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Transport measurements allow sensitive detection of nanomechanical motion of suspended carbon
nanotubes. It has been predicted that when the electro-mechanical coupling is sufficiently large a
bistability with a current blockade appears. Unambiguous observation of this transition by current
measurements may be difficult. Instead, we investigate the mechanical response of the system,
namely the displacement spectral function; the linear response to a driving; and the ring-down
behavior. We find that by increasing the electro-mechanical coupling the peak in the spectral
function broadens and shifts at low frequencies while the oscillator dephasing time shortens. These
effects are maximum at the transition where non-linearities dominate the dynamics. These strong
signatures open the way to detect the blockade transition in devices currently studied by several
groups.

PACS numbers: 73.23.Hk, 73.63-b, 85.85.+j

Recently enormous progress has been achieved in the
detection of carbon nanotubes (CNT) bending modes
by electronic transport measurements [1–13]. Since nan-
otube oscillators have remarkable mechanical properties,
devices with record mass [7] and force [10] sensitivity have
been realized. Transport experiments allow information
to be obtained on the mechanical mode by measuring
different quantities. The main ones are the oscillation
amplitude in response to an external drive [1], the os-
cillator displacement spectral density, Sxx(ω) [10], and,
more recently, the ring-down time of the oscillator [13].

The recent experimental advances allow one to view
the behavior of such systems in the strong coupling limit
from a new perspective. Defining F0 as the difference of
electrostatic force acting on the nanotube when one elec-
tron is added to the suspended part and k as the spring
constant for its displacement, one can introduce a po-
laronic energy scale εP = F 2

0 /k. For a classical system
resonating at pulsation ω0 (much smaller than the bias
voltage eV or the temperature T ) it has been predicted
[14–17] that, if εP � eV and T , the current in the device
can be blocked and a bistability can appear (e is the elec-
tron charge and we set both the Planck and Boltzmann
constant to 1). The energy εP can be estimated for actual
experiments: For a CNT of 1 µm length, 1 nm radius,
and suspended at a distance d = 500 nm from a gate one
finds ω0/2π ≈ 50 MHz, F0 = 10−14 N, k = 4 · 10−4 N/m,
and thus εP ≈ 16 mK. One should thus work at very
low temperatures � 16 mK: This is probably why the
current blockade transition has not yet been observed for
mechanical bending modes. While a (Franck-Condon)
blockade [18, 19] has been observed [20] for breathing
modes in the regime of incoherent transport. To increase
εP one can reduce the distance of the CNT from the gate
electrode or operate the system close to the Euler buck-
ling instability [21, 22]. The energy εP scales quadrat-
ically with d, it is thus realistic to increase this energy
up to the Kelvin range by reducing the distance d to 100
nm. In any case, a clear observation of the transition

will require temperatures of the order 100 mK. At such
low temperatures the typical tunnelling rate Γ becomes
larger than T , leading to coherent transport through the
CNT. In this regime the current blockade can take place
only if εP is larger than a critical value εc of the order
of Γ [14, 15]. Since one of the main experimental diffi-
culties is to reach large values of εP , the case εP ∼ Γ is
particularly interesting. The transition could then be in-
vestigated at fixed and low V and T by varying εP , that
can be tuned with the gate voltage. One drawback of
this limit is the large width Γ of the electronic level: The
conductance dependence on εP is smooth on the scale Γ
failing to provide a clear indication of the transition.

In this Letter we show that, similar to critical phenom-
ena, the transition can be better investigated by looking
at the behavior of the phonon mode that becomes soft for
εP = εc. We study Sxx(ω), the driving response function,
and the dephasing and ring-down time as a function of
the coupling constant εP . We find that all of these quan-
tities have a very peculiar behavior at the transition. The
dynamics of the mechanical mode is dominated by non-
linear terms leading to a separation of time scales that
is maximal at the transition. The theory presented gives
clear indication on how to unambiguously observe the
transition using available methods of measurement.

