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I. INTRODUCTION

The term twin prime was coined by Paul Stackel in the late nineteenth century. Since then mathematicians have been very much interested in the properties and nature of the twin primes.

Mathematicians have also endeavoured to prove the conjectured infinitude of the twin primes and the Goldbach's conjecture. Nevertheless, there have been many failed proofs which asserts that the problems are very difficult. However, in the following theory not only a different approach is undertaken, but also certain concepts have been taken from Statistical Physics to succour in the proof of the twin prime conjecture ( [START_REF] Guy | Gaps between Primes. Twin Primes[END_REF]), the Mersenne prime conjecture ( [START_REF] Shanks | Solved and Unsolved Problems in Number Theory[END_REF]) and the Goldbach's conjecture ( [START_REF]Goldbach problem[END_REF]). In the next section we commence with our proposed theory that succours us in the subsequent sections to embark on the method of proving the aforesaid conjectures.

In order to begin with our theory, we take into account a vacancy set: Z + v = { , , , • • • } where the 's denote vacancies in which certain positive integers are to be accommodated.

Z + v = { , , ,
• • • } is defined as a set of vacancies or spaces. After the accommodation process the set Z + v is simply denoted as Z + and becomes acquainted as we already know: the set of positive integers. Now, these vacancies are termed as ranks. An 'odd rank' is defined as the rank in which an odd positive integer can be accommodated and an 'even rank' is defined as the rank in which an even positive integer can be accommodated. Then, we represent any positive integer as nN . Here, the lower case n is termed as the level of the integer and the upper case 'N ' is termed as the sublevel of that integer. This is referred as the level-sublevel representation of any integer. Also, we assume that the accommodation of the positive integers in the aforesaid ranks is the culmination of a cumulative and continuous implementation process which is a key ingredient in the development of this theory.

We presume two sets {L 1 } and {S l } and a relation R between them, where {L 1 } represents the set of the first-order levels {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} L consisting only one digit and {S l } represents the set of the only sublevels {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} sl . The formation of second and higher order levels consisting respectively two or more digits will ensue with the discussion of the implementation process below.

We define a novel relation R such that

R : {L 1 } → {S l } -→ {Π 0 } (1) 
means that each element of {L 1 } relates to every element of {S l } such that a set {Π 0 } is generated consisting elements (00, 01, 

Z + v . Now, the second implementation of R is given as R : {L 1 } → {Π 0 } -→ {Π 1 } (2) 
which means that each element of {L 1 } relates to every element of {Π 0 } such that a set {Π 1 } is engendered consisting elements (000, 001,

• • • , 009, 010, • • • , 099, 100, 101, • • • , 109, • • • • • • , 999)
due to the second implementation of the relation R. Here, we see that some of the numbers 0, 1, • • • are iterated, that is to say they are in {Π 1 } as well as in {Π 0 } or {S l }. Now, all of these are to be accommodated in the available ranks of the set Z + , but necessarily without any iteration or reiteration. In order to annul any dilemma regarding such continuous iterations we make the following proposition:-Proposition-1:-No two number can be accommodated in the same rank of Z + v .

It means that two numbers, same (such as 10 and 010) or distinct (such as 10 and 11), cannot be put into the same vacancy or rank. Therefore, the iterated and reiterated numbers are simply derelict so that well ordering of the number elements of {Π 0 }, {Π 1 }, • • • , scheduled to be accommodated in the ranks of Z + is maintained. This proposition is termed as the mathematical exclusion principle which provides uniqueness to each of the ranks and the integers accommodated in them. Now, returning to our second implementation we see that the sublevel of the numbers 100, 101, • • • , 999 are 0 to 9 and the levels are 10, • • • , 99. These are the second order levels and further implementation of R will result in higher order levels. With the continuation of the implementation process we will obtain ultimately the set Π ∞ which will have completed the accommodation of all positive integers in all available ranks of the set Z + .

After having innovated an implementation process we now elaborate the notion of level-sublevel representation of any positive integer. We have already mentioned that we consider the representation of any positive integer as nN , where the lower case n is termed as the level of the integer and the upper case 'N ' is termed as the sublevel of that integer.

