
HAL Id: hal-01178250
https://hal.science/hal-01178250v1

Preprint submitted on 17 Jul 2015 (v1), last revised 22 Sep 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Leader election on two-dimensional periodic cellular
Nicolas Bacquey

To cite this version:

Nicolas Bacquey. Leader election on two-dimensional periodic cellular. 2015. �hal-01178250v1�

https://hal.science/hal-01178250v1
https://hal.archives-ouvertes.fr

Leader election on two-dimensional periodic cellular1

automata2

Nicolas Bacqueya
3

aGREYC - Université de Caen Basse-Normandie / ENSICAEN / CNRS4

Campus Côte de Nacre, Boulevard du Maréchal Juin5

CS 14032 CAEN cedex 5, France6

Abstract7

This article explores the computational power of bi-dimensional cellular au-
tomata acting on periodical configurations. It extends in some sense the re-
sults of a similar paper dedicated to the one-dimensional case. More precisely,
we present an algorithm that computes a “minimal pattern network”, i.e. a
minimal pattern and the two translation vectors it can use to tile the entire
configuration. This problem is equivalent to the computation of a leader, which
is one equivalence class of the cells of the periodical configuration.

Keywords: cellular automata, leader election, bi-periodical configuration,8

equivalence classes, uniform computation9

Introduction10

Cellular automata are a well-studied computational model. Its uniform and11

local properties capture a large range of natural problems, and the model is12

simple enough to allow definitions of algorithms, or complexity classes. How-13

ever, the infinite nature of its underlying structure may raise some issues when14

confronted with finite objects. There are two classical ways of solving these is-15

sues: either working on a finite subset of the automaton, or requiring the whole16

infinite configuration to be periodical.17

Periodical configuration is quite a natural concept in the context of tiling18

problems. As a significant example, it was first (erroneously) conjectured by19

Hao Wang in [13] that each finite set of tiles that tiles the plane can always do20

it by some periodical configuration. Periodical configurations have also been ex-21

tensively studied on cellular automata, when those are considered as dynamical22

systems: typically, questions of undecidability of the injectivity or reversibility23

of the transition function have been studied [5]. On the other hand, periodical24

configurations are much less studied from the point of view of computation,25

with some notable exceptions, such as the density classification problem [7].26

A natural problem would be to compute a “minimal period” of a periodical27

configuration. However, performing computations on periodical configurations28

is somehow counterintuitive, because one cannot easily define essential notions,29

such as the origin and termination of the computation, or the time complexity30

of an algorithm. These difficulties are mainly due to the fact that unlike what31

happens on classical models such as Turing machines, you cannot choose a single32

cell to start the computation or bear its result. This difficulty is overridden when33

Email address: nicolas.bacquey@unicaen.fr (Nicolas Bacquey)
Preprint submitted to Elsevier March 24, 2015

the input of a cellular automaton is bounded by persistent symbols, because then34

you can identify cells that are on the border of the computation area, and use35

them as starting or stopping points. However, one cannot use such tricks when36

the configuration is periodical; in that case, all notions related to computation37

should be global.38

This paper presents an extension of a previous work [1] dedicated to the39

simpler one-dimensional case. In [1] we exhibited a one-dimensional cellular40

automaton that computes in polynomial time a minimal period of an infinite41

one-dimensional periodic configuration. We now want to deal with bi-periodical42

configurations of dimension 2, i.e. configurations that have two independent43

vectors of periodicity. A natural starting point would be to compute the minimal44

pattern of a given configuration, i.e. the smallest pattern with which we are able45

to rebuild the whole configuration by translation along the two orthogonal axis.46

This problem is unsolvable in the case of cellular automata of dimension ≥ 2, as47

it is briefly suggested on Fig 1. Instead, we will solve the problem of exhibiting a48

minimal pattern network, i.e. a minimal pattern and the two translation vectors49

it can use to tile the entire configuration.50

0 1

1 0

0 1

1 0

0 1

1 0

0 1

1 0

0 1

1 0

0 1

1 0

0 1

1 0

0 1

1 0

0 1

1 0

1 0

0 1

1 0

Figure 1: One cannot extract the 2×2 square pattern from the configuration, because all cells
marked with 1 are indistinguishable from each other. Nevertheless, it is possible to extract
the 2× 1 pattern, with its two tiling vectors.

We can see that this minimal pattern network can be computed through the51

election of a leading equivalence class of cells. This election will be the main52

subject of this article.53

After having clearly defined the problem of leader election on periodical54

cellular automata, we will present some algorithmic tools that fit our needs.55

Finally, we will present an algorithm that performs leader election in polynomial56

time.57

1. Context and basic definitions58

1.1. The computational model59

We will use along this article the standard definition of cellular automata60

(CA) as a tuple A = (d,Q, V, δ) (see [6]). In these lines, we will work with d = 2,61

i.e. with cellular automata whose underlying network is Z2. Q denotes the set62

of states, and V is the standard Moore neighbourhood 1. The local transition63

1V = {(−1,−1), (−1, 0), (−1, 1), (0,−1), (0, 0), (0, 1), (1,−1), (1, 0), (1, 1)}

2

function of the automaton is denoted by δ : QV → Q. As we work with cellular64

automata from the point of view of language recognition, we will identify a65

particular subset Σ ⊆ Q as the input alphabet. A configuration is an application66

