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A \Volume Integral Formulation Based on Facet
Elements for Nonlinear Magnetostatic Problems

Vinh Le-Van, Gérard Meunier, Olivier Chadebec aedr3Michel Guichon

Univ. Grenoble Alpes, G2Elab, F-38000 GrenoblenEea
CNRS, G2Elab, F-38000 Grenoble, France

This paper presents a novel and useful 3D nonlineanagnetostatic integral formulation for volume integral method. Like every
other integral formulation, its main advantage is hat it does not require air region mesh, only ferronagnetic regions being discretized.
The formulation is based on magnetic flux densitynterpolation on facet elements. Special care is tek in order to accurately compute
the singularity of Green's kernel. The applicationof an equivalent circuit approach allows preservingthe solenoidality of magnetic
induction. It is shown that the formulation is very accurate even if it is associated with coarse mesh Thus, computation time can be
very competitive. Computed results for the TEAM Wolkshop problem 13 and for a multiply-connected regins case-test are reported.

Index Terms— facet elements, nonlinear magnetostatics, volunigtegral method.

I. INTRODUCTION

simplest to implement. The MMM is capable of yielgli
accurate results for simple geometric devices [0} can

V0|Ume Integral Method (VIM) is known to be a powerf suffer from the “looping pattern” as mentioned i2]. If the
approach to model magnetostatic problems like &mtua susceptibility of the material is high, the assteiamatrix

devices. Several academic codes like GFUN

GFUNET/CORAL [2], RADIA [3] or CALMAG3D [4]
developed since the 1970s have already shown tiadiligy
of the approach. The main advantage of VIM is tieither
free space mesh nor boundary conditions are retjuiysing

[1kystem becomes singular and the solution contaomses

spurious modes, decreasing its accuracy. This ig béditer
formations associated with more reliable field iptéation
basis are preferred. Many authors have proposedmel
integral formulations used nodal

VIM, only active regions have to be discretized oint interpolations. The formulation based on nodal elets and

elementary elements. This allows in general
accurately magnetostatic problems with very coansshes.

reaglvi magnetic scalar potentiab [13] [14] [15] significantly

improves the accuracy of VIM in comparing with MMNlhe

VIM has a renewed interest in the last decade by tlp-nodal formulation allows for minimizing the numbef

development of matrix compression algorithms sushtree
FMM (Fast Multipole Method) [5], the HCA (Hybrid Gss
Approximation) [6], which improve efficiently botktorage

memory and resolution time of fully populated matri

systems. Moreover, a Nystrom discretization teahaify] [8]
allows incorporating both higher-order meshes aighédr-
order basis functions in order to more accuratelyes the
magnetostatic integral equation. As a result, VIM an
interesting alternative to classical finite elememiethod
(FEM) methods in some situations today.

The main idea of the magnetostatic VIM approackhat
the magnetic field is created by the inductor sesirand all
ferromagnetic elements defined in the problem. Vdithoint
matching technique or a Galerkin’s projection, vwhensures
the validity of the materials constitutive lawsmatrix system
is obtained. It remains to solve this matrix systemget
guantity values on the mesh of the ferromagnetit goad then
to compute the magnetic field everywhere. Forcdwoe can
also be easily computed.

unknowns. However, it requires a particular cuttiaghnique
to resolve multiple-connected regions problems. édwer, an
additional pre-resolution is needed in order to pota the
scalar potentialpy in the presence of coils. Thid-edge
formulation that is based on the interpolation oagmetic
fields with edge elements also yields accurateltef?] [16].
It does not require a source pre-resolution anddavthe
cutting technique for multiple-connected regionshpems by
using an edge-tree technique.