The level of a certain number p is denoted by n p and the sublevel is denoted by N p ; but in case of numerical values the subscript and the superscript are omitted. The rank of p is denoted as n p N p or simply (nN )p.

For example, the number 7 is denoted as "07" where '0' is the zeroth level and '7' is the sublevel.

The rank is '07', which is a two-digit vacancy where the number 7 can be accommodated. One can say, the number 7 can be accommodated in the rank of 0 th level and 7 th sublevel.

Again, the number 13 is denoted as "13" where '1' is the first level and '3' is the sublevel. The rank is '13' which is a two-digit vacancy where the number 13 can be accommodated. One can say, the number 13 can be accommodated in the rank of 1 st level and 3 rd sublevel. Now, the elementary axioms that govern the level-sublevel representation of ordered integers are as follows :-

• Axiom -1:-The number of sublevels (N ) are ten, namely 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9.

• Axiom -2:-The number of levels (n) are infinite. Hence, a level may consist of an infinite number of digits.

• Axiom -3:-The number of ranks (nN ) are infinite. Consequently the number of ordered integers are infinite.

• Axiom -4:-The increment of the sublevels is cyclic:

0 → 1 → 2 → 3 → 4 → 5 → 6 →
7 → 8 → 9 → 0 → 1 and so on. Here, the sublevels increase by 1, and so +1 is termed as the increment number.

Hence, if the sublevel of a number 'p' is N p then the sublevel of the number 'p + 1' is

N p + 1 = N p+1 .
For some specific number, if N p = 9 then N p + 1 = N p+1 = 0 and the level of that number is increased by 1, i.e. n9 + 1 = (n + 1)0.

• Axiom -5:-The increment of the levels is also cyclic.

Hence, if the level of the number p is n p , then the level of the number p + 1 is n p for N p = 0 to 8 or n p + 1(= n p+1 ) for N p = 9. Henceforth, 'sublevel' will be written as 'slevel'. Now, for quantitative purpose we introduce a term total rank level which is given by the sum of the products of the positive integers and their levels. The total rank level is denoted as L R .

For example, the total rank level of the numbers n0, n1

• • • n9 is = n × n0 + n × n1 + • • • + n × n9
Again, the total rank level of the numbers 10, 20, 30, 145 is

= 1 × 10 + 2 × 20 + 3 × 30 + 14 × 145 = 2170
A general formula that determines the numbers of a particular set, is termed as a number variable formula and the variable is termed as number value. E.g. -All even integers are given by the number variable formula 2k, where k = 1, 2, 3, • • • . Here, k is the number value. From henceforth we write number variable formula as nvf and number value as nv. Now, an nvf is meant to show that a set of integers of some specific criterion must have a finite (> 1) or an infinite number of elements. Let us consider the set of even positive integers as follows:- This is termed as the condition of distinctness and the numbers are called distinct numbers.

E = 2, 4, 6, 8, • • • ∞ , where E 1 = 2 , E 2 =
Now, it should also be noted that the condition of distinctness can be applied to a particular set in which there are at least two integers because a single solitary integer cannot be 'distinct' from anything. Therefore, at least two or more integers must exist in a specific set to conform to the said condition.

B. Sublevel or slevel of primes

Now, the slevels are namely :-0,1,2,3,4,5,6,7,8,9. Four of them are even and five are odd, and the slevel 0 is divisible by 2. Hence, any rank with some specific level n (n > 0) and an even slevel [START_REF] Shanks | Solved and Unsolved Problems in Number Theory[END_REF][START_REF] Hazewinkel | Stirling formula[END_REF][START_REF] Hazewinkel | Mersenne number[END_REF][START_REF] Milnor | Analytic proofs of the hairy ball theorem and the Brouwer fixed-point theorem[END_REF] or the zeroth slevel is not eligible for the accommodation of primes, for it will be divisible by 2. Here, we have neglected the rank '02' since it is a prime.

Thus, we are left with the slevels 1,3,5,7 and 9. Again, except for the rank '05' all other ranks 'n5' must be excluded, for they will be divisible by 5.