The model. We consider a suspended CNT. We assume
that a single electronic level is relevant for transport. We
neglect the spin degrees of freedom. The Hamiltonian
reads:

H = HL +HR +HT + (ε0−xF0)d†d +
p2

2m
+
k

2
x2 , (1)

where d is the destruction operator for the electronic
level on the dot, x is the displacement of the relevant
mechanical mode, p the conjugated momentum, m the
mode effective mass, k the spring constant (giving a
pulsation ω0 =

√
k/m) and F0 the electrostatic force

acting on the dot when an electron is added. The
first three terms describe the leads and their coupling:



2

Hα =
∑
k(εαk − µα)c†αkcαk, with α = L and R, for left

and right lead, εαk the electronic spectrum, µα the chem-
ical potential; and HT =

∑
k tαc

†
αkd +h.c. the tunnelling

Hamiltonian. From these quantities one can define the
single-level width Γα ≡ πt2αρα with ρα the density of
states and Γ = ΓL + ΓR.

In the Born-Oppenheimer limit (Γα � ω0) the dis-
placement of the mechanical mode can be described by a
Langevin equation:

mẍ+A(x)ẋ+mω2
0x = Fe(x) + ξ(t) , (2)

where the dissipation A(x), the average force Fe(x) =
F0〈d†d〉, and the stochastic force ξ(t) are due to the
electrons tunneling through the quantum dot [15, 16].
The explicit expressions for A, Fe, and 〈ξ(t)ξ(t′)〉 =
D(x)δ(t− t′) have been obtained in Ref. [15]:

Fe(x) = F0

[
1

2
+

1

π

∑
α

Γα
Γ

arctan
µα − ε0 − F0x

Γ

]
, (3)

A(x) = (F 2
0 Γ/π)

∑
α Γα/[(µα − ε0 − F0x)2 + Γ2]2, and

D(x) = F 2
0 ΓLΓR/(πΓ3)[h(µL) − h(µR)], where h(µ) =

arctan z + z/(z2 + 1) with z = (µ− ε0 − F0x)/Γ. In the
same limit a Fokker-Planck equation for the probability
P (x, p, t) can be derived [23, 24]:

∂tP =
p

m
∂xP − F∂pP +

A

m
∂p(pP ) +

D

2
∂2
pP , (4)

with F (x) = Fe(x)− kx.
Softening of the mechanical mode. We assume that

the device is symmetric: Γα = Γ/2. The presence of the
mechanical coupling modifies the electron-hole symme-
try point for ε0 to the value ε0 = (µL + µR)/2 + εP /2.
We will always assume this value from this point on.
Defining y = x − F0/2k, one determines F (y) = −ky +
(F0/2π)

∑
a=±1 arctan[(F0y + aeV/2)/Γ] which depends

only on the bias voltage eV = µL − µR and is anti-
symmetric in y. The equilibrium positions are defined
by the solutions of the equation F (y) = 0. The line
εP = εc(V ) ≡ πΓ[1 + (eV/2Γ)2] [for eV/Γ < 2/

√
3] sepa-

rates the monostable region from the bistable region (see
inset of Fig. (1)).

Let us now define ωm at a stable point yβ as mω2
m =

−(dF/dy)yβ . It goes smoothly from ω0 to 0 for εP < εc
with the analytic form ω2

m/ω
2
0 = (εc − εP )/εc, while for

εP & εc it reads 2(εP −εc)/εc [see Fig. (1) orange dashed
lines].

