (see Figure 7). 

 

In Figure 7, the GTST-DMLD of the case study of Section 2 is shown. 
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Figure 7: GTST-DMLD of the case study of Section 2 corresponding to the graph of Figure 1. 

The GT on the top represents the main goal of the system of systems (SoS), related to the 

supply of the demands of gas and electricity: the objective is achieved if the corresponding 

nodes D1, D2, L1 and L2 receive the required amount of gas and electricity, respectively. In 

the present case study, we limit the analysis to the last level of the GT, i.e., we analyze the 

performance of each demand, without investigating a global indicator of the SoS.  

The ST is composed by the main hierarchies of the gas and electricity networks (that directly 

provide the demand nodes with gas and electricity to achieve the goal function) and by the 

support hierarchy of the SCADA system (that is needed for the control of the gas network 

and, therefore, it is not directly involved in the achievement of the goal function); given its 

support role, it is represented in a parallel dashed branch connected to the gas hierarchy.  

The DMLD is represented by the relationships between objects of the ST or between objects 
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of the ST and functions of the GT. It allows determining the goal function by the evaluation 

of all the dependencies from the bottom to the top of the diagram, following the rules 

explained above for the direct, indirect and constraint-based dependencies. For example, arc 

a_b depends on two arcs, DS1_a and DS2_b, connected by direct dependencies (Figure 7). 

Thus, the output of a_b is given by the sum of the corresponding input values, i.e., DS1_a + 

DS2_b. This value may, then, be modified by the constraint-based dependency of the SCADA 

system and by the (stochastic) capacity of arc a_b itself.  

4. EVALUATION OF THE SYSTEM-OF-SYSTEMS PERFORMANCE 

In this Section, we illustrate the evaluation of the performance of the system of systems (SoS), 

described in Section 2, in the presence of epistemic uncertainties (represented by intervals) 

affecting the components’ state transition probabilities and the mean values of the holding 

time distributions. As already mentioned in Section 2, the system performance is quantified in 

terms of i) robustness, measured by the steady-state probability distributions of the product 

delivered at the demand nodes (see Section 4.1) and ii) recovery capacity, measured by the 

time needed to recover the SoS from the worst scenario (see Section 4.2). The reader is 

referred to Appendix A for a brief overview of imprecise (interval) probabilities. 

4.1. Robustness 

To compute the steady-state probability distributions of the product delivered at the demand 

nodes the following three main steps are carried out: 

1. Processing the epistemic uncertainties by interval analysis: this step leads to the evaluation 

of the intervals of the steady-state probabilities, [ icic ,
max

,
min, ], i = 1, 2, ..., S

c
, for the states 

of each component (c = 1, 2, ..., NC) of the SoS. 

2. Evaluation of the SoS performance (i.e, robustness) by Monte Carlo simulation: this step 
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leads to the determination of a set of cumulative distribution functions (CDFs) of the 

product delivered at each demand node at steady state, one for each possible combination 

of steady-state probabilities ranging within the intervals [ icic ,
max

,
min, ], i = 1, 2, ..., S

c
, 

(found at step 1. above).  

3. Post-processing the results obtained at the previous step 2: this step leads to the 

identification of two extreme upper and lower CDFs that bound the set of CDFs produced 

at step 2. above. 

 

In more details: 

1. Solve the following optimization problems for the lower (resp., upper) bounds ic,
min  (resp., 

ic,
max ), c = 1, 2, ..., NC, for each row i, i = 1, 2, ..., S

c
, of the transition probability matrix 

c
P  (that is composed by probability intervals ],[ c

ij
c

ij
pp , i,j = 1, 2, ..., S

c
): 

}{min ,

S,...,2,1 ,

,
min

ic

jp

ic

cc
ij




, ci S ..., ,2 ,1 , c = 1, 2, ..., NC 

    (1) 

}{max ,

S,...,2,1 ,

,
max

ic

jp

ic

cc
ij




, ci S ..., ,2 ,1 , c = 1, 2, ..., NC 

such that: 