Thus, for some specific rank the only slevels eligible for the accommodation of primes are:-1,3,7 and 9.

These four slevels are termed as the slevel for primes and denoted as N slp :-1,3,7,9. Now, we endeavour to derive an nvf, to which the primes and the twin primes correspond.

III. STATISTICS FOR NUMBERS

The methods and criteria we will use here is in analogy with the classical and the quantum statistics of statistical mechanics in physics. Now, numbers of some specific set follow the mathematical exclusion principle and the condition of distinctness, i.e. they are distinguishable.

Hence, such numbers will follow some statistical distribution formula to be accommodated in the ranks or vacancies. Now, since the numbers are distinguishable and they follow the exclusion principle the number of ways in which R i numbers are arranged in g i ranks which are equally apriori is given by the permutation of R i numbers in g i ranks as follows

(g i )! (g i -R i )!
The total number of ways w in which R 1 , R 2 • • • R n numbers are distributed in 'r' rank levels is the product of the terms given by the above expression, i.e.

w = r i=1 (g i )! (g i -R i )! (3) 
We assume that g i , (g i -R i ) 1. Now, taking logarithm on both sides with the Euler number (e) as base, we obtain

lnw = r i=1 [ln(g i !) -ln{(g i -R i )!}] (4) 
If we apply Stirling's approximation ( [START_REF] Hazewinkel | Stirling formula[END_REF]) we get

lnw = r i=1 [g i (lng i -1) -(g i -R i ){ln(g i -R i ) -1}] (5) 
Now, the restrictions to the system of numbers is that the total number of numbers (R) and the total rank level (L R ) of the numbers (R) is constant. Again, the numbers R i do not interact with each other while the process of distribution, i.e. they are not related to each other by any mathematical operation (+, ×, • • • etc ). Hence, all R i 's are fixed. More precisely, in the language of statistical mechanics we can say that all R i 's are in an equilibrium. Thus, in order to find the most probable distribution 'w' or 'lnw' must be maximized subject to the following two conditions:-

R = r i=1 R i = constant (6) and L R = r i=1 R i (L R ) i = constant (7) 
where, (L R ) i is the level of the i th number (R i ).

Hence, we obtain

δlnw = r i=1 [-{-1 -ln(g i -R i )}δR i ] = 0 (8) δlnw = r i=1 [ln(g i -R i ) + 1]δR i = 0 (9)
Now, applying Lagrange's method of undetermined multipliers and using equations ( 6), ( 7) and

(9) we get

δlnw = r i=1 [ln(g i -R i ) + 1 + α + β(L R ) i ]δR i = 0 (10)
where, α and β are constants.

As the variations are arbitrary, we derive

[ln(g i -R i ) + 1 + α + β(L R ) i ] = 0 (11) ln(1 - R i g i ) + lng i + 1 + α + β(L R ) i = 0 (12) ln(1 - R i g i ) = -[lng i + 1 + α + β(L R ) i ] (13) 1 - R i g i = e {-[lng i +1+α+β(L R ) i ]} (14) R i g i = 1 -e {-[lng i +1+α+β(L R ) i ]} (15) ⇒ R i g i = 1 - 1 g i e {-[1+α+β(L R ) i ]} (16) 
This is the required statistics for the distribution of the integers R, where α and β are yet to be determined. Now, unlike the Maxwell-Boltzman statistics, the Fermi-Dirac statistics or the Bose-Einstein statistics ( [START_REF]Statistical Physics[END_REF]), the aforementioned statistics is dependent on the ranks g i .

Such a result may or may not be useful in Statistical Physics, but its remarkable application in collaboration with the level-slevel theory will be seen in the next sections where we prove some conjectures.

IV. TWIN PRIME CONJECTURE

Statement:-Are there infinitely many primes p r such that p r + 2 is prime?

Proof:-At first we introduce the term twin odd rank, which represents two consecutive ranks or vacancies with the difference 2, where two odd numbers can be accommodated in accordance with the mathematical exclusion principle. Let, a twin odd rank be represented as

g oi = g oi (g oi1 , g oi2 ) such that g oi2 = g oi1 + 2.
Now, let us consider the set of twin primes or pair primes given by Thus, the pairs are distinguishable and also each component of a pair obeys the mathematical exclusion principle. Therefore, the prime pairs will obey the statistics for numbers.