The vanishing of ωm suggests that its direct measure-
ment should allow the detection of the transition with
great accuracy. As in phase transitions, this mode be-
comes soft, leading to a strong response at the transition.
The dip in the gate voltage dependence of ωm observed
by four different groups [3, 4, 9, 12] is the precursor of this
softening. Nevertheless, one should be cautious since the
definition of ωm only takes into account the first deriva-
tive of the force at the minimum of the potential. When

FIG. 1. Density plot of Sxx as a function of ω and εP . The
values of ωm (orange dashed line), 2ωm (blue dot-dashed line),
and 3ωm (red dotted line) are shown. The units of Sxx are
x2zpm/ω0 = (mω2

0)−1, where xzpm = (mω0)−1/2 is the zero-
point motion displacement. The symmetry of the potential
implies that only odd harmonics are present for εP < εc.
Inset: phase diagram in the plane eV -εP for the stability of
the effective potential.

this term vanishes the next order terms in y become im-
portant and the response of the system can no longer be
predicted simply by the value of ωm. Therefore, in the
following we calculate the typical measurable quantities
and study their behavior when εP is swept through the
transition.

Fluctuation spectrum. We define the displacement
fluctuation spectrum Sxx(ω) =

∫
eiωtdt〈x̃(t)x̃(0)〉, with

x̃(t) = x(t) − 〈x〉. This quantity has been measured re-
cently in Ref. [10]. We can obtain Sxx numerically from
the Fokker-Planck description following the method used
in Ref. [17]. Writing Eq. (4) as ∂tP = L0P the spectrum
takes the form:

Sxx(ω) = −2Tr

[
ˆ̃x
L0

ω2 + L2
0

ˆ̃xPst

]
(5)

where Pst is the stationary solution of the problem, sat-
isfying both L0Pst = 0 and the normalization condition
TrPst = 1. The operator ˆ̃x is defined as ˆ̃xP ≡ x̃P (x, p).

Let’s begin by discussing the stationary solution of
Eq. (4): Pst. In agreement with similar models [22,
25] we find that for sufficiently small eV , even if the
system is out of equilibrium, the stationary distribu-
tion function takes the simple Gibbs form Pst(x, p) =
N exp{−E(x, p)/Teff}, with Teff = eV/4, N a normaliza-
tion factor, E(x, p) = p2/2m + U(x), U(x) = −dF/dx,
and U(x) = 0 at its minimum. This result is due to the
smooth dependence on x of both D(x) and A(x) on the
scale of the spread of the probability distribution P (x, p)
for eV � Γ.

We come now to the displacement spectrum obtained
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from Eq. (5) that we show for eV/Γ = 5 · 10−3 in Fig. 1
and 2. As anticipated, as coupling increases the reso-
nance broadens and shifts at low frequency. More sur-
prisingly, the peak position shows a minimum at a small
but finite value of ω at the transition with a maximal
broadening (cf. Fig. 2-b). The position of the minimum
and its width depend on the bias voltage. A strong tele-
graph noise appears for εP & εc (dark region at ω → 0),
signaling the hopping of the systems between the two
minima in the potential [15, 17]. This is also a strong in-
dication of the transition [see Fig. (2)-d]. In the bistable
phase (εP > εc) a double peak in the spectral function is
visible.

In order to understand this behavior we take advan-
tage of the separation of time scales of the problem. The
damping A(x) and the fluctuations D(x) are both gen-
erated by the non-equilibrium electronic transport and,
by hypothesis, are parametrically smaller (as ω0/Γ) than
the Hamiltonian terms in Eq. (4). This implies that the
system performs many oscillations on the closed trajec-
tory in the phase space that satisfies E(x(t), p(t)) = E,
before drifting to a nearby trajectory on the slow time
scale γ−1

E , where γE =
∫
dxPst(x, p)A(x)/m is the av-

erage dissipation coefficient [16, 23]. For each energy E
one can then calculate the pulsation of the closed trajec-
tory ω(E) = 1/

[
2π(m/2)1/2

∮
[E − U(x)]−1/2dx

]
. The

non-linearities present in U(x) induce dispersion in ω(E).
Then, from our definition, ωm indicates only ω(0). Ener-
gies up to eV are populated as an effect of the stochastic
fluctuations. They all contribute to the fluctuation spec-
trum leading to an inhomogeneous broadening that spans
the frequencies between ωm and ω(eV ).