 ],[ c
ij

c

ij

c
ij ppp   (2) 

 1S
1  

c

j
c
ijp  (3) 

ccc
P  (4) 

The constraint of eq. (2) means that the transition probability from state i to state j is not 

known precisely and can take values in the interval  ],[ c
ij

c

ij
pp  [27]; the constraint of eq. (3) 

refers to a fundamental property of Markov and semi-Markov processes, i.e., the states for 

each component are exhaustive [43]; finally, eq. (4) reports the definition of steady-state 
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probability for a Markov process [43]. Notice that the sum of the elements of the vector 

c
  is equal to 1. In the case of a semi-Markov process, the output of eq. (4), i.e., 

c
 , is 

weighted by the expected time of residence, τ
i
, in a given state, i, before performing a 

transition [44]: iicic   ,,   
cS

j
jjc

1
,/  for i = 1, …, S

c
. Notice that the optimization 

problems (1) can be solved by performing an exhaustive greedy search within the 

probability intervals  ],[ c
ij

c

ij
pp , if the dimensions of the corresponding transition probability 

matrices are relatively small (e.g., below 4 x 4), otherwise, alternative intelligent 

techniques should be sought, e.g., meta-heuristic methods like Genetic Algorithms (GAs) 

[27]. In this work, we resort to GAs for arcs a_b, b_c, c_d, d_e (whose transition 

probability matrices are 7 x 7), whereas we perform an exhaustive search for all the other 

arcs. In Appendix B, the operative steps to obtain the lower and upper bounds of the steady 

state probabilities (i.e., [
cc
maxmin , ]) by performing an exhaustive search are detailed and 

the need to resort to alternative intelligent techniques when the dimension of the transition 

probability matrix increases is discussed. 

 

2. Identify the CDFs of the product delivered at each demand node at steady state for all the 

possible combinations of components steady-state probabilities found at step 1. above:  

a. For each component c, c = 1, 2, ..., NC, let the steady-state probabilities, ic, , i = 1, 2, 

..., S
c
, range within the corresponding interval [ icic ,

max
,

min, ], i = 1, 2, ..., S
c
, to obtain a 

set of Q
c
 vectors of steady-state probabilities, },...,,...,,{

,,2,1, cQcqccc
 : q = 1 , ..., 

Q
c
}, such that   

c

i
iqcS

1
,, 1 , q = 1, …, Q

c
. Notice that this gives rise to Q

1
 * Q

2
 * … * 

Q
NC

 = Ntot possible combinations of steady-state probability vectors of the system 

components, i.e., to Ntot steady-state probability vectors for the entire system. 
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b. For all the NC components, select one steady-state probability vector among the set 

qc,
 , c = 1, 2, ..., NC, q  1 , ..., Q

c
 (generated at step a. above); in other words, this 

amounts to selecting one of the Q
1
 * Q

2
 * … * Q

NC
 = Ntot steady-state probability 

vectors for the entire SoS. 

c. Fixing the SoS steady-state probability vector selected in b., randomly sample the 

states ζ
c,i

 (i.e., the capacities), i  {1, …, S
c
}, of all the components of the system (i.e., 

arcs). Then, compute the product delivered at the demand nodes propagating the flow 

in each component of the SoS through the GTST-DMLD (see Section 3.2). 

d. Repeat step c. a large number of times (e.g., 1000 in this work) and obtain the CDF for 

the product delivered at each demand node. 

e. Repeat steps c.-d. for another combination of the steady-state probability vectors, qc,


, c = 1, 2, ..., NC, q  1 , ..., Q
c
, of all the NC components, until all the Ntot possible 

combinations of the steady-state probability vectors of the SoS are explored. 

At the end of steps a.-e., an ensemble of CDFs for each demand nodes is obtained, one 

for each of the Ntot possible combinations of steady-state probabilities of the entire SoS. 

