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A Depth-based approach for 3D dynamic gesture recognition
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In this paper we propose a recognition technique of 3D dynamic gesture for human robot interaction (HRI) based on depth information provided by Kinect sensor. The body is tracked using the skeleton algorithm provided by the Kinect SDK. The main idea of this work is to compute the angles of the upper body joints which are active when executing gesture. The variation of these angles are used as inputs of Hidden Markov Models (HMM) in order to recognize the dynamic gestures. Results demonstrate the robustness of our method against environmental conditions such as illumination changes and scene complexity due to using depth information only.

INTRODUCTION 1.Motivation

The goal of Human Robot Interaction (HRI) research is to increase the performance of human robot interaction in order to make it similar to human-human interaction, allowing robots to assist people in natural human environments. As for communication between humans, gestural communication is also widely used in human robot interaction. Several approaches have been developed over the last few years. Some approaches are based on data markers or gloves and use mechanical or optical sensors attached to these devices that transform flexion of the members into electrical signals to determine the posture. These methods are based on various informations such as the angles and the joints of the hand which contain data position and orientation. However, these approaches require that the user wear a glove or a boring device with a load of cables connected to the computer, which slows the natural human robot interaction. In the other side, computer vision is a non intrusive technology which allows gesture recognition, without any interference between the human and the robot. The vision-based sensors include 2D and 3D sensors. However, gesture recognition based on 2D images had some limitations. Firstly, the images can not be in a consistent level lighting. Second, the background elements can make the recognition task more difficult. With the emergence of Kinect [START_REF] Zhang | Microsoft kinect sensor and its effect[END_REF], depth capturing in real time becomes very easy and allows us to obtain not only the location information, but also the orientation one. In this paper we aim to use only the depth information to build a 3D gesture recognition system for human robot interaction.

Related Work

A gesture recognition system includes several steps: detection of one or more members of the human body, tracking, gesture extraction and finally classification. Hand tracking can be done based on skin color. This can be accomplished by using color classification into a color space. In [START_REF] Rautaray | A real time hand tracking system for interactive applications[END_REF], skin color is used to extract the hand and then track the center of the corresponding region. The extracted surface into each chrominance space has an elliptical shape. Thus, taking into account this fact, the authors proposed a skin color model called elliptical contour. This work was extended in [START_REF] Xu | Integrated approach of skincolor detection and depth information for hand and face localization[END_REF] to detect and localize the head and hands. In addition, the segmentation process is also an important step in tracking. It consists of removing non-relevant objects leaving behind only the regions of interest. Segmentation methods based on clustering are widely used in hand detection and especially K-means and expectation maximization. In [START_REF] Ghobadi | Hand segmentation using 2d/3d images[END_REF] the authors combine the advantages of both approaches and propose a new robust technique named KEM (K-means Expectation Maximization). Other detection methods based on 2D / 3D template matching were also developed [START_REF] Barczak | Real-time hand tracking using a set of cooperative classifiers based on haarlike features[END_REF] [START_REF] Chen | Hand gesture recognition using haar-like features and a stochastic context-free grammar[END_REF] [START_REF] Xu | Part-based initialization for hand tracking[END_REF]. However, skin color based approaches are greatly affected by illumination changes and background scene complexity. Therefore, recent studies tend to integrate new information such as depth. Indeed, depth information given by depth sensors can improve the performance of gesture recognition systems. There are several studies that combine color and depth information, either in tracking or segmentation [START_REF] Bleiweiss | Fusion time-of-ight depth and color for realtime segmentation and tracking[END_REF] [START_REF] Xia | Human detection using depth information by kinect[END_REF] [START_REF] Qin | Realtime hand gesture recognition from depth images using convex shape decomposition method[END_REF] [START_REF] Xu | Online dynamic gesture recognition for human robot interaction[END_REF]. Other works combine depth information, color and speech [START_REF] Matuszek | Learning from unscripted deictic gesture and language for human-robot interactions[END_REF]. In [START_REF] Xia | Human detection using depth information by kinect[END_REF], the authors use a silhouette shape based technique to segment the human body, then they combine 3D coordinates and motion to track the human in the scene. Filtering approaches are also used in tracking such as the Unscented Kalman Filter [START_REF] Boesen | Unscented kalman filtering for articulated human tracking[END_REF]), the Extented Kalman Filter(F., 2009) and the Prticle Filter [START_REF] Mallem | Robust line tracking using a particle filter for camera pose estimation[END_REF]. Other methods are based on points of interest which have more constraints on the intensity function and are more reliable than the contour based approaches [START_REF] Koller | Real time identification and localization of body parts from depth images[END_REF]. They are robust to occlusions present in a large majority of images. The most challenging problem in dynamic gesture recognition is the spatial-temporal variability, when the same gesture could be different in velocity, shape and duration. These characteristics make recognition of dynamic hand gestures very difficult compared to static gestures [START_REF] Wang | Hidden-markov-models-based dynamic hand gesture recognition[END_REF]. As in speech, hand writing and character recognition [START_REF] Saon | Bayesian sensing hid-den markov models[END_REF] [START_REF] Li | Viewing sea level by a one-dimensional random function with long memory[END_REF], HMM were successfully used in gesture recognition [START_REF] Elmezain | Real-time capable system for handgesture recognition using hidden markov models in stereo color image sequences[END_REF] [START_REF] Eickeler | Hidden markov model based continuous online gesture recognition[END_REF] [START_REF] Binh | Real-time hand gesture recognition using pseudo 3-d hidden markov model[END_REF]. Actually, HMM can model spatial-temporal time series and preserve the spatial-temporal identity of gesture. The authors in [START_REF] Gu | Human gesture recognition through a kinect sensor[END_REF] developed a dynamic gesture recognition system based on the roll, yaw and pitch orientations of the left arm joints. Other mathematical models such as Input-Output Hidden Markov Model (IOHMM) [START_REF] Bengio | Ieee transactions on neural networks[END_REF], Hidden Conditional Random Fields (HCRF) [START_REF] Wang | Hidden conditional random fields for gesture recognition[END_REF] and Dynamic Time Warping [START_REF] Corradini | Dynamic time warping for off-line recognition of a small gesture vocabulary[END_REF] are also used to model and recognize sequences of gestures.