Regarding to the nonlinear resolution, all threenfidlations

MMM, ¢-nodal, andH-edge have poor convergence rates due

to the useB(H) or M(H) curve. If the Newton-Raphson (NR)
method is used, relaxation has to be very oftemired in
order to achieve convergence. Yet, the determiningptimal
constant relaxation factor involves additional sgtsdsuch as
by using an energy minimum principle [17]. Diffetefinom
mentioned formulations above, we propose in thipepaa
novel magnetostatic VIM formulation based on fagletments
of first order associated with magnetic flux depsdalled B-

Different kinds of magnetostatic volume integrakacet formulation. The degrees of freedom are aatatwith

and edge elements

formulations based on different quantities integiohs have ihe normal component of magnetic flux density ocefa of
already been presented in the literature. The blded alsO e mesh. The divergence-free magnetic-field cadits
most popular one is based on uniform magnetizatio®ach ,c-hieved by using an equivalent circuit approacte Wil

element. This formulation is usually known as Ma@ne gemonstrate that the formulation leads to the dse ié(B)
Moment Method (MMM) [9] [10] [11] and is certainlthe



curve during the nonlinear resolution, and as alt,egood NR
convergence
relaxation.
Some papers have also proposed the use of facetmie
interpolation for magnetostatics [18] [19]. Howeveér [18]

Vishnevsky et al. (2002) suggested the interpolation of,,

magnetization on facet elements. This approach lan
suitable for linear cases but should not be apgiederically
for nonlinear problems, because the normal compoofetine

magnetization across facets could not
continuous, unlike one of the magnetic flux. In]j1&ithough

Balasubramaniaet al. (2002) used the B-facet interpolation,

the solenoidality of magnetic induction is not &ty satisfied.

And this should lead to an inaccuracy of the sotuin some

situations. In our formulation, the B-facet intelgton is used
as well but the solenoidality of magnetic inductisrstrongly

imposed thanks to the use of an equivalent cirapfiroach.

Moreover, the singularity the Green's function @nputed

accurately by using an analytical formula. A Nysir
discretization technique [7] [8] could be envisagedrder to

incorporate both higher-order meshes and highesrobdsis

functions.

This paper is organized in the following sectioBsction Il
is dedicated to magnetostatic integral equatiorgti@e Il
presents properties of facet element shape-funcaction
IV describes the new volume integral formulatiorunierical
examples are shown in the Section V and Sectioris\the
conclusion.

[I. BASISEQUATIONS
The governing equations for magnetostatic problesm a

divB =0, 1)

rotH=J, (2)

where B, H, J are the magnetic flux density, the magnetic

field intensity, the current density respectivelyithout any
permanent magnetization, the constitutive equaton
H=v(B)B, (3)

M =voB-v(B)B, 4)

where vo and v(B) denotes the reluctivity of vacuum and

material respectivelyyl is the magnetization.

The magnetic fieldH can be decomposed into the sum of
two terms:H,, the source field created by source currents and

H;, the reduced field created by ferromagnetic maleri
Based on the Maxwell-Ampere's equation (2), it barshown
that H, derives from a reduced magnetic scalar potegtial
Hence, we have

H=Hg-gradg, . (5)

The scalar potential, is determined by

rates can be easy obtained without any

-1 1
4 _4n£|v| @rad[r]dQ, ©6)

where r is the distance between the observation and
integration points an€ is magnetic region. From (3) and (5)
e get

v(B)B+gradg, =H,. )

be considered

IIl.  FACET SHAPE FUNCTION PROPERTIES
Shape functions of facet elements can be genefabed
nodal shape functions. Let facetbelong to a tetrahedral
elementE. If faceti is defined by a set of three nodesbic}.
The first-order shape-function can be written as
w; =2(A,0A, x O + Ag0Ae xOAg + A0, x0Ay),  (8)
wherel is the classical node shape function.

The flux of w; across facet is equal to one and vanishes
across other faces. If fadggbtas an inner orientation, we have

1
i mi =—, (9a)
T
' 1
1 9.b
divw; Ve (9.b)

wheren; is the ingoing normal vector,; ghe surface of and
Ve the volume ofE. These properties remain identical, but
with opposite sign if the facet has an outer orientation.
Equations (9.a), (9.b) are still valid for hexalsdelements
and therefore the all formula developed hereaftehiis paper
are also valid for hexahedral elements mesh. Betdout
facet elements properties can be found in [20].