 

3. Identify the extreme minimum and maximum CDFs (i.e., the enveloping p-box of the 

CDFs) of the product delivered at the demand nodes that bound the set of CDFs produced 

at step 2. above. 

4.2. Recovery time  

The time needed to recover the SoS from the worst scenario (i.e., the one characterized by 

components in the worst state) to a level in which all the demand nodes are satisfied, is 

carried out by three main steps: 

1. Processing the epistemic uncertainties by interval analysis: this step leads to the 
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identification of K
c
 transition probability matrices kc,

P , c = 1, 2, ..., NC, k = 1, 2, ..., 

K
c
, composed by single values; in addition, for the NS components described by semi-

Markov process, this step leads to the identification of H
c
 matrices hc,

u , c  {1, 2, 

..., NC}, h  {1, 2, ..., H
c
}, composed by single values of the mean of the holding time 

distributions. 

2. Evaluation of the SoS performance (i.e., recovery capacity) by Monte Carlo 

simulation: this step leads to the determination of a set of cumulative distribution 

functions (CDFs) of the time needed to recover the SoS, one for each possible 

combination of state probability matrices sampled. 

3. Post-processing the results obtained at the previous step 2: this step leads to the 

identification of two extreme upper and lower CDFs that bound the set of CDFs 

produced at step 2. above. 

 

In more details, step 1. is described in Appendix B (steps B1.-B3.); step 2 instead is 

performed as follows:  

a. Randomly select NC matrices 
kc,

P , c = 1, 2, ..., NC, k  {1, 2, ..., K
c
}, for all the NC 

components of the SoS and NS matrices 
hc,

u , h  {1, 2, ..., H
c
}, for the NS 

components c described by a semi-Markov process. 

b. Set u = 1 (counter of the number of simulations). 

c. Initialize the state of the components at the worst state (ζ
c,i

, i = 1, c = 1, 2, ..., NC): in 

this state configuration of the SoS, the product delivered to the demand nodes is lower 

than the optimum required. 

d. Initialize the following time variables:  
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 system simulation time t = 0, starting time of the simulation: this variable 

represents the current simulation time and is needed to compute the recovery 

time of the SoS;  

 components’ state transition time ts
c
 = Δt, c = 1, 2, ..., NC, where Δt is the time 

step of the simulation (Δt = 1 in arbitrary units, in this work): these time 

variables (ts
c
, c = 1, 2, ..., NC) are needed to determine if the component c can 

perform a state transition at a given time step t, as illustrated in the next step e.; 

they are set to 1 since at this time step all the components perform the first 

state transition. 

e. Set t = t + Δt: if t = ts
c
, then the component c, c  {1, ..., NC}, performs a state 

transition: then, randomly sample its new state from the matrix kc,
P  (k  {1, ..., K

c
}) 

selected at step a. and update the variable ts
c
 as follows: 

 If c is described by a Markov process, ts
c
 = ts

c
 + Δt, since a state transition 

occurs at each time step.  

 If c is described by a semi-Markov process, ts
c
 = ts

c
 + t*, where t* is the time of 

next transition that is sampled from the corresponding holding time distribution 

with mean value taken from the matrix 
hc,

u , h  {1, 2, ..., H
c
}, selected at the 

previous step a. The sampled value t* is rounded to the nearest integer except 

when it is zero; in this case, the value is rounded to 1. 

Check t = ts
c
 for all the components c, c = 1, 2, ..., NC. 

f. Evaluate the product delivered to the demand nodes at time t by adopting the GTST-

DMLD (see Section 3.2), taking into account the state transition of the components in 

the previous step e. 

g. Repeat steps e.-f. until the product delivered to the demand nodes is equal to, or higher 

than, the optimum required: the corresponding value of recovery time (tr
u
) is then 
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recorded for the simulation u. 

h. Set u = u + 1 and repeat steps c.-g. a large number of times (e.g., 1000 in this work). 

i. A cumulative distribution function of the recovery time of the SoS is identified for a 

combination of state probability matrices kc,
P , c = 1, 2, ..., NC, k  {1, 2, ..., K

c
}, 

selected at step a. 

j. Repeat the entire procedure (steps a.-i.) a large number of times (e.g., 10000 in this 

work) to explore many different combinations of probability matrices 
kc,

P , c = 1, 2, 

..., NC, k  {1, 2, ..., K
c
}. 

