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We provide details about the analytical derivations of the displacement spectral density Sxx(ω)
and dephasing time γ−1

ϕ of the carbon nanotube mechanical oscillator.

I. EVALUATION OF THE DISPLACEMENT
SPECTRAL DENSITY Sxx(ω)

In this section, we discuss how to obtain analytically
the displacement spectral density Sxx(ω) of the carbon
nanotube mechanical resonator. The effective potential
U(x) for the mechanical oscillator at low voltage can be
expanded in Taylor series, and only the two first orders,
the quadratic and quartic in x are relevant for effective
temperatures Teff � Γ (in the following, we set both the
Planck constant ~ and the Boltzmann constant kB to 1).
We thus derive in the following analytical expressions for
Sxx(ω) for the two limiting cases (i) where the quartic
term is a small perturbation to the quadratic one, and
(ii) when the quadratic term vanishes (for εP = εc) and
the potential is purely quartic in x.

Following Dykman et al. in Ref. [1], in the regime
of very small damping rate A/m � ∆ω, with ∆ω the
width of the main peak in the spectral density induced
by the non-linearity, the autocorrelation function for the
oscillator position can be well approximated by:

Sxx(t) =

∫
dx0dy0Pst(x0, p0)x̃x0p0(t)x̃x0p0(0) (1)

where x(t) is the periodic function that satisfies the equa-
tion of motion mẍ = F (x) with initial conditions x(0) =
x0, and ẋ(0) = p0/m and x̃x0p0(t) = xx0p0(t)−〈xx0p0(t)〉.
The integration is taken over the whole phase space
for the classical oscillator and Pst(x, p) is the station-
ary distribution that, as discussed in the main text, for
eV � Γ has the Gibbs form Pst(x, p) = N e−E(x,p)/Teff ,
with E(x, p) = p2/2m + U(x), and N is such that the
distribution is normalized

∫
dxdpPst(x, p) = 1. The ef-

fective temperature Teff = eV/4 is induced by the charge
fluctuations on the dot due to the finite voltage across
the leads. The damping A/m and the fluctuation D en-
ter this expression in defining the form of Pst, but not in
the dynamics of x(t).

The expression (1) can be rewritten as follows:∫ +∞

0

dE

∫ T (E)

0

dτPst(E)x̃E(t+ τ)x̃E(τ), (2)

where T (E) is the period of the closed trajectory xE(t) of
fixed energy E and Pst(E) = N e−E/Teff . Since x(t) is pe-
riodic with a period T (E) = 2π/ω(E), we can introduce

its Fourier series:

x̃E(t) =
∑
n

einω(E)txn(E) . (3)

The spectrum then takes the form:

Sxx(ω) =

∫ +∞

0

dEP(E)
∑
n

2πδ(ω − nω(E))x2
n(E),

(4)

with P(E) = Pst(E)T (E). Finally, introducing the ener-
gies En which satisfy the equation ω = nω(En), we ob-
tain the expression for the spectral function (with ω > 0)
as:

Sxx(ω) = N (2π)2

ω

+∞∑
n=0

e−En/Teff

|ω′(En)|
x2
n(E) , (5)

with ω′(En) = (dω/dE)|En
. The computation of Sxx is

now reduced to the computation of ω(E) and x2
n(E).

A. Computation of ω(E)

The expression for the effective force F is given in the
main text for the case ε0 = (µL + µR + εP )/2:

F (y) = −ky + (F0/2π)
∑
a=±1

arctan[(F0y + aeV/2)/Γ],

(6)

where y = x− F0/2k. For εP < εc there is only a single
stable equilibrium position for y = 0. Expanding F (y)
around this point for V = 0 we obtain for the potential
U(y) = −

∫ y
0
dy′F (y′):

U(y) =
mω2

0

2

(
1− εP

εc

)
y2 +

Γ

12π

(
yF0

Γ

)4

, (7)

where εc = πΓ. The period in terms of U reads:

T (E) = (m/2)1/2

∮
[E − U(y)]−1/2dy . (8)

that can be evaluated in terms of elliptic integrals:

ω(E)

ω0
=

π

2K[−m(E)]

(
1− εP

εc

)1/2(
1 + C(E)

2

)1/2

,

(9)
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with

C(E) =

(
1 +

4π2

3

ε2
PE

ε3
c(1− εP /εc)2

)1/2

, (10)

and m(E) = C(E)−1
C(E)+1 . K[−m(E)] is the complete ellip-

tic integral of the first kind with parameter −m(E) [see
Ref. [2]]. We will need in the following the derivative of
ω(E) for vanishing energy:

ω′(0) ≡ dω

dE

∣∣∣∣
E=0

=
π2

4

ω0

εc

(εP
εc

)2
(

1− εP
εc

)−3/2

. (11)

B. Case (i) weakly non linear oscillator

FIG. 1. Normalized displacement spectral density
Sxx(ω)/Smax

xx as a function of the rescaled frequency (ω −
ωm)/Teffω

′(0), in the case of weak electro-mechanical cou-
pling (εP � εc).