IV. FORMULATIONS

A. Facet Elements Discretization

The ferromagnetic bod§ is subdivided into N elementary
volume elements. Lel’ be the boundary of2; N; be the
number of facet elements ofd; N, the number of facet
elements on the bounddry

Vector B can be approximated by facet elements
interpolation of first order as

N
BZZWJCDJ ,
=

where®; denotes the magnetic flux across the facet
Projecting (7) onQ by the Galerkin method with facet
shape-functionv;, we get

(10)

_[ v(B)B+ _[ w, [radg,dQ = J'wi [HydQ . (11)
Q Q

Q



Then according to (10), we have:

=F, (16)

R +(A¢IN]

Agr
Nf

Z[Iwi W(B)Wjdﬂ}bj +,[Wi Bgrad¢rdQ=Iwi HedQ (12)
Q Q Q

= In the next subsection an equivalent circuit apgino&s

briefly introduced in order to develop explicittywa terms

In matrix-vector form, (12) is rewritten as Agy andAgr in order to complete the equation system.

B. Equivalent Circuit Approach

RO +J-Wi gradg, dQ =F (13) The_ equiva_lent circuit_ approac_h has been widel;_d dgea
2 long time to find numerical solutions of electromatjc field
problems. The key point of the approach is to distata
network model thanks to the analogy between magjeatiuit
and electric circuit. In [21] [22] and [23], netvkomodels are
established by means of the FEM. In [24] and [2&ithors
introduce the use of networks model into the VIM.
In our approach, the equivalent-circuit-model haslas
Ri :J'Wi Ijl'(B)W,-dQ which are associated with volume-element centeid am
Q outer domain nodeo, called the infinity node. The circuit
(14) branches are either the branches through innet fab&h
connect centers of both adjacent elements, or thaches
through boundary facet and link the center of beupnd
volume elements with infinity node. The Fig. 2 dttates an
example of equivalent circuit model for a 2D megh6o
triangle elements.

whereR denotes a finite-element matri, is the vector of
flux through facets, an® is a vector corresponding to the
source-field term. Expressions RfandF are

Fi = .[Wi DHon
Q

Applying the divergence theorem, we can write titegral
termin (13) as

| =.|'wi grad ¢, dQ =.|'¢r w; I, o|r—.[¢r divw; dQ. (15)
Q r Q

/\‘.
)/ \

L]
(a) (b)

Fig.1. Facet identification. a) Inner facet. ) Border facet.

- For inner facet i (Fig. 1.a), the surface integral term in

(13) vanishes. So thanks to (9.b) we have
Fig.2. Equivalent circuit model for 2D mesh.

I = _[ 5—rdQEz - _[ 5—rd951 =@, — P =04 ;- (15.8) Based on this approach, equation (16) can be it as
O VE2 Qg1 VEL follows: the matrixR is equivalent toreluctance network,
Apin, Aprin correspond to magnetic flux leakages &nd the
- For outer facet i, i.e. located on th& (Fig. 1.b), thanks to magneto-motive force. The aim of the next subsacisoto
(9.a) we have establish the linear system to be solved.

é é C. Integral Volume Formulation
I :.[_rdri - J' —dQg =¢; —¢e1 =O¢r; - (15.b) ion i i i
S, Ver A common convention is to set the magnetic scaléergial
Fi Qe at infinity () to zero. Thus, the difference of scalar potential

between the infinity node and a border fadst
where gg, ¢; are the average reduced scalar potentials of

element E and facet, respectively; Ap;y; denotes the y
difference of average potentials between two adjace Adri, =@ — O =_J.—rdri a7
elements;Apr; denotes one between the element and its N S
border facet.
In short, (13) is represented as According to (4) and (6), is expressed as




1 1 T =
6= Y o [bo-vel)erad o, s) P(R+L)PT®, =PF, 29
Q.00 Q, . :
whereP' is transpose of matri® and®y, the vector of mesh
fluxes, @y, is determined bypy =P ®.
An independent-loop-search algorithm proposed 1} &n

be used for the determining of the incidence mdrix

Hence, (17) is developed as

_ 1 1 Nf 5[/]» 1 Matrix R Matrix L
A¢|’im —_Elg E —Sj lj?dl_] cDj dl_l . (19) e
]