At the end of the procedure, a set of cumulative distribution functions of the recovery time of 

the performance of the SoS is obtained. 

 

The results are processed at step 3., where the minimum and maximum CDFs (i.e., the 

enveloping p-box of the CDFs) of the recovery time that bound the set of CDFs obtained at 

step 2. above are identified and the 99
th

 percentiles of the distributions are computed as a 

measure of the recovery time. 

5. RESULTS 

Figure 8 shows the lower (dotted line) and upper (solid line) cumulative distribution functions 

of the gas and the electricity delivered at steady state to the demand nodes D1, D2 and L1, L2, 

respectively, in steady state, obtained by the procedure illustrated in Section 4.1. Table 1 

reports the corresponding (upper and lower) probabilities that the product delivered to the 

demand nodes, D1, D2, L1 and L2, exceeds the following threshold values: d1* = 95000 cu. 

ft., d2* = 75000 cu. ft., l1* = 475 MWh and l2* = 375 MWh (i.e., the probabilities that the 

corresponding demands are satisfied). 
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Figure 8: Right (dotted line) and left (solid line) cumulative distribution functions of the 

product delivered to the nodes D1, D2, L1 and L2 at steady state. 

Table 1: Upper and lower probabilities that the product delivered to the demand nodes (D1, 

D2, L1 and L2) exceeds the corresponding requested threshold value. 

D1  d1* = 95000 cu. ft. 

[lower, upper] 

D2  d2* = 75000 cu. ft. 

[lower, upper] 

L1  l1* = 475 MWh 

[lower, upper] 

L2  l2* = 375 MWh 

[lower, upper] 

[0.971, 1] [0.450, 0.780] [0.963, 1] [0.929, 0.992] 

 

It can be seen that in general the probability of satisfying demand nodes D1 and L1 is higher 

than for nodes D2 and L2: their threshold values are satisfied, in the worst case, with 

probability equal to 0.971 and 0.963, respectively. On the other hand, node D2 is the least 

supplied: the upper and lower probabilities that the product delivered to it exceeds the 

corresponding threshold value are low, i.e., 0.450 and 0.780, respectively. This is due to the 

fact that node D2 can be satisfied by only one path that presents high epistemic uncertainty in 
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the arc capacities (a_b, b_c, c_d and d_e). On the other hand, node L2 is satisfied with 

probability between 0.929 and 0.992 even if it is the farthest node from the input sources (and, 

thus, more affected by uncertainty due to the uncertainties in the arc capacities): this is due to 

the presence of two redundant paths that allow its supply by arcs E1_G1 and E2_G2. 

 

Figure 9 illustrates the lower (dotted line) and upper (solid line) cumulative distribution 

functions of the time needed to restore the SoS to a level in which all the demand nodes are 

satisfied, starting from the worst scenario.  

 

Figure 9: Right (dotted line) and left (solid line) cumulative distribution functions of the 

recovery time of the supply of the demand nodes, starting from the worst scenario. 

The gap between the CDFs reflects the epistemic uncertainty in the transition probability 

values. In the Figure, the 99
th

 percentile of the CDFs is also reported as a measure of the 

recovery time.  

6. CONCLUSIONS 

In this paper, we have introduced a system-of-systems (SoS) framework for the analysis of the 

robustness and recovery of critical infrastructures (CIs). The analysis by such framework 

builds on the construction of a GTST-DMLD for system modeling and Monte Carlo 



26 

 

simulation for the quantitative evaluation of the system performance at steady state. The 

development of the framework in practice has been shown considering the same example 

created by [1] consisting of two interdependent infrastructures, gas and electric power 

networks, and a SCADA system connected to the gas network.  