C : Z2 → Q. We also introduce the global transition function Fδ : QZ2 → QZ2

67

defined by the global synchronous application of δ over configurations of Z2.68

We suppose that the reader is familiar with the notions of signals and com-69

putation layers on cellular automata. If it is not the case, we strongly encourage70

the reading of [6] or [9] for such general matters on cellular automata.71

Definition 1. We define a Toric-Cellular Automaton (toric-CA) as a cellular72

automaton whose initial configuration (and therefore any subsequent configura-73

tion) is bi-periodic (i.e. periodic in two independent directions).74

Note that this model is equivalent to an automaton that would work on a75

finite, torus-like cell network.76

Definition 2. Let w be a rectangular word over Σ, we denote Cw ∈ QZ the77

configuration formed by the uniform repetition of w over Z2.78

Definition 3. We call a cell an element of the underlying network Z2 and the79

state of Q associated with it.80

Note that the state of a given cell may change through time.81

2. Leader election on toric-CA82

We now consider our bi-periodic configurations, and will try to perform83

leader election upon them. We will see that it is not possible to elect a single84

cell on the configuration, and will introduce the definition of equivalence classes85

to deal with that issue.86

2.1. Equivalence classes of cells87

Let C be a bi-dimensional, bi-periodic configuration over Q.88

Definition 4. We say that two cells c1 and c2 of C are equivalent if the trans-89

lation that moves c1 on c2 leaves the configuration unchanged.90

It is immediate to see that the previous definition induces an equivalence91

relation. Let us now consider the equivalence classes of that relation. As all92

the cells of an equivalence class have the same state and the same neighbour-93

hood, the application of the transition function on these cells will give the same94

resulting state. By recurrence, it appears that at any given time during the95

computation, each cell of an equivalence class will be in the same state. From96

a computational point of view, the cells of a given equivalence class are undis-97

tinguishable from each other (See Fig 2).98

Because the configuration C we are considering is bi-periodic, it also appears99

that each cell belongs to an infinitely large equivalence class, and that there only100

exists a finite number of equivalence classes.101

Definition 5. We define the size of a bi-periodic configuration as the number102

of its equivalence classes. The size of the initial configuration will be denoted as103

N .104

It is clear that N is the only pertinent parameter when one wants to discuss105

time complexity of algorithms running on toric-CA.106

3

0 0

0 1

1 0

0 0

0 1

1 0

0 0

0 1

1 0

0 0

1 0

0 1

0 0

1 0

0 1

0 0

1 0

0 1

Figure 2: All darkened cells will have the same behaviour during the computation, as they
belong to the same equivalence class.

2.2. Proper definition of leader election107

As a corollary of previous statements, it appears that it is impossible to elect108

a single cell of the configuration as a leader (or any finite subset of cells for that109

matter).110

The leader election problem on bi-periodic configurations actually sums up111

to the election of a single equivalence class.112

2.3. Main result113

In the following sections, we will describe an algorithm that performs leader114

election on toric-CA.115

More precisely, the algorithm will process bi-periodic configurations such116

that after a certain time:117

• The states of all the cells of the elected equivalence class will be in a118

certain final subset of states F ∈ Q and will never leave it.119

• The states of every other cell will never be in F any more.120

Theorem 1. The algorithm presented in this paper solves the leader election121

problem in a time polynomial in the size N of the initial configuration.122

At the beginning, all cells will be candidates to this election, then our algo-123

rithm will perform a percolation amongst those cells, only sparing those which124

belong to a single equivalence class. Note that due to the nature of our compu-125

tational model, it is impossible for a single cell to assert that the election is over126

and no more cells are to be percolated. This can only be done by an observer127

outside of the model.128

3. Basic objects and tools129

We will consider patches as the basic objects in this article. A patch denotes130

a finite set of neighbouring cells, upon which computation will be performed. We131

precisely intend to subdivide the whole configuration into patches, and we want132

the behaviour of a patch to depend only on its content and the content of its133

neighbours. Later in the article, we will introduce signals that will travel along134

the borders of the patches. We want a single signal to be able to travel through135

the entire border of a patch, which forbids patches to have holes. However, we136

present in the next section a method to process patches that may have holes.137

4

3.1. Patches, borders and contents138

In order to properly define what a patch of cells is, we have to subdivide the139

cell network. More precisely, each cell of the network will be divided into four140

sub-cells (See Fig 3). Please note that this rather unusual definition is due to141

the dynamics of the main algorithm. It is convenient to first define a patch as142

a simple closed curve, and then as a set of cells.143

Definition 6 (patch as a curve). We define a patch as a finite, simple, closed144

curve in the subdivided cell network that obeys some restrictions, which will be145

detailed thereafter.146

The restrictions focus on the angles of the curve, and consist of a set of147

allowed and forbidden angles, such as shown on Fig 4. They can be informally148

summarized as follows :149

• Each outer angle (i.e. 90◦angle when measured from the inside) must150

externally correspond to a full line corner.151

• Each inner angle (i.e. 270◦angle when measured from the inside) must152

internally correspond to a dashed line corner.153

Fig 5 gives examples of simple curves of the subdivided network. We can154

note that the only curves which properly define a patch are those on Fig 5a and155

Fig 5b, while Fig 5c presents angles that are forbidden.156

Definition 7 (border). The border of a patch is canonically defined as the157

projection of its curve over the corresponding outer cell edges of the original158

network.159

Definition 8 (patch as a set of cells). We define the content of a patch as the160

set of cells within its border, or indifferently the initial state of those cells.161