In order to provide a quantitative verification of
this interpretation we calculate the spectrum by ne-
glecting the effect of the dissipation and consider-
ing only the interference of the different trajecto-
ries populated according to Pst [26, 27]. This gives
Sxx(t) =

∫
dx0dy0Pst(x0, p0)x̃(t)x̃(0), where x(t) satis-

fies the equation of motion mẍ = F (x), with the initial
conditions x(0) = x0, and ẋ(0) = p0/m. In terms of
the Fourier coefficients of fixed energy periodic trajecto-
ries [x̃E(t) =

∑
n e

inω(E)txn(E)] the spectrum takes the
form:

Sxx(ω) =

∫ ∞
0

P(E)dE
∑
n

2πδ(ω − nω(E))x2
n(E) , (6)

with P(E) = N e−E/Teff 2π/ω(E).
Two limits can be analyzed [28]: When the quar-

tic term is much smaller than the quadratic one, the
full width at half height of the resonance is ∆ω ≈
1.5ω0(eV/εc)(εP /εc)

2(1 − εP /εc)−3/2 with a small posi-
tive shift of the maximum from ωm of the same order. In
the opposite limit of vanishing harmonic term (εP = εc)
the potential can be approximated as quartic. In this
case ∆ω/ω0 = 0.50(eV/Γ)1/4 with a peak position ωM
at 0.85ω0(eV/Γ)1/4. This voltage dependence can be re-
lated to the dispersion of ω(E) that vanishes as E1/4 for

FIG. 2. Comparison of the full numerical solution of the
Fokker-Planck equation for Sxx (blue solid lines) with the
one obtained with Eq. (6) (dots) for εP /εc = 0.87, 1, 1.11
(a, b, and c panel, respectively) in units of (mω2

0)−1. The
numbers label the order of the harmonic, while the letters h
and l in the c panel indicate the high- and low-frequency con-
tributions. Panel d: Sxx(0) as a function of εP /Γ indicating
the onset of the telegraph noise at the transition.

εP = εc. Remarkably, at criticality the Q-factor of the os-
cillator defined as ωM/∆ω takes the universal value 1.71,
independently of V or Γ. The crossover between the two
regimes takes place for 1− εP /εc ≈ 1.71(eV/εc)

1/2, thus
for the values considered in Fig. 1 the quartic region is
restricted to 1−εP /εc < 0.03. Finally, the double peak of
the spectral function for εP > εc can be explained by the
contributions of the low-energy high-frequency trajecto-
ries around each single minimum, and those, at higher
energy and lower frequency, revolving around both min-
ima. The comparison with the numerical result presented
in Fig. (2) shows a very good agreement.

Driving. Let us consider the other main tool used
to detect mechanical motion: The response to a driving
force of frequency ωD. We can find the linear response
of the system by letting F (x) → F (x) + FD cos(ωDt)
in Eq. (4). The evolution operator becomes L(t) =
L0 + 2LD cos(ωDt), with LD = −FD∂p/2. After a tran-
sient time the solution can be written as a Fourier se-
ries P (t) =

∑
n e

inωDtPn where each Fourier component
can in turn be expanded as a power series of the driv-
ing parameter FD: Pn =

∑∞
k=0 Pn,k, with Pn,k of or-

der F kD. This leads to the equation for each component
(inωD − L0)Pn,0 = 0 and

(inωD − L0)Pn,k+1 = LD(Pn+1,k + Pn−1,k), (7)

with the condition TrP (t) = 1 . Eq. (7) can be solved by
recursion. The time dependence of the displacement then
reads x̃(t) ≡ Tr

[
ˆ̃xP (t)

]
= FDχ(ωD)eiωDt + c.c., where

χ(ω) = Tr
[
ˆ̃xP1(t)

]
= Tr

[
ˆ̃x(iω − L0)−1∂pPst

]
. (8)
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FIG. 3. Time dependence of 〈x̃(t)〉 (green solid line) and its
envelope (blue solid line) for εP /εc = 0.32, 1, and 1.11 (a, b,
and c panel, respectively). The exponential decay on the scale
2/γE is shown red dashed. In panel a and b the orange dotted
line gives the result of the analytical expressions discussed in
the text. Panel d: comparison of the εP -dependence of ∆ω,
2γϕ, and γE .