Sufficiently far from the transition (εP � εc), the os-
cillator is weakly non-linear and we can treat the quartic
part of the potential as a small perturbation. We can thus
calculate Sxx by expanding the expression (5) to leading
order in the non-linearity. The main contribution comes
from the first harmonic whose amplitude can be approx-
imated with the harmonic expression x2

1(E) ≈ E/2mω2
0 .

The energy dependent resonating frequency is approxi-
mated by the expression:

ω(E) = ωm + ω′(0)E + . . . (12)

where ωm/ω0 = (1− εP /εc)1/2
. We obtain then:

Sxx(ω) =
πωmεc

mω2
0(εc − εP )ω|ω′(0)|

ω − ωm
ω′(0)Teff

e
− ω−ωm

ω′(0)Teff .

(13)

From Eq. (13) and Fig. 1 we see that the spectral density
is defined for ω > ωm (there is actually an upper bound
of the order of ω0, but the effective temperature being
very low this limit is not visible) and has a maximum at

ω = ωm + ω′(0)Teff . The full width at half maximum
(FWHM) of the spectral line ∆ω reads

∆ω = ∆2ω
′(0)Teff , (14)

where ∆2 ≈ 2.446 is a numerical coefficient correspond-
ing to the FWHM in Fig. 1.

We thus find that the effect of the non-linearity on the
width of the resonance is linear with the bias voltage eV
and controlled by ω′(0), at least as far as the quartic
terms does not become dominant. We will estimate at
the end of the next subsection the limit of validity of
this approach by comparing with the result of the purely
quartic term.

C. Case (ii) purely quartic oscillator

FIG. 2. Normalized displacement spectral density
Sxx(ω)/Smax

xx as a function of the rescaled frequency ω/ωmax,
at the critical point (εP = εc). The spectral line maximum is

located at frequency ωmax = Bω0 (eV/4Γ)1/4.

At the critical point (εp = εc), the quadratic part of the
potential vanishes and the mechanical oscillator becomes
purely quartic. In this regime, we obtain for the oscillator
frequency:

ω(E)

ω0
= B

(
E

Γ

)1/4

, (15)

with B = 1
2

(
π3

3

)1/4
Γ[3/4]
Γ[5/4] ≈ 1.212 a numerical constant

and Γ[x] the Euler gamma function [2]. The oscillator

frequency has thus a scaling in energy ∝ (E/Γ)
1/4

.

Remarkably, the displacement spectral density of the
quartic oscillator also has a simple analytical expression:

Sxx(ω) = B̃
Γ2

ω0F 2
0

(
Γ

Teff

)3/4 +∞∑
n=1

e−En/Teff
α2
nEn
nΓ

,

(16)



3

where B̃ = 16 · 33/4π1/4f(1)/Γ[3/4] is a numerical con-

stant. αn =
∫ 1

−1
du u

f(1)
√

1−u4
cos
(
nπ f(u)

f(1)

)
is a param-

eter depending on the harmonic index n and involving
the integral function f(u) =

∫ u
−1
dv/
√

1− v4. The en-

ergy En =
(
31/4f(1)ω/π5/4nω0

)4
Γ satisfies the equation

ω = nω(En). We evaluate numerically the values of αn
for the first harmonics: α1 ≈ −0.477, α3 ≈ −0.021 and
α5 ≈ −9.3 · 10−4. In Eq. (16), the main contribution to
Sxx(ω) is given by the first harmonic n = 1, the other
harmonics n ≥ 3 having a smaller weight. The normal-
ized line shape of the displacement spectral density can
be further approximated, retaining only the contribution
of the first harmonic by:

Sxx(ω)

Sxx(ωmax
≈
(

ω

ωmax

)4

e−[( ω
ωmax

)
4−1] , (17)

where ωmax = Bω0 (Teff/Γ)
1/4

is the position of the max-
imum of the spectral density. From Eq. (17) and Fig. 2,
we see that the spectral density has a different line shape
compared to the weak non linear oscillator in Fig. 1. Its
FWHM is given by:

∆ω = ∆4ωmax . (18)

where ∆4 ≈ 0.585 is a numerical coefficient corre-
sponding to the FWHM in Fig. 2. Finally, we get

∆ω ≈ 0.709ω0 (Teff/Γ)
1/4

.

In contrast to the quasi-harmonic oscillator [see
Eq. (14)], the resonance width of the quartic oscillator
at the critical point does not scale linearly with the effec-

tive temperature, but with a scaling law ∝ (Teff/Γ)
1/4

.
Let’s finally find the range of validity of the approxi-
mation used in Sec. I B. We first remark that ∆ω in
Eq. (14) diverges close to the transition, signalizing the
breakdown of the quasi-harmonic approximation. At
the transition, ∆ω expressed in Eq. (18) is finite. We
estimate the crossover between both regions to hap-
pen when both estimations of the resonance width ∆ω
in Eq. (14) and in Eq. (18) are equal. We find that
the crossover between the two regimes takes place for
1− εP /εc ≈ 1.71(eV/εc)

1/2.