As an abuse of notation, we may use the term patch to denote its content.162

Examples of patches with their contents and borders are shown on Fig 6.163

Note that this definition allows patches whose content may contain holes, but164

whose border can be travelled through by a single signal (see Fig 6b).165

Figure 3: Dividing the cell network

5

Proper patches. We can see that some parts of the border of a patch might be166

useless (see Fig 7). The following definition will give us a canonical representa-167

tive for those patches.168

Definition 9 (Proper patch). We say that a patch is a proper patch if the169

curve defining it does not contain the pattern presented in Fig 7a. The proper170

patch associated to a given raw patch is the patch where all the occurrences of the171

forbidden pattern have been locally deleted (see Fig 7). Note that this operation172

does not change the content of a patch.173

We would like to be able to distinguish a particular cell in a patch; this is174

the goal of the next definition.175

Definition 10 (Patch leading cell). We define the leading cell of a patch as the176

uppermost cell amongst its rightmost.177

Note that this notion is a priori unrelated with the leader election problem178

we exposed earlier.179

(a) Allowed angles (b) Forbidden angles

Figure 4: Local recognition of acceptable curves (the coloured area denotes the inside of the
curve)

(a) Acceptable patch (b) Acceptable patch (c) Forbidden patch

Figure 5: Examples of simple closed curves that may define patches

3.2. Patch word180

We are going to design an algorithm able to compare patches. Because a181

patch is a rather complex object, we have to find a canonical representation that182

6

(a) Without a hole (b) With a hole

Figure 6: Examples of patches and their borders

(a) Forbidden pattern (b) Non-proper patch (c) Proper patch

Figure 7: Transforming a raw patch into a proper one

our computational model can handle. A patch will be represented by a word183

encoding both the shape of its border and its content.184

Definition 11 (Border word). We define the border word associated to a patch185

as the word over the alphabet ∆ = {↑, ↓,←,→} that represents its border in186

clockwise order, starting from the upper left angle of the patch leader.187

For instance, the border word of Fig 8 is →→→↓↓↓→↓←←←←↑→↑←↑↑188

189

Now we must extend our concept of border word to take the content of the190

patch into account. A trivial solution that first comes to find is to enumerate191

the content of all the cells in reading order, starting from the patch leader.192

However, this solution raises some issues due to the fact that it is hardly locally193

computable. We propose instead the construction of a spanning tree over the194

cells of a patch, whose root is the leading cell. We admit for the moment that195

we can easily construct such a spanning tree on a proper patch with local rules,196

once the leading cell is identified (the proof of this point will be given in section197

5.4.3). The spanning trees associated to different shapes of patches can be seen198

on Fig 9.199

Definition 12 (patch word). Let Σ be the input alphabet of our automaton, we200

define the patch word associated to a proper patch as the word wc = w∆wΣ,201

where w∆ ∈ ∆∗ is the border word of the patch, and wΣ ∈ Σ∗ is the content202

of the cells of the patch, ordered by the prefix order depth-first search of the203

7

spanning tree associated to the patch (for a fixed order of the directions).204

For instance, here follows the patch word of the patch of Fig 8, whose span-205

ning tree is the one on Fig 9a :206

wc =→→→↓↓↓→↓←←←←↑→↑←↑↑ 011010011010207

We note that there is a one-to-one correspondence between proper patches208

and their patch word.209

0 1 1

1 0 1

1 0

0 0 1 0

Figure 8: A proper patch and its content, with its leading cell highlighted

Figure 9: Example of spanning trees associated to proper patches, with their root highlighted

3.3. Local neighbourhoods210

We introduce the partition of the border of a proper patch into local neigh-211

bourhoods as follows:212

Definition 13. A local neighbourhood is a maximum, connected component of213

the border for which the neighbouring patch does not change. We then canoni-214

cally define the local neighbour associated with this neighbourhood as the adjacent215

patch.216

As we want the entire configuration to be partitioned into patches, the as-217

sumption that each patch must have neighbouring patches is satisfied during218

the algorithm.219

We can also see on Fig 10 that the number of local neighbours of a patch220

can be greater than the number of its distinct adjacent patches. We also note221

that a proper patch can be its own local neighbour.222

8

1

2

3 4 1 2 3

45

6

7

8

Figure 10: This patch has 4 adjacent patches, but 8 local neighbourhoods.

4. Overview of the leader election algorithm223

All along the algorithm, the configuration will be entirely partitioned into224

patches, as defined previously. Instead of talking about the behaviour of cells,225

and for a better preliminary comprehension of the algorithm, we will talk about226

meta-states of patches, and how those meta-states must evolve according to a227

meta-algorithm. At the beginning of the algorithm, the configuration will be228

entirely decomposed into patches of size 1, i.e. each cell will be alone in its229

own patch. The final goal of the algorithm is to merge patches together, until230

the configuration is only composed of the periodical repetition of the same big231

patch. Fig 11 presents the evolution of a configuration from the starting point232

to the final state.233

4.1. Meta-states and meta-algorithm234

Each proper patch will have a meta-state for each of its local neighbourhoods235

(we will call them merging states), plus one special state (the waiting state).236

Merging states can be interpreted as if the patch was trying to merge with the237

local neighbour associated with the state, while the waiting state means that238

the patch is performing some lower level computation.239

The behaviour of a proper patch will follow those rules:240

• At the beginning of its existence, a patch will be in the waiting state for241

a finite time.242

• After this time is over, the state will cycle over the merging states until243

the patch merges.244

The essential point is that each pair of adjacent patches simultaneously in245

a merging state that corresponds to the same local neighbourhood must merge246

with each other (see Fig 12). The actual merging process will be detailed later.247