In the original framework of [1], the analysis of the robustness and recovery capacity of CIs 

has been performed by adopting network flow algorithms combined with stochastic processes. 

The adoption of the GTST-DMLD modeling framework makes the analysis of the robustness 

and recovery capacity of CIs accessible to a different audience than the original work by [1]. 

Actually, there is a community of analysts who are much more comfortable using concepts 

inherent in the GTST-DMLD framework than using methods based on network flow 

algorithms and stochastic processes. The model put forth by [1] was based on the analysis 

methods of Operations Research, whereas the GTST-DMLD framework has its roots in the 

reliability and risk analysis of nuclear power plants and complex electro-mechanical systems. 

The framework here developed has shown the capability of representing, modeling and 

quantitatively accounting for i) the dependencies and interdependencies among the 

components of a critical infrastructure and between different CIs, respectively, ii) the 

variability in the states of the components (by adopting a multi-state model), and iii) the 

epistemic uncertainty in the transition probabilities between different components states (by 

interval analysis).  

 

The results and insights obtained can help to improve the global SoS performance by 

improving the structural response of specific arcs that more easily turn into damage states or 

by developing a more redundant network that allows the supply of the product from different 

paths. 
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APPENDIX A: IMPRECISE (INTERVAL) PROBABILITIES 

To understand the meaning of imprecise probabilities (or interval probabilities) consider an 

event A. Uncertainty about whether it occurs is represented by a lower probability P(A) and an 

upper probability )(AP , giving rise to a probability interval [P(A), )(AP ], where 0 ≤ P(A) ≤ 

)(AP  ≤ 1. The difference      APAPAP   is called the imprecision in the representation 

of the event A. Single-valued probabilities are a special case of no imprecision and the lower 

and upper probabilities coincide.  

Peter M. Williams [45] developed a mathematical framework for imprecise probabilities, 

based on de Finetti’s betting interpretation of probability [11]. This foundation was further 

developed independently by Vladimir P. Kuznetsov and Peter Walley (the former only 

published in Russian), see [14] and [15]. Following de Finetti’s betting interpretation, the 

lower probability is interpreted as the maximum price for which one would be willing to buy 

a bet which pays 1 if A occurs and 0 if not, and the upper probability as the minimum price for 

which one would be willing to sell the same bet. If the upper and lower values are equal, the 

interval is reduced to a precise probability. These references, and [15] in particular, provide an 

in-depth analysis of imprecise probabilities and their interpretations, with a link to 

applications to probabilistic reasoning, statistical inference and decisions. 

 

It is however also possible to interpret the lower and upper probabilities using the reference to 

a standard interpretation of a subjective probability P(A): such an interpretation is indicated 

by [46, p. 36]. Consider the subjective probability P(A) and say that the analyst states that 

his/her assigned degree of belief is greater than the urn chance of 0.10 (the degree of belief of 

drawing one particular ball from an urn which include 10 balls) and less than the urn chance 

of 0.5. The analyst is not willing to make any further judgement. Then, the interval [0.10, 

0.50] can be considered an imprecision interval for the probability P(A). 
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Of course, even if the assessor assigns a probability P(A) = 0.3, one may interpret this 

probability as having an imprecision interval [0.25, 0.34] (as a number in this interval is equal 

to 0.3 when displaying one digit only), interpreted analogously to the [0.1, 0.5] interval. 

Hence imprecision is always an issue in a practical uncertainty analysis context. This 

imprecision is commonly viewed as a result of measurement problems. The reference to the 

urn lottery provides a norm to which assessors should aspire, but measurement problems may 

make the assessor unable to behave according to it. See also discussion in [9, p. 32]. 

 

However, other researcher and analysts have a more positive view on the need for such 

intervals, see discussions in [8, 22-26]: imprecision intervals are required to reflect 

phenomena as discussed above, for example when experts are not willing to express their 

knowledge more precisely than by using probability intervals. 