{P t } = {(5, 7 
So, using equation ( 16) we can derive the distribution of the twin primes. Substituting p i in R i , (L p ) i in (L R ) i and g oi in g i in equation ( 16) we obtain

p i g oi = 1 - 1 g oi e {-[1+α+β(Lp) i ]} (17)
where, (L p ) i is the rank level of the number p i and α and β are the Lagrange's undetermined multipliers.

Now, we know that since positive integers are infinite, so the number of odd integers are infinite.

Consequently, the number of the twin odd rank's is also infinite. Hence, in equation ( 17) when g oi → ∞ or g oi = ∞, the right hand side becomes unity or 1, irrespective of the exponential term. Thus, we have

p i g oi = 1
This indicates clearly that, when the number of g oi 's are infinite, the number of p i 's are infinite, i.e. the number of twin primes are infinite. So, our assumption that the set P t consists of a finite number of elements is erroneous and it is proved that the set P t consists of an infinite number of elements. Although, all elements of P t correspond to a particular 'p' in the nvf 6p ± 1 our proof does not entail that every 'p' in the nvf 6p ± 1 will yield an element in P t , which is in accordance with the facts regarding the distribution of twin primes.

Hence, there are infinitely many primes p r such that p r + 2 is prime. Here, it is worth mentioning that if the Mersenne number is represented as M p = 2 p + 1, then we have only one prime namely 5 for p = 2 and there are no primes > 5. Thus the finite set of primes corresponding to the nvf M p = 2 p + 1 consists of a single solitary integer 5 and thus the condition of distinctness is not applicable in this case. Consequently, the set of primes corresponding to the nvf M p = 2 p + 1 will obviously contain only one element, since we cannot apply the derived statistics in this case. Now, the formula for a Mersenne number given by M p = 2 p -1 is obviously a number variable formula and in this case there are more than two elements and consequently the condition of distinctness is applicable in this case. Each element of the set P m , i.e. (p m ) i , corresponds to a specific number value 'p' of the nvf 2 p -1, which is precisely the condition of distinctness.

Hence, the Mersenne primes are distinguishable and also each of them obey the mathematical exclusion principle. So, the Mersenne primes will obey the statistics for numbers.

Now, we consider odd ranks where odd numbers can be accommodated in accordance with the mathematical exclusion principle. The odd ranks are represented by g mi and the Mersenne primes are denoted by (p

m ) i . Substituting (p m ) i in R i , (L m ) i in (L R ) i and g mi in g i in equation (16) we obtain (p m ) i g mi = 1 - 1 g mi e {-[1+α+β(Lm) i ]} (18) 
where, (L m ) i is the rank level of the number (p m ) i and α and β are the Lagrange's undetermined multipliers.

Since there is an infinitude of odd numbers, the number of odd ranks is also infinite. Hence, in equation (18) when g mi → ∞ or g mi = ∞, the right hand side becomes unity or 1, irrespective of the exponential term. Thus, we have

(p m ) i g mi = 1
This indicates clearly that, when the number of g mi 's are infinite, the number of (p m ) i 's are infinite, i.e. the number of Mersenne primes are infinite. Hence, our assumption that the set P m consists of a finite number of elements is erroneous and it is proved that the set P m consists of an infinite number of elements. As before, the fact that all elements of P m correspond to a particular 'p' in the nvf M p = 2 p -1 does not entail that every 'p' in the nvf M p = 2 p -1 will yield an element in P m , which is in accordance with the facts regarding the distribution of Mersenne primes.

Hence, there are infinitely many Mersenne primes.

Goldbach's conjecture is one of the oldest and best-known unsolved problems in number theory and in all of mathematics. There has been several steps close to proving the said conjecture, until recently it seems to have been proven by the mathematician H. A. Helfgott ([7]). Although his proof is much laborious it may have fruitful and versatile implications. This work in contradistinction is simple and straightforward. However, the 'binary' and 'ternary' conjectures are stated as:-

• Goldbach's binary conjecture: Every even integer greater than 2 can be written as the sum of two primes.