4.2. Reformulating the main result248

We will now explain the link between patches and leader election. It is clear249

that a single patch cannot contain two representatives of the same equivalence250

class, because two cells of the same equivalence class cannot have different be-251

haviours during the computation. It follows that the maximum size of a patch252

(i.e. the maximum number of cells it contains) is the number N of equivalence253

classes. Moreover, if a patch of size N is eventually constructed by the algo-254

rithm, then the configuration is entirely tiled by translations of it. We can then255

9

0 0

0 1

1 0

0 0

0 1

1 0

0 0

0 1

1 0

0 0

1 0

0 1

0 0

1 0

0 1

0 0

1 0

0 1

(a) Initial state

0 0

0 1

1 0

0 0

0 1

1 0

0 0

0 1

1 0

0 0

1 0

0 1

0 0

1 0

0 1

0 0

1 0

0 1

(b) Intermediate state

0 0

0 1

1 0

0 0

0 1

1 0

0 0

0 1

1 0

0 0

1 0

0 1

0 0

1 0

0 1

0 0

1 0

0 1

(c) Final state

Figure 11: A possible evolution of a periodic configuration over time. Dark corners represent
patch leaders.

Figure 12: Two patches merging along a common local neighbourhood

elect a single equivalence class by simply selecting all the patch leading cells of256

the configuration (those cells obviously belong to the same equivalence class).257

In order to stick with the formalism used in theorem 1, we say that a cell is in258

the final subset F ∈ Q if it currently is a patch leading cell.259

The goal of the algorithm is therefore to perform merging between patches260

as long as there exist two adjacent patches that are different. Indeed, if there261

exists two different adjacent patches on the configuration, then they are not of262

maximum size.263

Keeping this in mind, proving the following lemma is sufficient to prove the264

main result:265

Lemma 1. If at a certain time there exists two adjacent patches whose patch266

words are different, then at least one of them must merge within polynomial267

delay.268

5. Detailed algorithm269

5.1. Cell division270

As we stated before, we will subdivide each cell of the configuration into271

four sub-cells that will hold actual computation. We will talk about the divided272

configuration when it is necessary to consider all four sub-cells separately, and273

united configuration when it is not. The set of states Q of the automaton is274

10

therefore the product Σ × Q4
s, where Σ is the input alphabet and Qs is the275

states set of sub-cells. As we want to retain the input information at all time,276

the projection of Q over Σ will never change.277

If we associate each sub-cell to a corner of the original cell, we obtain the278

informal division we used to define patches.279

5.2. Detailed implementation of the meta-algorithm280

In order to simulate the merging meta-states, each patch will construct and281

maintain a signal that will travel along its border. More precisely, this signal282

will cycle along each edge of the border, sometimes waiting longer than one283

time step on each edge. From an intuitive point of view, the signal will travel284

on the intersecting points between the closed curve we used to define a patch285

and the subdividing lines in the cells (see Fig 13). As there exist at most four286

of those points in a single cell, we can match each of them to a single sub-cell.287

Moreover, each of those points can also be associated to a single neighbouring288

cell, and therefore to a single local neighbourhood of the patch. Keeping this in289

mind, we now claim that a patch is in the merging state corresponding to the290

local neighbourhood associated to the point where its signal currently stands.291

We note that, as we use Moore neighbourhood on the united configuration,292

the signal can travel from an intersection point to the next one in one time step.293

Figure 13: Highlighting of the waiting points of a patch

This signal will encode the shape and content of its patch into waiting delays294

along the border. It will behave so that the signal of two different patches will295

eventually de-synchronize and meet each other, thus leading to a merging.296

5.3. First step297

At the first time step, the automaton will construct patches of size 1 all over298

the configuration. The result of this operation, which can be performed locally,299

can be seen on Fig 14. Note that patches retain their input information at any300

time.301

5.4. Ongoing behaviour302

In this section, we will consider the life cycle of a patch, from its birth to its303

death. We make the assumption that the border of this patch is synchronized,304

as done by a firing-squad-like algorithm (See [2] or [12]). This assumption is305

satisfied at the beginning of the computation, because this beginning in itself306

trivially is a synchronizing event. We will see later how a patch can synchronize307

itself when it is newly created. We do not make the assumption that the patch308

is a proper patch at the beginning of its existence.309

11

0 0

0 1

1 0

0 0

0 1

1 0

0 0

0 1

1 0

0 0

1 0

0 1

0 0

1 0

0 1

0 0

1 0

0 1

Figure 14: Patches of the initial configuration. Red lines are omitted for the sake of clarity.

5.4.1. Patch leader selection310

Let us consider a newly created patch, that is assumed to be synchronized.311

The first thing we want to do is to select the patch leading cell, as defined312

previously. Let us also consider the set of sub-cells defining the border of the313

patch. Those cells can be identified locally and form a ring-like structure. If we314

select the leftmost amongst the uppermost of those sub-cells, it can be trivially315

matched to the patch leading cell (see Fig 15).316

It happens that the election of a particular cell on a ring-like structure on317

cellular automata is a well studied problem, and that [11] provides an algorithm318

that exactly fits our needs. We assumed that the border of the patch is syn-319

chronized, so all we have to do is to run the algorithm presented in [11] on the320

sub-automaton (i.e. the automaton whose cells match our sub-cells), then select321

as a patch leading cell the one whose upper left sub-cell has been selected by322

the algorithm. We note that this algorithm runs in polynomial time.323

Figure 15: Highlighting the ring-like structure of the border

5.4.2. Healing the patch324

We now want to turn our raw patch into a proper patch. This will be done325

by deleting all occurrences of the local pattern forbidden into a proper patch326

(see Fig 7a). From a practical point of view, a signal will be sent from the327

leading cell and travel along the border. This signal will replace local patterns328

12

according to the local rule presented in Fig 16. It is immediate to see that329

the iterative application of this local rule will turn the patch into its associated330

proper patch (see Fig 7).331

(a) Before (b) After

Figure 16: Local transformation turning a raw patch into a proper patch. Blue area denotes
the inside of the patch.

