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This paper presents a novel and useful 3D nonlinear magnetostatic integral formulation for volume integral method. Like every 
other integral formulation, its main advantage is that it does not require air region mesh, only ferromagnetic regions being discretized. 
The formulation is based on magnetic flux density interpolation on facet elements. Special care is taken in order to accurately compute 
the singularity of Green's kernel. The application of an equivalent circuit approach allows preserving the solenoidality of magnetic 
induction. It is shown that the formulation is very accurate even if it is associated with coarse meshes. Thus, computation time can be 
very competitive. Computed results for the TEAM Workshop problem 13 and for a multiply-connected regions case-test are reported. 
 

Index Terms— facet elements, nonlinear magnetostatics, volume integral method. 
 

I. INTRODUCTION 

olume Integral Method (VIM) is known to be a powerful 
approach to model magnetostatic problems like actuator 

devices. Several academic codes like GFUN [1], 
GFUNET/CORAL [2], RADIA [3] or CALMAG3D [4] 
developed since the 1970s have already shown the reliability 
of the approach. The main advantage of VIM is that neither 
free space mesh nor boundary conditions are required. Using 
VIM, only active regions have to be discretized into 
elementary elements. This allows in general resolving 
accurately magnetostatic problems with very coarse meshes. 
VIM has a renewed interest in the last decade by the 
development of matrix compression algorithms such as the 
FMM (Fast Multipole Method) [5], the HCA (Hybrid Cross 
Approximation) [6], which improve efficiently both storage 
memory and resolution time of fully populated matrix 
systems. Moreover, a Nyström discretization technique [7] [8] 
allows incorporating both higher-order meshes and higher-
order basis functions in order to more accurately solve the 
magnetostatic integral equation. As a result, VIM is an 
interesting alternative to classical finite element method 
(FEM) methods in some situations today. 
 The main idea of the magnetostatic VIM approach is that 
the magnetic field is created by the inductor sources and all 
ferromagnetic elements defined in the problem. With a point 
matching technique or a Galerkin’s projection, which ensures 
the validity of the materials constitutive laws, a matrix system 
is obtained. It remains to solve this matrix system to get 
quantity values on the mesh of the ferromagnetic part and then 
to compute the magnetic field everywhere. Force or flux can 
also be easily computed. 

Different kinds of magnetostatic volume integral 
formulations based on different quantities interpolations have 
already been presented in the literature. The oldest and also 
most popular one is based on uniform magnetization on each 
element. This formulation is usually known as Magnetic 
Moment Method (MMM) [9] [10] [11] and is certainly the 

simplest to implement. The MMM is capable of yielding 
accurate results for simple geometric devices [10] but can 
suffer from the “looping pattern” as mentioned in [12]. If the 
susceptibility of the material is high, the associated matrix 
system becomes singular and the solution contains some 
spurious modes, decreasing its accuracy. This is why better 
formations associated with more reliable field interpolation 
basis are preferred. Many authors have proposed volume 
integral formulations used nodal and edge elements 
interpolations. The formulation based on nodal elements and 
magnetic scalar potential φ [13] [14] [15] significantly 
improves the accuracy of VIM in comparing with MMM. The 
φ-nodal formulation allows for minimizing the number of 
unknowns. However, it requires a particular cutting technique 
to resolve multiple-connected regions problems. Moreover, an 
additional pre-resolution is needed in order to compute the 
scalar potential φ0 in the presence of coils. The H-edge 
formulation that is based on the interpolation of magnetic 
fields with edge elements also yields accurate results [2] [16]. 
It does not require a source pre-resolution and avoids the 
cutting technique for multiple-connected regions problems by 
using an edge-tree technique. 