0

N¢ sparse |
wheredy; denotes difference of reluctivity either betwewo t

N full
adjacent elements or between border element andnaihe v b

f f

matrix-vector form we write (19) as
Fig. 3. Structures d® andL matrices

Ag;,, +LDP=0 , (20)  D. Matrix Assembly
For the linear case, the size of integral matrixaduced
wherelL is the integral matrix corresponding to border face because the permeability is constant by regioneghat
and representing the magnetic flux leakage. interactions are then limited between elements ahd all the
borders/ intersections of regions.
ovj 1 1 1 From (21), it can be remarked that each elemeiritegral
ij ‘ﬂgg I? drjdr; =ov; Lo, (21) matrix L is composed by two terms, one is dependent to
Ynr material AY; and the othet y; is independent. Consequently,
if the NR method is used for solving the nonlinpaoblem,
with i = 1,2,.Np, j = 1,2,.N.. The singularity of Green's only the sparse matriR and the vectorAd have to be
function with self-interaction in (21) can be aveidby using recomputed iteratively. The matrix, is computed one single
a shifting of Gauss's points or the well-known gtiehl time before the resolution. This saves both the argmeeded
integration. This analytical correction can be fdun [26]. It and the computation time and is another key poinbur
must be pointed out that this numerical techniquéhe key approach.
point of the method in order to compute the integfathe

nr,

Green's kernel associated with this formulation. V. NUMERICAL EXAMPLES
From (16) and (20), we have The proposed formulation was applied in order tives@
multiply of connected problems with nonlinear metein the

N first part. In the second part, it was applieddtve the TEAM
(R+L)o+Ap=F with Ag= . (22)

Aj, +Dp Workshop Problem 13.
" "~ A. Closed Magnetic Circuit Modeling

¥

whereR is a sparse finite-element-matrix ahdis a dense
integral matrix. The structures & andL are illustrated in
Fig. 3. In general, we have,N< N;. z

The mesh current method is then used to solve tl P o v Q
equivalent circuit. LeP be an incidence matrix which links
the incidence of the independent loops to the Mrasic
Because of the fact that the vectp in (22) represents the
difference of scalar potential between nodes ofcudtir L P P——
including the infinity node, the Kirchhoff's voltaglaw 20 20 20 20 20
imposes that

20

20 75 225

7.5

PA$=0. (23) a) b)

Fig. 4. Geometry of magnetic circuit and coil.
a) Front view. b) Horizontal view

A closed magnetic circuit is excited by a DC cutreail of
100 A.T. The geometry is shown on the Fig. 4 inlimiter
scale. The nonlinear ferromagnetic material is gigelcby an
arctangent law as the following equation

Combining (22) and (23), we get
P[(R+L)®]=PF, (24)

By means of the mesh current method, (24) is wride



B(H)=poH +== 'cllrctg[”(”r DeioH J (26)

S

where Jthe saturation magnetization is 1.0 T, apthe initial
relative permeability is 500.

Fig. 5. Magnetic flux density distribution

The problem was solved by the proposed formulatfon
coarse mesh — 96 elements and a denser one — &9@rel
were considered. And then, the modi¢were computed on
the 25 points on the segment PQ in air, with P,(255) and
Q (25, 0, -5). These results were compared withréffierence
values that had performed by the FEM by means
commercial FEM software Flux3D® with 200,000 tetdhal
elements in second order including 120,000 elemémts
ferromagnetic region. The coarse mesh of 96 elesngives
comparable results and the results obtained witlshrrere
nearly coincided with the reference values.

X 10-3‘

NI
(2]

N
NOND

[
©

[y
o

—=—FEM - reference values
—e— VIM - 96 elements
—— VIM - 890 elements

magnetic flux density |B| (T)

=
N

=
Lol \S)

-20 -10 0 10 20
x (mm)

Fig. 6. Magnetic field module on the segment PQ
B. TEAM Workshop Problem 13

a nonlinear magnetostatic problem [28]. An excited is set
between two steel channels and a steel plate isrtéts
between the channels. The applied magnetomotivee fig
1000 A.T.