5.4.3. Building and browsing the spanning tree332

Now that the patch is proper and the leading cell is identified, we can build333

the spanning tree starting from the leading cell with a very simple set of rules: If334

a cell has a neighbour in the patch in which the tree is constructed, an edge will335

be created between this cell and its neighbour at the next time step. If a cell has336

more than one neighbour fulfilling the conditions, it chooses one according to a337

predefined order among the direction (e.g. up > left > down > right). Fig 17338

shows the ongoing construction of a spanning tree over an example patch. For339

practical reasons, this tree is oriented toward the root.340

We now want to browse the tree and provide the leading cell with the next341

symbol of the tree on demand. This can be trivially done by simulating a finite342

state 2D-automaton performing a depth-first search on the tree and providing343

a symbol to the root each time it discovers a new cell. Note that this technique344

can guarantee a time interval between the reception of two symbols that is linear345

in the size of the tree.346

Figure 17: The construction of a spanning tree

13

5.4.4. Launching the signal347

As soon as the patch is healed, the leading cell will send the signal that will348

trigger fusion between patches. The behaviour of this signal will be detailed in349

this section.350

Definition 14. We define the length of the border of a patch as its number of351

waiting points, as defined previously.352

The length of the border of the patch we consider all along this section will353

be denoted as n. Let us now consider the one-dimensional circular cellular au-354

tomaton composed by the waiting points of a patch. We will call this particular355

automaton the border automaton of the patch. Clearly this border automaton356

can be simulated step-by-step by our real two-dimensional cellular automaton.357

Definition 15. We define the leading waiting point of the border automaton358

as the upper waiting point of the leading cell of its patch.359

We want the leading waiting point to have access to the patch word. This360

can be done by browsing the border of the patch and its spanning tree and361

sending the right symbol back to the leading cell. The cell will store only one362

symbol at a given time, starting from the first one (always a “→” symbol) and363

sending a signal when it needs to retrieve the next one. We saw earlier that the364

time to retrieve a symbol of the patch word is linearly bounded by the size of the365

spanning tree, which means it is quadratically bounded in n. Let us note that366

this time does not introduce a delay in the algorithm, since the time between367

which two successive symbols are requested is O(n3). In the next sections, we368

will denote the patch word as a = a0a1 . . . al, and i will denote the position of369

the symbol currently held by the leading waiting point.370

Once the patch is healed, the leading waiting point will send a merging371

signal along the border automaton. This signal will cycle around the border372

automaton at maximum speed, and will sometimes carry a pebble, which we373

will call the waiting pebble (See Fig 18). At the beginning, the waiting pebble is374

positioned on the leading waiting point, which stores the symbol a0. The signal375

then obeys the following rules, which are explained on Fig 18:376

• Cycle around the border automaton at speed 1 until the waiting pebble is377

encountered (see Fig 18a).378

• When the waiting pebble is encountered, move it to the next waiting point379

and wait for a certain waiting time τn on that point (see Fig 18b).380

• If the signal has just waited on the leading waiting point, the signal will381

perform some extra cycles around the border automaton. The exact num-382

ber of those cycles depends on ai. The automaton will then set i to i+ 1383

(or 0 if ai was the last symbol of the word) and resume normal behaviour384

(see Fig 18c).385

Fig 20 sums up the behaviour of the signal and the pebble on a sample border386

automaton with n = 4. At any point during the existence of this signal, if it387

encounters a merging signal from another patch (see Fig 19a), then both signals388

are destroyed and a merging occurs. This merging process will be detailed in389

the next section.390

14

Definition 16 (waiting times). We define the waiting time as τn = k.n2 where:391

k = ‖Σ ∪∆‖ = ‖Σ‖+ 4 is the number of different symbols in a patch word;392

n is the length of the border, as defined previously.393

Definition 17 (extra cycles). The number of times the signal must cycle over394

the border automaton is given by val(ai), where val is any bijection from Σ∪∆395

into J0; k − 1K.396

Those extra cycles will only happen when the pebble is dropped on the patch397

leading cell, thus inducing a time shift of n.val(ai) in the behaviour of the signal.398

Note that the time τn is constructible2 whatever the value of n is. For more399

general matter on time constructibility, please refer to [10].400

t0 t0 + 1

. . .

t0 + n− 1

(a) Cycling phase

t0 + n t0 + n+ 1

. . .

t0 + τn + n+ 1

(b) Pebble moving and waiting

n× val(ai)

(c) Extra cycles

Figure 18: Overview of the behaviour of the signal in an example patch. The circle represents
the waiting pebble, while the square represents the signal.

5.4.5. Local fusion and synchronisation401

When two merging signals encounter on the common border of two patches,402

they must merge together, according to the global rule of our meta-algorithm.403

This can be done locally, following the process depicted on Fig 19: It is sufficient404

to delete the border portions on which the signals currently are, and ”re-wire”405

the border so that they now form the border of a new, probably non proper406

patch. We can see that the resulting curve still respects the restrictions for407

defining a patch.408

Once this fusion is done, we need to delete both spanning trees, by sending409

signals that will travel among them and destroy them, and both leading cells of410

the two former patches.411

We must now synchronize the whole patch border to get back to the situation412

of 5.4.1. This can be done by considering the new border as a one-dimensional413

cyclic cellular automaton of the divided network. We can identify a particular414

cell of this CA, e.g. a cell in which the merging process occurred. This cell415

can be used as the general of a firing squad algorithm, whose execution will416

re-synchronize the whole border, in order to perform a new leading cell election417

on the merged patch. For general matter on firing squad algorithms, see [8];418

here we merely note that they perform in linear time.419

2There exists a computation on a 1-dimensional CA which marks a distinguished cell every
τi, i.e. we can “count” up to τn.