Regarding to the nonlinear resolution, all three formulations 
MMM, φ-nodal, and H-edge have poor convergence rates due 
to the use B(H) or M(H) curve. If the Newton-Raphson (NR) 
method is used, relaxation has to be very often required in 
order to achieve convergence. Yet, the determining of optimal 
constant relaxation factor involves additional studies, such as 
by using an energy minimum principle [17]. Different from 
mentioned formulations above, we propose in this paper a 
novel magnetostatic VIM formulation based on facet elements 
of first order associated with magnetic flux density, called B-
facet formulation. The degrees of freedom are associated with 
the normal component of magnetic flux density on facets of 
the mesh. The divergence-free magnetic-field condition is 
achieved by using an equivalent circuit approach. We will 
demonstrate that the formulation leads to the use of a H(B) 
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curve during the nonlinear resolution, and as a result, good NR 
convergence rates can be easy obtained without any 
relaxation. 

Some papers have also proposed the use of facet elements 
interpolation for magnetostatics [18] [19]. However, in [18] 
Vishnevsky et al. (2002) suggested the interpolation of 
magnetization on facet elements. This approach can be 
suitable for linear cases but should not be applied generically 
for nonlinear problems, because the normal component of the 
magnetization across facets could not be considered 
continuous, unlike one of the magnetic flux. In [19], although 
Balasubramanian et al. (2002) used the B-facet interpolation, 
the solenoidality of magnetic induction is not strictly satisfied. 
And this should lead to an inaccuracy of the solution in some 
situations. In our formulation, the B-facet interpolation is used 
as well but the solenoidality of magnetic induction is strongly 
imposed thanks to the use of an equivalent circuit approach. 
Moreover, the singularity the Green's function is computed 
accurately by using an analytical formula. A Nyström 
discretization technique [7] [8] could be envisaged in order to 
incorporate both higher-order meshes and higher-order basis 
functions. 

This paper is organized in the following sections. Section II 
is dedicated to magnetostatic integral equation, Section III 
presents properties of facet element shape-function. Section 
IV describes the new volume integral formulation. Numerical 
examples are shown in the Section V and Section VI is the 
conclusion. 

II. BASIS EQUATIONS 

The governing equations for magnetostatic problem are  

0=Bdiv ,              (1) 

JHrot = ,             (2) 

where B, H, J are the magnetic flux density, the magnetic 
field intensity, the current density respectively. Without any 
permanent magnetization, the constitutive equation is: 

( )BBH ν= ,         (3) 

( )BBBM νν −= 0 ,        (4) 

where ν0 and ν(B) denotes the reluctivity of vacuum and 
material respectively, M is the magnetization. 

The magnetic field H can be decomposed into the sum of 
two terms: H0, the source field created by source currents and 
Hr, the reduced field created by ferromagnetic materials. 
Based on the Maxwell-Ampere's equation (2), it can be shown 
that H r derives from a reduced magnetic scalar potential φr. 
Hence, we have 

rϕgradHH −= 0 .       (5) 

The scalar potential φr is determined by 

                  ∫
Ω

Ω






⋅= d
1

4

1

rr gradM
π

ϕ ,              (6) 

where r is the distance between the observation and 
integration points and Ω is magnetic region. From (3) and (5) 
we get 

( ) 0HgradBB =+ rϕν .      (7) 

III.  FACET SHAPE FUNCTION PROPERTIES 

Shape functions of facet elements can be generated from 
nodal shape functions. Let facet i belong to a tetrahedral 
element E. If facet i is defined by a set of three nodes {a,b,c}. 
The first-order shape-function can be written as 

( )bacacbcbai λλλλλλλλλ ∇×∇+∇×∇+∇×∇= 2w ,  (8) 

where λ is the classical node shape function. 
The flux of wi across facet i is equal to one and vanishes 

across other faces. If facet i has an inner orientation, we have  

 
iS

1=⋅ ii nw ,          (9.a) 

EV

1=idivw ,        (9.b) 

where ni is the ingoing normal vector, Si the surface of i and 
VE the volume of E. These properties remain identical, but 
with opposite sign if the facet i has an outer orientation. 
Equations (9.a), (9.b) are still valid for hexahedral elements 
and therefore the all formula developed hereafter in this paper 
are also valid for hexahedral elements mesh. Details about 
facet elements properties can be found in [20]. 

IV.  FORMULATIONS 

A. Facet Elements Discretization 

The ferromagnetic body Ω is subdivided into N elementary 
volume elements. Let Γ be the boundary of Ω; Nf be the 
number of facet elements on Ω; Nb the number of facet 
elements on the boundary Γ.  