In this paper, we propose a 3D dynamic gesture recognition technique based on depth camera. The basic framework of the technique is shown in Figure 1. The Skeleton algorithm given by the Kinect SDK is used for body tracking. The 3D joints informations are extracted and used to calculate new and more relevant features which are the angles between joints. Finally, discrete HMM with Left-Right Banded topology are used to model and classify gestures. The evaluation experiments show the effectiveness of the proposed technique. The performance of our technique is further demonstrated with the validation step which give good recognition even whithout training phase. The rest of the paper is organized as follows: Section 2 describes our 3D dynamic gesture approach and the features we used. Section 3 gives some experimental results. Finally, section 4 ends the paper with a conclusion and futur work. 

PROPOSED APPROACH

In the context of human robot interaction, the aim of our work is to recognize five 3D dynamic gestures based on depth information. We are interested in deictic gestures. The five gestures we want to recognize are: {come, recede, stop, pointing to the right and pointing to the left }. Figure 2 shows the execution of each gesture to be recognized. Our gesture recognition approach consists of two main parts: 1-Human tracking and data extraction, and 2-gesture recognition. 

Human Tracking and Data Extraction

In order to proceed to the gesture recognition, we need first to achieve a robust tracking for Human body and arms. Most recent tracking methods use color information. However, color is not a stable cue, and is generally influenced by several factors such as brightness changing and occlusions. Hence, color-based tracking approaches fail often and don't success to provide 3D human postures at several times. In our work we choose to use a depth sensor (Kinect) in order to extract 3d reliable data. Figure 3 shows the reference coordinate frames associated to the acquisition system. The coordinates x, y and z denote, respectively, the x and y positions and the depth value. Human tracking is performed using the Skeletal Tracking method given by the kinect SDK1 .This method projects a skeleton on the human body image so each joint of the body is related to a joint of the projected skeleton. In this manner, it creates a collection of 20 joints to each detected person. Figure 4 shows the information used in our approach: depth image (b) and skeleton tracking (c). The mean idea of our approach is to estimate in real time the variations of the active angles while executing the gestures. The considered angles are: α elbow, β shoulder and γ armpit angle, as shown When performing a gesture we record the values given by each of these three angles and we store the results in vectors as follow :