Naturally, the relation between χ(ω) and Sxx(ω) comes
into question. If Pst has a Gibbs form then FDL0

ˆ̃xPst =
−2TeffLDPst. This leads to a fluctuation-dissipation re-
lation:

Im [χ(ω)] =
ω

2Teff
Sxx(ω) . (9)

Thus, for eV � Γ, χ and Sxx give access to the same
information in two independent ways. For larger voltages
expression (8) always holds while Eq. (9) will be violated.

Ring-down behavior. Finally, let us consider the re-
sponse for time t > 0 of the oscillator when the coherent
drive is switched off at t = 0. A damped harmonic oscil-
lator relaxes exponentially on a time scale (the ring-down
time) given by the same dissipation coefficient that also
determines the width of the resonance of the response
function. For nano-mechanical oscillators it has recently
been shown [13] that this may not be the case. Non-
linearities induce frequency noise, which in turn is re-
sponsible for phase fluctuations of x̃(t). The average over
many realizations of x̃(t) decays then on the time scale

γ−1
ϕ , the value for which phase fluctuations become the

order of 2π. Since the energy is insensitive to the phase,
its average decays on the same time scale as the single
realization γ−1

E .
With respect to our problem, we use the solution of

the Fokker-Planck equation with driving [Eq. (7)] as the
initial condition and then find x̃(t) and E(t) from the
evolution of the probability with L0. The result as a
Laplace transform reads:

〈x̃(z)〉 = Tr
[
ˆ̃x(z − L0)−1P (t = 0)

]
. (10)

In a similar way we can calculate also the Laplace trans-
form of the evolution of the total energy by letting ˆ̃x →
E(x̂, p̂) in Eq. (10). One can then obtain the time depen-
dence by numerically implementing the Cauchy theorem
〈x̃(t)〉 =

∮
C
〈x̃(z)〉e−ztdz/(2πi), where C is a contour that

encloses the poles of 〈x̃(z)〉 for Rez < 0.
We find that the energy exponentially decays on the

scale γ−1
E , even at the transition. On the other hand, as

shown in Fig. (3), 〈x̃(t)〉 decays on a much shorter scale
that we define γ−1

ϕ . Fig. (3)-d shows the εP dependence
of ∆ω, 2γϕ, and γE . The width ∆ω, obtained from the
form of Sxx, coincides within the numerical accuracy with
2γϕ, proving that frequency noise is the responsible of
the faster decay of 〈x̃(t)〉. Both present a pronounced
maximum at εP = εc, indicating the transition. Using
the approach presented for the analytical calculation of
Sxx(ω) we find that 〈x̃(t)〉 decays as 1/(1+ t2γ2

ϕ)2, where
γϕ = 0.41∆ω [29]. Similarly for εP = εc the decay scale
is proportional to ∆ω with the analytical form given by
the dotted line of Fig. (3).

Conclusions. We found that the study of the me-
chanical properties of the suspended carbon nanotube
open new perspectives for the observation of the current-
blockade transition occurring at low temperaure and volt-
age for εP = πΓ. Indeed, for that value the quadratic
part of the effective potential vanishes, leading to strong
frequency and phase fluctuations that remarkably mod-
ify the typically measured response functions (Sxx, χ,
and ring-down behavior). The Q-factor of the resonator
takes the minimum and universal value 1.71 at critical-
ity, where the separation of time scales is also maxi-
mal. These results can lead to the observation of the
current-blockade transition by mechanical measurements
in devices currently investigated by several experimental
groups.
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