Vector B can be approximated by facet elements 
interpolation of first order as 

∑
=

Φ=
fN

j

jj

1

wB ,        (10) 

where Φj denotes the magnetic flux across the facet j. 
Projecting (7) on Ω by the Galerkin method with facet 

shape-function wi, we get 

( ) Ω⋅=Ω⋅+ ∫∫∫
ΩΩΩ

dd 0HwgradwBB iri ϕν .      (11) 
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Then according to (10), we have: 

( ) Ω⋅=Ω⋅+Φ















Ω⋅ ∫∫∑ ∫

ΩΩ= Ω

ddd 0

1

HwgradwwBw irij

N

j

ji

f

ϕν     (12) 

In matrix-vector form, (12) is rewritten as 

Fri    d  =Ω⋅+Φ ∫
Ω

ϕgradwR ,       (13) 

where R denotes a finite-element matrix, Φ is the vector of 
flux through facets, and F is a vector corresponding to the 
source-field term. Expressions of R and F are  

( )

 d

d

0

,

Ω⋅=

Ω⋅=

∫

∫

Ω

Ω

Hw

wBwR

ii

jiji

F

ν

.       (14) 

Applying the divergence theorem, we can write the integral 
term in (13) as 

Ω−Γ⋅=Ω⋅= ∫∫∫
ΩΓΩ

ddd iriirri div wnwgradwI ϕϕϕ .    (15) 

 

 

(a) (b) 

Fig.1. Facet identification.  a) Inner facet.     b) Border facet. 

- For inner facet i (Fig. 1.a), the surface integral term in 
(13) vanishes. So thanks to (9.b) we have 

i
rr

 INE1E2E1

E1 E1
E2

E2 E2

d
V

d
V

ϕϕϕϕϕ
∆=−=Ω−Ω= ∫∫

ΩΩ

I .  (15.a) 

- For outer facet i, i.e. located on the Γ (Fig. 1.b), thanks to 
(9.a) we have 

iE1iE1
E1

i
i

d
V

d
S

E1

Γ

ΩΓ

∆=−=Ω−Γ= ∫∫ ϕϕϕ
ϕϕ rr

i

I .   (15.b) 

where φE, φi are the average reduced scalar potentials of 
element E and facet i, respectively; ∆���	� denotes the 
difference of average potentials between two adjacent 
elements; ∆��� denotes one between the element and its 
border facet. 

In short, (13) is represented as 

F    IN =








∆
∆

+Φ
Γϕ

ϕ
R ,         (16) 

In the next subsection an equivalent circuit approach is 
briefly introduced in order to develop explicitly two terms 
∆���	 and ∆�� in order to complete the equation system. 

B. Equivalent Circuit Approach 

The equivalent circuit approach has been widely used for a 
long time to find numerical solutions of electromagnetic field 
problems. The key point of the approach is to establish a 
network model thanks to the analogy between magnetic circuit 
and electric circuit. In [21] [22] and [23], network models are 
established by means of the FEM. In [24] and [25], authors 
introduce the use of networks model into the VIM. 

In our approach, the equivalent-circuit-model has nodes 
which are associated with volume-element centers and an 
outer domain node ∞, called the infinity node. The circuit 
branches are either the branches through inner facet which 
connect centers of both adjacent elements, or the branches 
through boundary facet and link the center of boundary 
volume elements with infinity node. The Fig. 2 illustrates an 
example of equivalent circuit model for a 2D mesh of 6 
triangle elements. 

 
  

Fig.2. Equivalent circuit model for 2D mesh. 

Based on this approach, equation (16) can be interpreted as 
follows: the matrix R is equivalent to reluctance network, 
∆���, ∆���	 correspond to magnetic flux leakages and F is the 
magneto-motive force. The aim of the next subsection is to 
establish the linear system to be solved. 