II. EVALUATION OF THE OSCILLATOR
DEPHASING TIME γ−1

ϕ

A. Linear response of the oscillator under weak
driving

We now consider that the mechanical oscillator is un-
der the influence of a weak driving force of frequency ωD
and amplitude FD, so that the total force applied on the
oscillator is F (x) +FD cos(ωDt). The evolution equation
for the probability distribution is then given by:

∂tP = {L0 + 2LD cos(ωDt)}P , (19)

where LD = −FD∂p/2. One can show that for weak driv-
ing, an approximate solution of Eq. (19) has the form
P (x0, p0, t) = Pst(x0 − xi(t), p0 − pi(t)), where xi(t) and
pi(t) are solutions of the equations of motion ẋi(t) =
pi(t)/m and ṗi(t) = F (xi)+FD cos(ωDt)−A(xi)pi(t)/m.
Namely, the probability distribution for the oscillator in
presence of driving is obtained by moving rigidly the cen-
tre of the stationary Gibbs distribution along the de-
terministic trajectory of the damped oscillator. If the
driving is weak compared to the effective temperature,
one can expand P (x0, p0, t) to linear order in the driving
strength:

P (x0, p0, t) ≈ Pst(x0, p0)

{
1− xi(t)F (x0)− pi(t)p0/m

Teff

}
.

(20)

B. Ring-down response of the oscillator

FIG. 3. Normalized ring-down displacement of the oscillator
x̃(t)/x̃(0) (green curve) and its envelope (blue curve) at the
critical point εp = εc.

In the following, we suppose that the driving has been
imposed far in the past. The linear response to this
driving generates at time t = 0 an initial condition that
we choose for simplicity to be xi(0) = xi and pi(0) = 0.
At this same time t = 0, the driving is suddenly switched
off and the system is let relaxing toward equilibrium.
The ring-down dynamics at time t > 0 is encoded
into the average response of the oscillator displacement
x(t) =

∫ ∫
dx0dp0P (x0, p0, 0)xx0,p0(t).

Introducing x̃x0p0(t) = xx0p0(t)−〈xx0p0(t)〉, we obtain
from Eq. (20):

x̃(t) ≈ − xi
Teff

∫ ∫
dx0dp0Pst(x0, p0)F (x̃0)x̃x0,p0(t) ,

(21)
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which can be rewritten as:

x̃(t) ≈ − xi
Teff

∫ +∞

0

dE

∫ T (E)

0

dtPst(E)F [x̃E(0)]x̃E(t) .

(22)

Similarly to Sec.I, we perform the Fourier expansion of
the periodic trajectories x̃E(t) =

∑
n e

inω(E)txn(E). In
the case where εP < εc, the electronic force acting upon
the oscillator is given by Eq. (7). We can further perform
the average over energy and phase of the orbit in Eq. (22):

x̃(t) ≈ xi
Teff

∫ +∞

0

dEP(E)

{
mω2

m

∑
n

x2
n(E)einω(E)t+

∑
{ni}

F 4
0 xn1

(E)xn2
(E)xn3

(E)xn4
(E)

3πmΓ3
ein4ω(E)tδn4,

∑3
j=1 nj

 .

(23)

Eq. (23) enables to compute the ring-down dynamics
of the oscillator displacement x̃(t) as well as to extract
a characteristic dephasing time γ−1

ϕ of the mechanical
oscillator.

In the following, we derive analytical expressions for
x̃(t) for the two limiting cases (i) where the quartic term
is a small perturbation to the quadratic one, and (ii)
when the quadratic term vanishes (for εP = εc) and the
potential is purely quartic in x.

1. Case (i) weakly non linear oscillator

Far from the transition (εp < εc), the oscillator is
weakly non-linear, and we can use the same approxima-
tions as in Sec.I B to derive from Eq. (23) an analytical
expression for the oscillator displacement:

x̃(t) ≈ xi

(
1− (γϕt)

2
)

cos(ωmt)− 2γϕt sin(ωmt)(
1 + (γϕt)

2
)2 ,(24)

where the dephasing time γ−1
ϕ of the oscillator is given

by:

γ−1
ϕ =

1

ω′(0)Teff
. (25)

Eq. (25) shows that after the driving has been switched
off, the oscillator follows an oscillating behaviour given
by the natural frequency of the vibration ωm = ω(0).
This fast oscillation decays as a power law.

As expected, we find that the typical decay or dephas-
ing time γ−1

ϕ of the oscillator is inversely proportional to
the broadening of the displacement spectral density ∆ω
[see Eq. (14)], namely:

∆ω = ∆2γϕ . (26)

C. Case (ii) purely quartic oscillator

At the critical point (εp = εc), the quadratic part of the
potential vanishes and the mechanical oscillator becomes
purely quartic. We adopt the same approximations as in
Sec.I C to derive from Eq. (23) an analytical expression
for the oscillator displacement:

x̃(t)

x̃(0)
≈ 1

Γ[7/4]

∫ +∞

0

dyy3/4e−y cos (ωmaxy
1/4t) ,

(27)

where the frequency ωmax = Bω0 (Teff/Γ)
1/4

is the same
as in Sec.I C. The oscillator displacement in Eq. (27) is
plotted in Fig. 3.
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