V α = [α 1 , α 2 , ..., α T ]
(1)

V β = [β 1 , β 2 , ..., β T ] (2) V γ = [γ 1 , γ 2 , ..., γ T ] ( 3 
)
Where T is the length of the gesture sequence, it is variable from a gesture to another and from a person to another. The input vector of our 3D dynamic gesture recognition system will be then written as:

V α = [α 1 , α 2 , ..., α T , β 1 , β 2 , ..., β T , γ 1 , γ 2 , ..., γ T ] (4)
The gesture description based on angles variation allows distinguishing between different human gestures. Thus, for every canonical gesture, there is one main angle which changes throughout the gesture and the remaining two angles vary slightly. We consider the five gestures defined previously. The angle which is varing for come and recede is the angle α. Likewise, the angle γ for stop gesture, and angle β for both pointing gestures. The main angle's variations in each gesture are showing in the Table 1. 

α β γ 1 180 • → 30 • - - 2 30 • → 180 • - - 3 - 90 • → 150 • - 4 - 90 • → 40 • - 5 - - 30 • → 80 •
In this work, we propose to use the sequences of angles variations as an input of our gesture recognition system as explained in the next section.

Gesture Classification Method

Our recognition method is based on Hidden Markov Models (HMM). HMM are widely used in temporal pattern, speech, and handwriting recognition, they generally yield good results. The problem in the dynamic gestures is their spatial and temporal variability which make their recognition very difficult, compared to the static gestures. In fact, the same gesture can vary in speed, shape, length. However, HMM have the ability to maintain the identity of spatio-temporal gesture even if its speed and/or duration change.

Hidden Markov Models

An HMM can be expressed as λ = (A, B, π) and described by: a) A set of N states S = {s 1 , s 2 , ..., s n }.

b) An initial probability distribution for each state Π = {π j }, j = {1, 2, ..., N}, with π j = Prob(S j at t = 1).

c) A N-by-N transition matrix A = {a i j }, where a i j is the transition probability of s i to s j ; 1 ≤ i, j ≤ N and the sum of the entries in each row of the matrix A must be equal to 1 because it corresponds to the sum of the probabilities of making a transition from a given state to each of the other states. f) The N-by-M observation matrix B = {b im }, where b im is the probability of generating the symbol v k from state s j and the sum of the entries in each row of the matrix B must be 1 for the same previous reason.

There are three main problems for HMM: evaluation, decoding, and training, which are solved by using Forward algorithm, Viterbi algorithm, and Baum-Welch algorithm, respectively [START_REF] Lawrence | A tutorial on hidden markov models and selected applications in speech recognition[END_REF]. Also, HMM has three topologies: Fully Connected (Ergodic model) where each state can be reached from any other state, Left-Right (LR) model where each state can go back to itself or to the following states and Left-Right Banded (LRB) model in which each state can go back to itself or the following state only (Figure 6). We choose left-right banded model Figure 6(a) as the HMM topology, because the left-right banded model is good for modeling-order-constrained time-series whose properties sequentially change over time. We realized five HMM, one HMM for each gesture type. 

Initializing parameters for LRB model

We created five HMM, one for each gesture. First of all, every parameter of each HMM should be intialized. We start with the number of states. In our case this number is not the same for all the five HMM, it depends on the complexity and duration of the gesture. We use 12 states as maximum number and 8 as minimum one in which the HMM initial vector parameters Π will be designed by;

Π = (1 0 0 0 0 0 0 0) (5)
To ensure that the HMM begins from the first state, the first element of the vector must be 1. The second parameter to be defined is the Matrix A which can be written as:

A = a ii 1-a ii 0 0 0 0 0 0 0 a ii 1-a ii 0 0 0 0 0 0 0 a ii 1-a ii 0 0 0 0 0 0 0 a ii 1-a ii 0 0 0 0 0 0 0 a ii 1-a ii 0 0 0 0 0 0 0 a ii 1-a ii 0 0 0 0 0 0 0 a ii 1-a ii 0 0 0 0 0 0 0 a ii (6)
where a ii is initialized by a random value. The Matrix B is determinated by:

B = {b im } (7)
where b im is initialized by a random value.