C. Integral Volume Formulation 

A common convention is to set the magnetic scalar potential 
at infinity (φ∞) to zero. Thus, the difference of scalar potential 
between the infinity node and a border facet i is 

i

i

dΓ−=−=∆ ∫
Γ

Γ∞∞Γ
i

r
ii S

ϕϕϕϕ           (17) 

According to (4) and (6), φr is expressed as 
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( )( )∑ ∫
Ω∈Ω Ω

Ω






⋅−=
e e

er r
d

1

4

1
E0 gradBBνν

π
ϕ ,  (18) 

Hence, (17) is developed as 

i
1

dd
11

4

1 Γ













Φ













Γ−=∆ ∫ ∑ ∫

Γ = Γ
∞Γ

i

fN

j
jj

jj

j

i
i rSS

δν
π

ϕ .    (19) 

where δνj denotes difference of reluctivity either between two 
adjacent elements or between border element and air. In the 
matrix-vector form we write (19) as  

0=Φ+∆ ∞Γ Lϕ  ,      (20) 

where L is the integral matrix corresponding to border facets 
and representing the magnetic flux leakage. 

ijji
ji

j
ij

i j

rSS 0jdd
111

4
LL δν

π
δν

=ΓΓ= ∫ ∫
Γ Γ

,     (21) 

with i = 1,2,..Nb, j = 1,2,..Nf. The singularity of Green's 
function with self-interaction in (21) can be avoided by using 
a shifting of Gauss's points or the well-known analytical 
integration. This analytical correction can be found in [26]. It 
must be pointed out that this numerical technique is the key 
point of the method in order to compute the integral of the 
Green’s kernel associated with this formulation. 

From (16) and (20), we have 

( ) 








∆+∆
∆

=∆=∆+Φ+
∞ΓΓ ϕϕ

ϕ
ϕϕ

in

IN   with    FLR , (22) 

where R is a sparse finite-element-matrix and L  is a dense 
integral matrix. The structures of R and L are illustrated in 
Fig. 3. In general, we have Nb << Nf. 

The mesh current method is then used to solve the 
equivalent circuit. Let P be an incidence matrix which links 
the incidence of the independent loops to the branches. 
Because of the fact that the vector ∆� in (22) represents the 
difference of scalar potential between nodes of circuit 
including the infinity node, the Kirchhoff's voltage law 
imposes that 

0=∆ϕP .             (23) 

Combining (22) and (23), we get 

( )[ ] FPLRP =Φ+ ,            (24) 

By means of the mesh current method, (24) is written as 

( ) FPPLRP =Φ+ M
T ,         (25) 

where PT is transpose of matrix P and ΦM the vector of mesh 
fluxes, ΦM is determined by ΦM = P Φ. 

An independent-loop-search algorithm proposed in [27] can 
be used for the determining of the incidence matrix P. 

 
Fig. 3. Structures of R and L  matrices 

D. Matrix Assembly  

For the linear case, the size of integral matrix is reduced 
because the permeability is constant by region. Integral 
interactions are then limited between elements of Γ and all the 
borders/ intersections of regions.  

From (21), it can be remarked that each element of integral 
matrix L  is composed by two terms, one is dependent to 
material ∆
� and the other L 0ij is independent. Consequently, 
if the NR method is used for solving the nonlinear problem, 
only the sparse matrix R and the vector ∆
 have to be 
recomputed iteratively. The matrix L 0 is computed one single 
time before the resolution. This saves both the memory needed 
and the computation time and is another key point of our 
approach. 

V. NUMERICAL EXAMPLES 

The proposed formulation was applied in order to solve a 
multiply of connected problems with nonlinear material in the 
first part. In the second part, it was applied to solve the TEAM 
Workshop Problem 13.  

A. Closed Magnetic Circuit Modeling 

 
a) b) 

Fig. 4. Geometry of magnetic circuit and coil. 
a) Front view. b) Horizontal view 

A closed magnetic circuit is excited by a DC current coil of 
100 A.T. The geometry is shown on the Fig. 4 in millimeter 
scale. The nonlinear ferromagnetic material is specified by an 
arctangent law as the following equation 
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( ) ( )









 −
+=

s

0s
0 2J

1J2 H
HHB

µµπ
π

µ rarctg ,         (26) 

where Js the saturation magnetization is 1.0 T, and µr the initial 
relative permeability is 500.  