 

Imprecise probabilities are also linked to the relative frequency interpretation of probability 

[10]. The simplest case reflects that the “true” frequentist probability p is in the interval [P(A), 

)(AP ] with certainty. More generally and in line with the above interpretations of imprecision 

intervals based on subjective probabilities P(·), a two-level uncertainty characterization can 

be formulated (see, e.g., [13]): [P(A), )(AP ] is an imprecision interval for the subjective 

probability P(a ≤ p ≤ b) where a and b are constants. In the special case that P(A) = )(AP  (= 

q, say) we are led to the special case of a q·100% credibility interval for p (i.e., with 

subjective probability q, the true value of p is in the interval [a, b]). For further details, the 

reader is referred to the recent Special Issue on imprecise probabilities appeared on the 

Journal of Mechanical Systems and Signal Processing [30].   
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APPENDIX B: PROCESSING EPISTEMIC UNCERTAINTY BY INTERVAL 

ANALYSIS: DETAILED OPERATIVE STEPS 

The operative steps carried out to process the epistemic uncertainty by interval analysis, 

needed for the robustness and recovery analyses of Sections 4.1 and 4.2, are illustrated in 

what follows. 

To recall the notation, the algorithm requires the following inputs: 

 A state transition probability matrix c
P , c = 1, ..., NC, composed by probability 

intervals }S ..., ,1,NC, ..., ,1:],{[P cc
ij

c

ij

c
jicpp   for all the NC components c of the 

system, where i,j are indices representing the state of the component c and S
c
 is the total 

number of states of component c. The state transition probability matrix c
P  assumes 

this form: 

 i / j 1 2 … S
c
 

 1 [ cc
pp 1111

, ] [ cc
pp 1212

, ] … [ cc

S cc pp
S11

, ] 

c
P  = 2 [ cc

pp 2121
, ] [ cc

pp 2222
, ] … [ cc

cc pp
S2S2

, ] 

 … … … … … 

 S
c
 [ cc

cc pp
1S1S

, ] [ cc
cc pp

2S2S
, ] … [

cc
cccc pp SSSS

, ] 

 

 A holding time distribution matrix 
c

T , c  {1, 2, ..., NC}, for the NS components 

described by a semi-Markov process with epistemically uncertain mean c
ij  represented 

by an interval of values, }S ..., ,1,,],[:),({T cc
ij

c

ij

c
ij

c
ij

c
ij

c
ij

c
jiNth   : 

 i / j 1 2 … S
c
 

 1 N( ],[ 1111

cc  , c
11 ) N( ],[ 1212

cc  , c
12 ) … N( ],[

S1S1

cc
cc  , c

cS1
 ) 

c
T  

= 
2 N( ],[ 2121

cc  , c
21 ) N( ],[ 2222

cc  , c
22 ) … N( ],[

22

c

S

c

S cc  , c
cS1

 ) 

 … … … … … 

 S
c
 N( ],[

1S1S

cc
cc  , c

c1S
 ) N( ],[

2S2S

cc
cc  , c

c 2S
 ) … N( ],[

SSSS

cc
cccc  , c

ccSS
 ) 
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By way of example and for clarity of illustration, in the following we refer to component c = 

S2_DS2 of Figure 1, whose transition probability matrix 
c

P  and holding time distributions 

c
T  are reported in Figure 2. 

 

The algorithm proceeds as follows: 

B1. Select a component c, c  {1, 2, ..., NC}, and a row i, i  {1, 2, ..., S
c
}, of matrix c

P  

whose dimension is S
c
 x S

c
 (see Figure B1, left): for component c = S2_DS2, c

P  has 

dimension 3 x 3. Letting the probabilities c
ijp , j = 1, 2, ..., S

c
, vary within the 

corresponding intervals  ],[
c

ij
c

ij
pp , identify all the possible combinations of the 

probability values in row i (Figure B1, middle, with reference to row i = 2). Given the 

assumption that the component states are exhaustive (eq. (3) in Section 4), only those 

combinations of probabilities guaranteeing  1S
1  

c

j
c
ijp  are considered (Figure B1, 

right). The total number of suitable combination for row i is referred to as Z
c,i

. 