Training and Evaluation

Our database is composed of 100 videos for each kind gesture (50 for training and 50 for testing). In the training phase the Baum-Welch algorithm [START_REF] Lawrence | A tutorial on hidden markov models and selected applications in speech recognition[END_REF] is used to do a full training for the initialized HMM parameters λ = (Π, A, B). Our system is trained on 50 sequences of discrete vector for each kind of gesture by using LRB topology with the number of states ranging from 3 to 12. After the training process, we obtain new HMM parameters (Π , A , B ) for each type of gesture. According to the forward algorithm with Viterbi path, the other 50 video sequences for each type gesture are tested using the new parameters. The forward algorithm computes the probability of the discrete vector sequences for all the five HMM models with different states. Thereby, the gesture path is recognized corresponding to the maximal likelihood of 5 gesture HMM models over the best path that is determined by Viterbi algorithm.

The following steps demonstrate how the Viterbi algorithm works on LRB topology [START_REF] Elmezain | A hidden markov model-based isolated and meaningful hand gesture recognition[END_REF]:

• Initialization: for 1 ≤ i ≤ N, δ 1 (i) = Π i • b i (o 1 ) φ 1 (i) = 0 • Recursion: for 2 ≤ t ≤ T, 1 ≤ j ≤ N, δ t (i) = max[δ t-1 (i) • a i j ] • b j (o t ) φ t (i) = argmax[δ t-1 (i) • a i j ]
• Termination:

p * = max[δ T (i)] q * T = argmax[δ T (i)] • Reconstruction: for T -1 <= t <= 1 q * t = φ t+1 (q * t+1 )
The resulting trajectory (optimal states sequence) is q * 1 , q * 2 , ..., q * T where a i j is the transition probability from state s i to state s j , b j (o t ) is the probability of emitting o at time t in state s j , δ t ( j) represents the maximum value of s j at time t, φ t ( j) is the index of s j at time t and p * is the state optimized likelihood function.

EXPERIMENTAL RESULTS

Data Set

Our database is built with aroud 20 persons. Everyone is invited to execute the five gestures that we have defined before. Each gesture is executed 5 times per person. So finally, we generated 500 sequences, 250 are used for training and 250 for testing. Each HMM is trained with 50 gesture samples and tested with 50.

Experimental protocol

Before the experiment, the experimental protocol was given to the subjects which describes the begining and the end of the five gestures. The gesture duration is not fixed. The person can do a gesture whether slowly or speedy. We used the Kinect sensor that must remain stable. The person must be in front of the kinect and the distance must be heigher than 80 cm to well detect the bodyl. The environment is sort of crowded but no barrier should be between the person and the camera to avoid losing tracking. During the gesture the person should stay up.

The environment and the brightness do not affect the data collection because we rely on depth only. A given gesture is recognized corresponding to the maximal likelihood of five HMM models. So, if a new executed gesture does not correspond to the five gestures, it will be awarded to one of five classes corresponding to the maximum probability and then recognized as one of them. To overcome this problem we built a new database of 20 videos containing the insignificant gestures when subject moves his hand without any goal. The probabilities of belonging to the five classes are very small. From here we determined a threshold for each class gesture. Thus, the gesture is rejected if the maximum probability is less than the threshold fixed for the corresponding gesture class.

Recognition Results

Angles variations are plotted in Figure (7, 8, 9, 10 and 11). As it is showen, each gesture is characterized by the most changing angle comapring to the two others. We choose the state number of HMM for each gesture according to the experiment results and find that the recognition rate is maximum when the state number is 11 states for the gestures come, recede and pointing to the right, 12 for the gesture pointing to left, and 8 for the last gesture stop as shown in Figure 12. Therefore, we use this setting in the following experiments. A given gesture sequence is recognized in 0.1508 s. The recognition results are listed in Table 2. We can see that the proposed method can greatly improve the recognition process, especially for opposed gestures like come and recede, pointing to the right and pointing to left. We can also see that there is no confusing between some gestures such as come and recede. In this case, it is due to the fact that the angle α changes during these two gestures decreases in come and increases in recede. The same reasoning can be given in the case of the tow opposed gestures, pointing to the right and pointing to left. As a matter of fact, even if the same angle varies in two different gestures, our method can distinguish them. Table 3 presents a comparison of our approach with that of the authors in (G. et al., 2012). They use raw, roll and pitch orientations of elbow and shoulder joints of the left arm. Their database contains five gestures trained by one person and tested by two. The gesture duration is fixed beforehand. In offline mode, the accuracy of recognizing gestures executed by per- sons who did training was found to be 85% with their method and 97.2% with our method. And without training, the recognition accuracy attained 73% with their method and 82% with our method. The gestures we have defined for the human robot interaction are natural. They are almost the same that we use daily and between people. Whereas, most methods in the state of the art are based on constrained gestures that 