 
Fig. 5. Magnetic flux density distribution 

 The problem was solved by the proposed formulation. A 
coarse mesh – 96 elements and a denser one – 890 element 
were considered. And then, the module |B| were computed on 
the 25 points on the segment PQ in air, with P (-25, 0, -5) and 
Q (25, 0, -5). These results were compared with the reference 
values that had performed by the FEM by means of 
commercial FEM software Flux3D® with 200,000 tetrahedral 
elements in second order including 120,000 elements in 
ferromagnetic region. The coarse mesh of 96 elements gives 
comparable results and the results obtained with mesh are 
nearly coincided with the reference values. 

 

Fig. 6. Magnetic field module on the segment PQ 

B. TEAM Workshop Problem 13 

Benchmark problem 13 defined in the TEAM Workshop is 
a nonlinear magnetostatic problem [28]. An excited coil is set 
between two steel channels and a steel plate is inserted 
between the channels. The applied magnetomotive force is 
1000 A.T. 

 

Fig. 7. Mesh of problem 13 with 1235 volume elements 

The iterative solver FGMRES (Flexible Generalized 
Minimal Residual method) [29] is used for the solving linear 
system and the classic NR method is used to deal with 
nonlinear system. Three regular tetrahedral meshes (1235, 
4,855 and 20,737 elements) were reported. In figure 7, the 
mesh of 1,235 elements is presented. 

 

 
Fig. 8. Distribution of magnetic flux density vector 

 
The distribution of magnetic flux density on the steel plates 

with this mesh is shown in Fig. 8. The average flux densities 
in the steel plate and in the air at various positions are plotted 
in Fig.9 and Fig. 10, respectively. Both figures indicate that 
the computed results are very close to the measured one. The 
results of spatial distributions of flux in steel plate are very 
close measured values, but ones in air are slightly different in 
some points. As shown on the Fig. 9 and Fig. 10, a coarse 
mesh composed of 1,235 elements can lead to accurate results. 
For this mesh, we needed 6.7 seconds for the NR resolution by 
using a computer of CPU 3.04 GHz and 1.1 GB of RAM. The 
convergence of the solution was obtained in five steps without 
any relaxation. The absolute stopping criterion of NR was set 
1E-6. For the mesh of 4,855 elements, the number of iterations 
was always five and the time of resolution 30,48 seconds. 

The curves with 4,855 elements and 20,737 elements are 
superposed and very close to the measured values. Therefore, 
it can be concluded that the convergence was reached for a 
mesh of 4,855 elements. Compared to meshes used in [28], 
this mesh is still very coarse. The result of TEAM problem 13 
validates the efficiency and accuracy of the method to analyze 
nonlinear models. 
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Fig. 9. Spatial distributions of average flux density in steel plate 

 

 
 

Fig. 10. Spatial distributions of flux density in air 
 
For large problems, a fast algorithm such as the FMM, ACA 
(Adaptive Cross Approximation) [30] or HCA can be applied 
in order to save the memory and computation time. 
Information about the implementation of FMM and ACA for 
the magnetostatic VIM can be found in [19] [31] and [11] 
[32], respectively. 

VI.  CONCLUSION 

A volume integral formulation based on facet element 
interpolation and magnetic flux has been developed for 
nonlinear magnetostatic problems. The key features of the 
formulation were that the imposition of solenoidality of 
magnetic induction by using an equivalent circuit approach 
and the accuracy of Green's function computation. The 
multiply-connected-regions problem was solved without any 
cutting surface. The classic NR method was used to solve 
nonlinear magnetostatic problems. The numerical results of a 
multiply-connected regions case-test and of the TEAM 
Workshop Problem 13 demonstrated the strength, the accuracy 
and the efficiency of this new approach. These encouraging 
results inspire the use of VIM in order to deal with complex 

electromagnetic devices. For the further works, a development 
of the formulation for the resolution of magnetic thin shell as 
well as a coupling with eddy current formulation using facet 
elements for the solving of electromagnetic problems should 
be envisaged. 
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