If component c is described by a semi-Markov process, select also row i of matrix 
c

T . 

Letting the mean values, c
ij  , j = 1, 2, ..., S

c
, of the holding time distributions vary 

within the corresponding intervals ],[ c
ij

c

ij
 , identify all the possible combinations of the 

mean values of row i (Figure B2). The total number of combinations obtained for the 

mean is referred to as M
c,i

 for row i. 

Repeat this step 1. for all the rows i = 1, 2, ..., S
c
, of the matrices 

c
P  and 

c
T . 

At the end of this step,  

c

i
icS

1
,Z , c  {1, …, NC}, vectors of probability values and 

 

c

i
icS

1
,M , c  {1, …, NC}, vectors of mean values are obtained. For example, in 
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Figure B3 (top) 15 transition probability vectors ( 15ZS
1

,  

c

i
ic , c = S2_DS2, i = 1, …, 

S
c 

= 3) are obtained for component S2_DS2: one vector for row i = 1 ( 1Z 1, c ), 7 

vectors for row i = 2 ( 7Z 2, c ) and 7 vectors for row i = 3 ( 7Z 3, c ).  

B2. Obtain K
c
 transition probability matrices kc,

P  [S
c
 x S

c
], k = 1, …, K

c
, for component c, 

c  {1, …, NC}, by performing the combinations of all the Z
c,i

 vectors obtained for all 

the rows i, i = 1, …, S
c
, at the previous step B1 (Figure B3, bottom).  

If the component c is described by a semi-Markov process, find also H
c
 matrices 

hc,
u  

[S
c
 x S

c
], h = 1, 2, ..., H

c
, of the mean values of the holding time distribution by 

performing the combinations of all the M
c,i

 vectors obtained for all the rows i, i = 1, …, 

S
c
, at the previous step B1. 

B3. Repeat steps B1.-B2. for each component (c = 1, 2, ..., NC) of the SoS. All the NC 

components are, then, associated with a set of possible transition probabilities matrices 

kc,
P , k = 1, …, K

c
 (resulting from the imprecise transition probabilities). In addition, the 

components described by a semi-Markov process (i.e., NS components) are also 

associated with a set of H
c
 matrices, 

hc,
u , h = 1, 2, ..., H

c
, containing the mean values 

of the corresponding holding time distributions. 
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Figure B1: Exemplification of step B1 for the row i = 2 of the probability matrix 
c

P , c = 

S2_DS2, to identify Z
c,i

 combinations of transition probability values. 

 

 

Figure B2: Exemplification of step B1 for the row i = 2 of the holding time distribution matrix 

c
T , c= S2_DS2, to identify M

 c,i
 combinations of mean values. 
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Figure B3: Exemplification of step B2 to identify a set transition probability matrix kc,
P , k = 

1, …, K
c
, for component c = S2_DS2, given the  

cS
i

ic
1

,Z vectors obtained at step B1. 

 

Steps B1.-B3. above are needed in the evaluation of the recovery time and they precede step 

2. of the algorithm of Section 4.2. Instead, in order to evaluate the steady state probabilities 

necessary to perform the robustness analysis of Section 4.1, the procedure continues as 

follows: 

B4. Select a component c and compute the steady state probability vectors kc,
  (or 

kc,
  if c 

is described by a semi-Markov process), k = 1, …, K
c
, one for each transition 

probability matrix 
kc,

P , k = 1, …, K
c
, obtained at the previous step B3. If component c 

is described by a Markov process, eq. (4) (Section 4.1) is adopted; otherwise, if 

component c is described by a semi-Markov process, the output of eq. (4) is weighted 

by the expected time of residence, τ
i
, in a given state i, i = 1, …, S

c
 [44]: 

iikcikc   ,,,,   
cS

j
jjkc

1
,,/  , i = 1, …, S

c
, k = 1, …, K

c
. For illustration purposes, 
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Figure B4 shows examples of the matrices kc,
P , k  {1, …, K

c
}, and 

hc,
u , h  {1, …, 

H
c
} for component c = S2_DS2. Then, the procedure for evaluating the steady state 

probability vectors 
kc,

  and 
kc,

 for Markov and semi-Markov processes, respectively, 

is detailed. 