CONCLUSIONS AND FUTURE WORKS

We described an efficient method for 3D natural and dynamic gesture recognition for human robot/interaction. We have identified five deictic gestures, which can be recognize using only depth information. The idea is to extract the 3D coordinates of the joints of the upper part of the human body, and then compute the angles corresponding to these joints. These angles variation along the gestures are used as inputs of Hidden Markov Models (HMM). We propose one model for each gesture. The experimental results show that our approach gives better recognition compared to the method in (G. et al., 2012). Indeed, the recognition rate can reach up to 100% for some kind of gestures. In addition, we give below some characteristics of the proposed recognition system. First, the training phase, it simply saves the gesture when run. Second, the system can recognize gestures even if the distance or the location of people change. Third, although the speed of gestures can vary from one person to another, the system is able to recognize the gesture. Finally, the change in the duration of a gesture from one person to another does not affect the recognition. In the future work, we will expand our gesture database in order to recognize different gestures in the same sequence, we will also combine the depth information with speech to make automatic the detection of the beginning and the end of the gesture and make the complex gesture recognition more robust.

Figure 12: Recognition accuracy when changing the number of state of HMM from 3 to 14 states.
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 1 Figure 1: Flowchart of the proposed 3D dynamic gesture recognition technique.

Figure 2 :

 2 Figure 2: Five distinct gesture kind.

Figure 3 :

 3 Figure 3: Kinect system coordinate.

Figure 4 :

 4 Figure 4: (a) RGB image, (b) depth image, (c) skeleton tracking.

Figure 5 :

 5 Figure 5: α, β and γ angles.

  d) A set of observations O = {o 1 , o 2 , ..., o t }, t ={1, 2, ..., T } where T is the length of the longest gesture path.e) A set of k discrete symbols V = {v 1 , v 2 , ..., v k }.
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 6 Figure 6: HMM topologies.
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 7 Figure 7: Angles variations for come gesture.

Figure 8 :

 8 Figure 8: Angles variations for recede gesture.

Figure 9 :

 9 Figure 9: Angles variations for pointing to the right gesture.

Figure 10 :

 10 Figure 10: Angles variations for pointing to the left gesture.

Figure 11 :

 11 Figure 11: Angles variations for stop gesture.

  

Table 1 :

 1 The main angle's variations in each gesture (1, 2, 3, 4, 5 refer respestively to come, recede, pointing to right, pointing to left, stop).

Table 2 :

 2 Confusing matrix and recognition accuracy.

	1	2	3	4	5 Accuracy
	1 50 0	0	0	0	100%
	2 0 50 0	0	0	100%
	3 0	0 49 0	1	98%
	4 0	0	0 48 2	96%
	5 1	0	0	3 46	92%
		Average accuracy 97.2%

Table 3 :

 3 Comparison between the performance of our approach and Ye and Ha(G. et al., 2012)'s approach.

	Methods	Ye and Ha	Our
		(G. et al., 2012) approach
	Gesture	Dynamic	Dynamic
	nature		
	Used	Raw, roll	Angles
	Info.	and pitch	between
		orientations	joints
		of joints	
	Gestures	5	5
	number		
	Joints	2	5
	number		
	Used	Segmented	Brute
	data		
	Classification	HMM	HMM
	Training	75	500
	database		
	People	2	21
	for test		
	Gesture	Fixed	Variable
	duration		
	Accuracy	73%	97.2%

http://msdn.microsoft.com/enus/library/jj131025.aspx