15

(a) Before (b) After

Figure 19: Local fusion when two signals face each other

Notes about Fig 20.

• We have n = 4 for this patch. We suppose that C3 is the leading
waiting point and val(ai) = 3 for the instant we consider.

• The sum of the unlabelled time spans is n, which corresponds to
the n moves of the pebble to the next cell, each one of length 1.

• The border automaton is in the same configuration at the two
circled times on the left C1 line, except that the symbol ai pointed
by the automaton has changed to the next one.

420

5.5. “Ending” the computation421

Now that we have described our ongoing behaviour, we must talk about the422

ending of the computation. When all patches are of maximum size, i.e. when423

their size is N , they cannot grow any larger, because of the very definition424

of equivalence classes. Indeed, if two such maximal matches would merge, it425

would mean that two cells of the same equivalence class would have two different426

”roles” (intuitively, the cell of the patch on the right would be distinguishable427

from the cell of the patch on the left), which is impossible.428

From a practical point of view, the patches will not merge because their429

patch words will be the same, and their signals will be completely synchronized.430

Finally, at the end of the computation the configuration will entirely be431

decomposed into translations of the same maximal patch, into which a signal432

will cycle indefinitely. Note that due to the periodical nature of our compu-433

tation model, we cannot have a particular cell to bear the information of the434

termination, like it is the case with CA whose input is bounded by persistent435

symbols.436

5.6. Justification437

In this section, we will prove that our construction satisfies the main result438

of 4.2, i.e. that if at a certain time there exists two adjacent patches whose439

patch words are different, then at least one of them must merge in polynomial440

time.441

We will suppose that there exists P1 and P2 two patches with different patch442

words, and we will prove that if neither of them have merged with a third patch443

(in which case our main property would have been verified), then they must444

merge together in polynomial time. We will denote n1 and n2 as the border445

16

t

C1C4C3C2C1

Cyclic space

n

τn

n

τn

n.val(ai)

n

τn

n

τn

n

Figure 20: Evolution of the position of the signal (thin) and the pebble (thick) through time.

17

sizes and i and j as the symbol position on the patch words of P1 and P2446

respectively. We study two disjoint cases: whether n1 6= n2 or n1 = n2.447

5.6.1. Different border sizes448

We first suppose n1 6= n2. We can assume without loss of generality that449

n1 < n2, namely n2 ≥ n1 + 1. Let us now consider an instant when the waiting450

pebble of P2 is dropped on a waiting point of the common border with P1. The451

merging signal of P2 will then wait for a certain time τn2 on that waiting point.452

We therefore have:453

τn2
= k.n2

2
454

τn2
≥ k.(n1 + 1)2

455

τn2
> k.n1

2 + 2k.n1456

Let us now consider the maximum time during which the merging signal457

from P1 can be absent from the corresponding waiting point on P1. Clearly this458

time τabs is the sum of the waiting time on P1, τn1
and the time for the signal459

to make a complete revolution around P1, which is n1 − 1. We therefore have:460

τabs = τn1
+ n1 − 1461

τabs = k.n2
1 + n1 − 1462

We clearly have τn2
> τabs, which means that the signal from P1 will en-463

counter the signal from P2 before this signal leaves its waiting point. Therefore,464

a merging will occur between P1 and P2, Q.E.D.465

5.6.2. Same border size466

Now we consider the case when n1 = n2 = n. Let us call S1, S2, a and b the467

signals travelling through and the patch words of P1 and P2 respectively. Since468

P1 and P2 are different, a and b are also different. We now observe a single469

waiting point on a common border of P1 and P2.470

Let us consider the behaviour of S1 on this waiting point : it frequently471

passes through it, and sometimes waits for a time τn. Let us call (tk)k≥0 the472

sequence of instants when S1 stops on the waiting point and waits during τn. By473

construction of the algorithm, there is exactly one instant between every tk and474

tk+1 when S1 will wait on the leading waiting point of P1, then cycle around475

the automaton val(ai) times, for a certain ai. The same reasoning holds for476

S2, which will wait on the leading waiting point of S2 and cycle an additional477

val(bj) times at a single point between tk and tk+1. We can therefore associate478

a couple of symbols (aik , bjk) to each tk.479

We know that a 6= b, and by construction a cannot be a shift of b. Therefore480

there exists a k0 for which we have aik0
6= bjk0

. Let us introduce a few particular481

times, shown on Fig 21:482

Definition 18.483

• Let T0 be the last time S2 was present on the common waiting point before484

the time tk0 associated to k0.485

• Let δ be tk0 − T0486

18

We note that there are two types of ”holes” during which a signal is absent487

from a particular waiting point: holes of size n and holes of size τn+n. We know488

that S1 is present on the common waiting point for a duration of τn, starting489

at time T0 + δ. If we suppose that it does not encounter S2 during that time3,490