• Goldbach's ternary conjecture: Every odd integer greater than 5 can be expressed as the sum of three primes.

Let us infer that the Goldbach's conjecture fails because there are an infinite number of even integers (E G ) which are the sum of two primes and an infinite number even integers (E Gn ) which are not. Also

E G ⊂ E and E Gn ⊂ E
where, E G and E Gn respectively denote the set of even integers which are the sum of two primes and the set of even integers which are not the sum of two primes. We term the even integers which are the sum of two primes as Goldbach even numbers.

Therefore, a Goldbach even number can be written as

E G = p + q (19)
where, p and q are primes. This can also be written as

E G = (6p 1 ± 1) + (6p 2 ± 1) (20) 
It is obvious that this is an nvf which makes each E G distinct and thus from our previous methods it can be shown that the number of E G 's are infinite. Therefore, if our assumption is true then the E Gn 's must correspond to an nvf. Let us suppose that this nvf is given by

E Gn = {A, B, ±, ×} (21) 
Therefore, all E G 's and E Gn 's fulfil the condition of distinctness. Now, the available ranks for the Goldbach even numbers are (g i ) G and for those that are even numbers but not Goldbach even numbers are (g i ) Gn . Since, E G 's and E Gn 's are infinite both (g i ) G and (g i ) Gn must be infinite independently according to the statistics for numbers.

Now, let us consider the set (g i ) G constituted of the ranks (g i ) G and let us consider the set (g i ) Gn constituted of the ranks (g i ) Gn . Again, (g i ) e is the set consisting the ranks (g i ) e for the accommodation of even numbers which are also infinite in number. Therefore, without loss of generality we can say that

(g i ) e ≡ (g i ) G ≡ (g i ) Gn (22) 
Consequently

(g i ) e ≡ (g i ) G ≡ (g i ) Gn (23) 
Now, let us consider the following mapping

M : (g i ) G -→ (g i ) Gn (24) 
By virtue of equation ( 23) this implies

M : (g i ) e -→ (g i ) e (25) 
which states that the set (g i ) e maps to itself. Now, according to the Brouwer's Fixed Point

Theorem ( [START_REF] Milnor | Analytic proofs of the hairy ball theorem and the Brouwer fixed-point theorem[END_REF]), in course of the aforesaid mapping there must be at least one fixed point which entails that there must be at least one common rank which is used by one E G and one E Gn . But, the mathematical exclusion principle says that two different integers cannot be accommodated in the same rank, i.e. they cannot use the same rank. Thus arises a problem and its eradication necessitates that our assumption that the (g i ) Gn 's are infinite must be wrong. Consequently, the E Gn 's cannot be infinite and they cannot fulfil the condition of distinctness which implies that the E Gn 's do not correspond to ant nvf. Hence, if the E Gn 's exist they must be finite in number.

Now, let us consider that there is a break in the consecutive sequence of the E G 's and suppose that the last Goldbach even integer of this break is (E G ) N . After (E G ) N the even integer (E Gn ) 1 = (E G ) N + 2 is the first of the finite number of E Gn 's. Now, since the ternary Goldbach conjecture is the weak form of the binary Goldbach conjecture we can say that there will exist an odd integer O N (O N = E N -1) after which there is a break in the consecutive sequence of Goldbach odd integers that can be written as the sum of three primes. Again, since 

  ); (11, 13); (17, 19); • • • } which we assume for now, to consist of a finite number of elements. Here, we have excluded the basic primes 2 and 3. The elements are denoted by p i , where p 1 = (5, 7), p 2 = (11, 13) and so on. Each of the pair primes correspond to a specific number value p of the number variable formula 6p ± 1, which is the condition of distinctness.