B5. Compute the minimum and maximum steady state probabilities ic,
min  and ic,

max , c = 1, 

2, ..., NC, for each row (i.e., component state) i, i = 1, …, S
c
, as follows: 

),...,,...,,(min ,K,,,,2,,1,,
min

icikcicic

k

ic c
  and 

),...,,...,,(max ,K,,,,2,,1,,
max

icikcicic

k

ic c
 , if component c is described by a Markov 

process, or ),...,,...,,(min ,K,,,,2,,1,,
min

icikcicic

k

ic c
  and 

),...,,...,,(max ,K,,,,2,,1,,
max

icikcicic

k

ic c
 , if component c is described by a semi-

Markov process. Each component c, c = 1, 2, ..., NC, is then associated with a vector of 

imprecise (interval) steady state probabilities: 

 i   

 1 ],[ 1,
max

1,
min

  icic  


c  2 ],[ 2,

max
2,

min
  icic  

 … … 

 S
c
 ],[ S,

max
S,

min

cc icic    

  

B6. Letting the steady state probabilities ic, , i = 1, 2, ..., S
c
, of component c vary within 

the corresponding intervals ],[ ,
max

,
min

icic  , identify all the possible combinations of the 

probability values to obtain a set of Q
c
 steady state probability vectors (obviously the 

sum of the components of each vector is equal to 1) (see step 2.a. of Section 4.1). 

B7. Repeat steps B4.-B6. for each component (c = 1, 2, ..., NC) of the SoS.  
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Figure B4: Exemplification of step B4 to identify the steady state probability vectors for 

Markov and semi-Markov processes. 

 

Notice that in the procedure above (steps B1.-B7.) extreme lower and upper steady state 

probabilities c
min  and 

c
max , respectively, are obtained by resorting to a exhaustive greedy 

search: this amounts to identifying (in principle) all the possible combinations between (in 

principle) all the possible probability values in the corresponding intervals. For example, in 

step B1 the probabilities c
ijp  are allowed to range within their intervals  ],[ c

ij
c

ij
pp : for the sake 

of practical computation we identify, e.g., 7 discrete values within each interval  ],[ c
ij

c

ij
pp . If 

we assume that the number of states is S
c
 = 3, then the total number of possible combinations 

between the transition probability values is 343; if the number of states is 7, i.e., S
c
 = 7, the 

number of possible combinations increases to 823543. Obviously, the higher the number of 

discrete values taken within the intervals  ],[ c
ij

c

ij
pp , the more precise the results, but the more 
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prohibitive the computational cost. For these reasons, when the dimension of the transition 

probability matrix increases, we need to resort to alternative (intelligent) techniques: in other 

words, in order to obtain the lower and upper steady state probabilities c
min  and c

max , 

respectively, we do not analyze all the possible combinations between all values of 

 ],[ c
ij

c

ij

c
ij ppp  ; instead we intelligently explore only those combinations that driving the 

search appear as the most “promising” for the maximization and minimization of c
 . In this 

work, we resort to Genetic Algorithms (GAs) for the analysis of arcs a_b, b_c, c_d, d_e, 

whose transition probability matrices have size 7 x 7. In particular, we run the Matlab 

function “ga” twice to find the minimum and maximum steady state probability vectors c
min  

and 
c
max , respectively. In more details, eq. (4) of Section 4.1 represents the function to be 

optimized (i.e., minimized and maximized, respectively) by the GA, eq. (3) of Section 4.1 

represents the equality constraints to satisfy and eq. (2) shows the upper and lower bounds of 

the transition probabilities c
ijp  needed in (4).  