it means that this presence corresponds to a hole of size τn + n on S2, as we491

clearly have τn > n. We therefore know that S2 will be present on the waiting492

point at time T0 + τn + n.493

We note that the pebble performs a complete revolution around the automa-494

ton in time n.(τn + n+ 1) + n.val(ai) on P1, and n.(τn + n+ 1) + n.val(bj) on495

P2. Now let us introduce a few more times, for the comprehension of which we496

encourage the reader to refer to Fig 21:497

Definition 19.498

• T1 = T0 + δ + n.(τn + n) + n.val(ai) + n is the next time S1 will wait499

during τn on the waiting point. Note that by our previous formalism, we500

also have T1 = tk0+1.501

• T2 = T0 +n.(τn+n) +n.val(bj) +n is a time at which we are assured that502

S2 will be back on the waiting point, due to the quasi-periodic behaviour503

of the signal (see Fig 20). We also know that S2 will be there on time504

T2 + τn + n.505

• δ′ = T1 − T2 is the difference between those two times.506

We will now prove that if S1 and S2 have not encountered before, then they507

will do so at time T2 or T2 + τn + n.508

509

We clearly have 0 < δ < τn + n by definition. Moreover, we must have510

δ < n; otherwise it means that S1 would come back while S2 is still here. We511

finally have 0 < δ < n. It is also clear that δ′ = δ + n.(val(ai) − val(bj)). Let512

∆ = val(ai) − val(bj), by construction we have ∆ ∈ J−k + 1,−1K ∪ J1, k − 1K,513

because ai 6= bj . We will now discuss two sub-cases: whether ∆ < 0 or ∆ > 0.514

Case 1: ∆ < 0.515

Now we have ∆ ∈ J−k + 1,−1K and 0 < δ < n. Therefore:516

δ + n.(1− k) ≤ δ′ ≤ δ − n517

n.(1− k) < δ′ < 0518

These values for δ′ ensure that both signals encounter at time T2.519

Case 2: ∆ > 0.520

Now he have ∆ ∈ J1, k − 1K and 0 < δ < n. Therefore:521

δ + n ≤ δ′ ≤ δ + n.(k − 1)522

n < δ′ < k.n523

These values for δ′ ensure that both signals encounter at time T2 + τn + n524

(which happens on Fig 21).525

3If it does encounter S2, then P1 and P2 will merge and the proof is over.

19

S2

val(bj) = 2

n1 = 4

S1

val(ai) = 3

n2 = 4

∆ = 1

t

S1 S2

τn + n

τn + n

n.val(ai)

τn + n

τn + n

n

τn

τn + n

n

τn + n

n.val(bj)

τn + n

τn + n

τn + n

T0

T2

tk0+1 = T1

T2 + τn + n

tk0 δ

δ′

Figure 21: The signal presence diagram on a common waiting point of P1 and P2. The full
line denotes the presence of the signal, while the dotted line denotes its absence. We note
that the presence diagram of S1 represents exactly the presence of the signal on the cell C2

of Fig 20. Similarly, the diagram of S2 could be the one of a neighbouring cell, for which the
value of the symbol currently pointed would be val(bj) = 2.

20

5.7. Temporal analysis526

Now let us do a rough time analysis of the algorithm. We remember that527

N is the number of equivalence classes of the initial configuration, which is an528

upper bound to the size of any patch during the computation. As the length of529

the border of a patch is at worst linear in its size, we therefore have n ∈ O(N)530

for any patch.531

The key point of the previous section was to prove that if two different532

patches are adjacent, then at least one of them must merge before a certain533

time. We know that this merging must occur before the patches have cycled534

over their respective borer words. We remember that the border automaton535

changes the symbol pointed on its patch word every time the pebble does a536

complete rotation on the border, which is every O(N3). As the patch word is of537

size O(N), we are assured that two adjacent and different patches must merge538

before time O(N4). We note that the cost of the operations needed to merge539

patches properly is way less than O(N4).540

Finally, as there exist N distinguishable patches at the beginning of the541

computation, and at least two of them must merge every O(N4), we are assured542

that the leading equivalence class is elected in time O(N5), which proves that543

our algorithm is polynomial in N .544

Note that this analysis is extremely rough, as it does not take into account545

the parallel nature of the algorithm, and only consider two patches at a given546

time. We are sure that a more refined analysis would at least allow us to gain547

a N or N2 factor, but it seems unnecessary regarding the primary goals of this548

paper.549

5.8. Final remarks about the algorithm550

An attentive reader would have noticed that we do not, in fact, end our551

computation, just have it cycle over a finite set of configurations. Informally552

speaking, it is a weak way to end a computation. We would rather want it to553

reach a fixed point, instead of a fixed cycle. We are convinced that a few tweaks554

to the algorithm can make it reach such a fixed point. The intuition is that if555

a patch has waited for a sufficient time without merging with another, it can556

determine that all of its neighbours are the same as itself, and can freeze its557

computations. It may start again later if one of its neighbours merges. If all the558

patches have determined that their neighbours are the same as themselves and559

have frozen their computations, then the fixed point is reached. At the opposite,560

if it where applied to a non-periodical configuration, our algorithm would never561

reach such a fixed point.562

6. Conclusion and open problems563

6.1. About tiling564

It is important to note that our algorithm does not only compute a leading565

equivalence class, but also a polyomino that tiles the entire configuration by566

translation (this polyomino is the final patch). We know, thanks to [3], that the567

shape of this polyomino should be a pseudo-hexagon. In fact we can tweak our568

tiling patches to be rectangles (See Fig 22). This is done by starting with only569

the patch leading cells (Fig 22b), extending each rectangle to the right until570

another leading cell is encountered (Fig 22c), then extending it down until its571