Fig. 7. Mesh of problem 13 with 1235 volume elersent

The iterative solver FGMRES (Flexible Generalized
Minimal Residual method) [29] is used for the sotyilinear
system and the classic NR method is used to detd wi
nonlinear system. Three regular tetrahedral megh285,
4,855 and 20,737 elements) were reported. In figuréhe
mesh of 1,235 elements is presented.

17
of l 1.37
1.05
0.719

0.382

0.065
B(M

Fig. 8. Distribution of magnetic flux density verto

The distribution of magnetic flux density on thedtplates
with this mesh is shown in Fig. 8. The average fli@xsities
in the steel plate and in the air at various posgiare plotted
in Fig.9 and Fig. 10, respectively. Both figuresligate that
the computed results are very close to the measamedThe
results of spatial distributions of flux in stedhfe are very
close measured values, but ones in air are sliglitigrent in
some points. As shown on the Fig. 9 and Fig. 18parse
mesh composed of 1,235 elements can lead to aea@slts.
For this mesh, we needed 6.7 seconds for the NfRutesn by
using a computer of CPU 3.04 GHz and 1.1 GB of RAKe
convergence of the solution was obtained in fiepstwithout
any relaxation. The absolute stopping criteriol\N& was set
1E-6. For the mesh of 4,855 elements, the numbiteraitions

. ) _was always five and the time of resolution 30,4&sels.
Benchmark problem 13 defined in the TEAM Workshsp i

The curves with 4,855 elements and 20,737 elemans
superposed and very close to the measured valhesefbre,
it can be concluded that the convergence was rdaftrea
mesh of 4,855 elements. Compared to meshes usgs8jin
this mesh is still very coarse. The result of TEAKbblem 13
validates the efficiency and accuracy of the metiwodnalyze
nonlinear models.



electromagnetic devices. For the further workseaetbpment

16 ] ]
—=— measured (G = 0.47 mm)
1.4 —— 1235 elements
— —A—
C1o - 4855 elements
= %= 20737 elements
2 U el
[4]
c
So8r 1 (1
x
3
% 0.6) 1
(o))
@
T 0.4 1 (2]
E z
0.2f 1
[3]
0
A B C D E F
. o g 4]
Fig. 9. Spatial distributions of average flux dénsi steel plate
(5]
0.04
[6]
0.035¢ —&— measured (G = 0.47 mm) k!
—— 1235 elements
0.03f —&— 4855 elements 1 (7]
c --%- 20737 elements
@ 0.025f 1 8]
>
= 0.02) 1
g [9]
©
x 0.015¢ 1
= [10]
0.01r 1
0.005+ ] [11]
0 L L L L L
0 20 40 60 80 100 120
x (mm) [12]
Fig. 10. Spatial distributions of flux density im a
[13]

For large problems, a fast algorithm such as théViFMCA
(Adaptive Cross Approximation) [30] or HCA can bephed
in order to save the memory and computation timey
Information about the implementation of FMM and AG#
the magnetostatic VIM can be found in [19] [31] ad]
[32], respectively. [15]

VL.

. . 16
A volume integral formulation based on facet elemer{ ]
interpolation and magnetic flux has been develofed

CONCLUSION

nonlinear magnetostatic problems. The key featwkshe [17]
formulation were that the imposition of solenoitialiof
magnetic induction by using an equivalent circiypp@ach [18]

and the accuracy of Green's function computatiohe T
multiply-connected-regions problem was solved withany
cutting surface. The classic NR method was usedotae
nonlinear magnetostatic problems. The numericallte®f a
multiply-connected regions case-test and of the NEA [20]
Workshop Problem 13 demonstrated the strengthadheracy
and the efficiency of this new approach. These eraging
results inspire the use of VIM in order to dealhvmitomplex

(19]

[21]

of the formulation for the resolution of magnethiint shell as
well as a coupling with eddy current formulatioringsfacet
elements for the solving of electromagnetic proldeshould
] be envisaged.
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