  Are there infinitely many Mersenne primes? Proof:-We know that a Mersenne number ([6]) is represented as M p = 2 p -1, where p is a prime number. Now, let us consider the set of Mersenne primes given by {P m } = {3, 7, 31, 127, • • • } which we assume for now, to consist of a finite number of elements. The elements are denoted by (p m ) i , where (p m ) 1 = M 2 = 3, (p m ) 2 = M 3 = 7 and so on.

(E Gn ) 1

 1 is an E Gn , O N + 2 will be the first O Gn that is not a Goldbach odd integer among the other O Gn 's. The O Gn 's are obviously finite in number. We write the first O Gn after the sequence break as (O Gn ) 1 .Now, (EG ) N -1 = (E G ) N -2 isthe penultimate even number before the break in the aforesaid sequence that can be written as the sum of two primes. Therefore(E G ) N -1 = p 1 + p 2(26)where, p 1 and p 2 are two primes. Thus(E G ) N -1 + 3 = (E G ) N + 1(27)where, we have added the prime number 3 to the Goldbach even integer (E G ) N -1 . Therefore, we may write:-(O Gn ) 1 = (E G ) N + 1 = (E G ) N -1 + 3or simply,(O Gn ) 1 = (E G ) N -1 + 3

  4 are the elements of the set E. Now, E 1 = E 2 and both E 1 , E 2 corresponds to two different values of p in the number variable formula 2p, i.e. E 1 = 2 × 1(p = 1) and E 2 = 2 × 2(p = 2). It is obvious that the E

i 's are distinct from each other owing to the fact that each corresponds to distinct values of p in the nvf 2p. Therefore, the necessary condition for the numbers of a particular set to be distinct from each other is that they must correspond to different number values of a specific number variable formula.

C. An nvf for the twin primes All primes and twin primes correspond to a number value of the number variable formula 6p ± 1, where p is the number value ≥ 01.

Deduction:-At first we exclude the basic primes 02 and 03 since they are the factors of 06 or simply 6. Now, the multiples of 6, namely 6p, have the following slevels:-

If the slevels are arranged in order then we get:-N 6p = 0, 2, 4, 6, 8 and the multiples of 6 can be represented as:-(nN ) 6p

Again, the four eligible slevels for the accommodation of primes are N slp = 1, 3, 7 and 9 Now, if N 6p = 0 then (nN ) 6p 1 corresponds to:-n1, (n -1)9.

If N 6p = 2 then (nN ) 6p ± 1 corresponds to n3, n1.

If N 6p = 4 then (nN ) 6p ± 1 corresponds to n5, n3.

If N 6p = 6 then (nN ) 6p ± 1 corresponds to n7, n5.

If N 6p = 8 then (nN ) 6p ± 1 corresponds to n9, n7.

We have previously concluded that the rank 'n5' is not eligible, except for n = 0 and p = 1. Now, it is obvious from the above deduction that (nN ) 6p ± 1 corresponds to the N slp 's, i.e. the slevel of primes. Now, all primes can be equipped into ranks corresponding to any of the four

Again, the slevels of a twin prime can be represented as: ( N slp ) and ( N slp + 2 ).

The order of the slevel of primes in accordance with the increment number +2 is:-1 → 3 → 7 → 9 → 1 → 3 and so on along with the exception prime 5 corresponding to the rank '05'.

Thus, all twin primes can be equipped into the four N slp ' s.

Hence, in general we can say that all primes and twin primes are given by (nN ) 6p ± 1.

Therefore, all primes and twin primes correspond to a number value of the number variable formula (nvf) 6p ± 1.

Thus (O

which is the sum of three primes. But, according to our assumption (O Gn ) 1 is the first of the O Gn 's. Thus arises a contradiction which entails that (O

we continue the process by setting breaks at different points of the set Z + of positive integers a contradiction will arise due to the correlation between the binary and ternary forms of the Goldbach conjecture. Consequently, we can say that there will be no break in the consecutive sequence of the Goldbach even integers or the Goldbach odd integers. Therefore, the finite number of E Gn 's and O Gn 's cease to exist and disappear from the sequence of the even integers and the odd integers. Thus, we have the following statements proved: a) All even integers > 2 can be written as the sum of two primes.

b) All odd integers > 5 can be written as the sum of three primes.
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