21

bottom line reaches another leading cell (Fig 22d). It is easy to verify that each572

rectangle exactly contains one representative of each equivalence class. This is573

a first step to a definition of a minimal pattern of periodical configurations of574

dimension 2.575

0 0

0 1

1 0

0 0

0 1

1 0

0 0

0 1

1 0

0 0

1 0

0 1

0 0

1 0

0 1

0 0

1 0

0 1

(a) Final patches

0 0

0 1

1 0

0 0

0 1

1 0

0 0

0 1

1 0

0 0

1 0

0 1

0 0

1 0

0 1

0 0

1 0

0 1

(b) Leading cells

0 0

0 1

1 0

0 0

0 1

1 0

0 0

0 1

1 0

0 0

1 0

0 1

0 0

1 0

0 1

0 0

1 0

0 1

(c) Extending right...

0 0

0 1

1 0

0 0

0 1

1 0

0 0

0 1

1 0

0 0

1 0

0 1

0 0

1 0

0 1

0 0

1 0

0 1

(d) ...then down.

Figure 22: From the final patches to a rectangular tiling of the configuration.

6.2. Toward picture language recognition576

We have established that our algorithm, completed with the modifications of577

6.1, can compute rectangular patches, whose size is the number of equivalence578

classes of the configuration. We can wonder if an extension of it could actually579

solve decision problems over these rectangular pictures, i.e. perform recognition580

of bi-dimensional languages (see [4]). We have studied the problem, and have581

concluded that it would indeed be possible, as it was the case in one-dimensional582

periodic configurations (see [1]). The results are not presented in this paper583

because the mere definition of what kind of languages are actually recognizable584

on a toric-CA should be discussed on its own, due to its intrinsic technicality.585

6.3. Other uses of the algorithm586

Our algorithm can serve other purposes than computing minimal patterns.587

Indeed, the patches can simulate cellular automata with bounded input, with588

the border of patches acting as persistent symbols. Keeping this in mind, we589

can for instance solve a 2D version of the density classification problem [7],590

i.e. determine if an infinite periodical configuration over the alphabet {0, 1}591

contains more 0’s than 1’s, with more than two states: we simply have to count592

the number of 0’s and 1’s on a separate information layer inside the patches, then593

display the result, e.g. on the patch leading cells. A similar modification could594

also lead the algorithm to count the number of equivalence classes, instead of just595

electing one (as the number of equivalence classes of the original configuration596

is exactly the number of cells in the final patch).597

6.4. Leader election in higher dimensions598

We are convinced that the techniques presented in this paper could adapt599

to higher dimensions, and compute a leading equivalence class on periodical600

configurations of dimension 3, but such an extension is not trivial. For instance,601

the problem of a signal running through the border of a “3-dimensional patch”602

adds a new difficulty, such as the definition of a proper patch in dimension603

3. However, even if some geometrical issues arise, the mechanism we used to604

encode patch differences into delay differences is robust. As it weakly depends605

22

on the dimension of the object it considers, it will perfectly adapt to periodical606

configurations of arbitrary dimensions.607

23

[1] Nicolas Bacquey. Complexity classes on spatially periodic cellular au-608

tomata. In Ernst W. Mayr and Natacha Portier, editors, 31st International609

Symposium on Theoretical Aspects of Computer Science (STACS 2014),610

STACS 2014, March 5-8, 2014, Lyon, France, volume 25 of LIPIcs, pages611

112–124. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2014.612

[2] Robert Balzer. An 8-state minimal time solution to the firing squad syn-613

chronization problem. Information and Control, 10(1):22–42, 1967.614

[3] Danièle Beauquier and Maurice Nivat. On translating one polyomino to615

tile the plane. Discrete & Computational Geometry, 6(1):575–592, 1991.616

[4] Dora Giammarresi and Antonio Restivo. Recognizable picture languages.617

International Journal of Pattern Recognition and Artificial Intelligence,618

6(02n03):241–256, 1992.619

[5] Jarkko Kari. Theory of cellular automata: A survey. Theoretical Computer620

Science, 334(1-3):3–33, 2005.621

[6] Jarkko Kari. Basic concepts of cellular automata. In Grzegorz Rozenberg,622

Thomas Bäck, and Joost N. Kok, editors, Handbook of Natural Computing,623

pages 3–24. Springer, 2012.624

[7] Mark WS Land and Richard K Belew. No two-state CA for density classi-625

fication exists. Physical Review Letters, 74(25):5148–5150, 1995.626

[8] Jacques Mazoyer. A six-state minimal time solution to the firing squad627

synchronization problem. Theoretical Computer Science, 50(2):183–238,628

1987.629

[9] Jacques Mazoyer. Computations on one-dimensional cellular automata.630

Annals of Mathematics and Artificial Intelligence, 16(1):285–309, 1996.631

[10] Jacques Mazoyer and Véronique Terrier. Signals in one-dimensional cellular632

automata. Theoretical Computer Science, 217(1):53–80, 1999.633

[11] Codrin Nichitiu, Jacques Mazoyer, and Eric Rémila. Algorithms for leader634

election by cellular automata. Journal of Algorithms, 41(2):302–329, 2001.635

[12] Hiroshi Umeo. Firing squad synchronization problem in cellular automata.636

In Robert A. Meyers, editor, Encyclopedia of Complexity and Systems Sci-637

ence, pages 3537–3574. Springer New York, 2009.638

[13] Hao Wang. Proving theorems by pattern recognition I. Communications639

of the ACM, 3(4):220–234, 1960.640

24

