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Abstract 

We study in this work the near-field radiative heat transfer between two semi-infinite 

parallel planes of highly n-doped semiconductors. Using a nonlocal model of the dielectric 

permittivity, usually used for the case of metallic planes, we show that the radiative heat 

transfer coefficientsaturates as the separation distance is reduced for high doping 

concentration. These results replace the 1/d² infinite divergence obtained in the local model 

case. Different features of the obtained results are shown to relate physically to the 

parameters of the materials, mainly the doping concentration and the plasmon frequency. 

I. Introduction 

 

Near field radiative heat transfer (NFRHT) had drawn a lot of attention in the past years 

due to the different physical phenomena attributed to it. In the near field, typically at 

distance shorter than Wien’s thermal wavelength (10μm at temperature T=300K), physical 

phenomena such as the tunneling of the evanescent wavescontribute significantly to the 

transfer, changing by that the mechanisms of transfer with respect to the far-field [1−6]. 

The tunneling evanescent electromagnetic (EM) wavesdecay exponentially from the 

interfaces so that their contribution vanishes as long as the separation distance is larger 

than the wavelength. Their role in the NFRHT was first pointed out by Cravalho et al. [7] 

and Polder and Van Hove [8] in their pioneering work of studying the radiative heat 

transfer (RHT) in the near field. They have shown that when two bodies are approached, 

the radiative heat flux (RHF) between them increases significantly until reaching values of 

many orders higher than that between two blackbodies [4,6,9].This increase is a 

consequence of the new channels of transfer corresponding to modes of large wavevectors 
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parallel to the surface by which heat transfer is enhanced, i.e. the tunneling evanescent EM 

waves. Following the work of Cravalho et al.[7] and Polder and Van Hove [8], many 

theoretical studies were carried out for systems consisting of two semi-infinite 

planeparallel solid surfaces. The studies aimed to calculate the NFRHT between the 

considered planes using a local dielectric permittivity function, as the optical response of 

the material was considered local, i.e. 𝜀 = 𝜀 𝜔  where 𝜔 is the angular frequency of the 

EM wave [4,9,10−13]. The resultsshowed different behaviors according to the type of the 

considered material at ultra-short separation distances. For dielectrics, the NFRHT follows 

a 1 𝑑2  law starting at distances as large as few hundreds of nm [4,6,8,12,13], where d 

denotes the separation distance between the planes.For metals, the transfer seems to 

saturate at distances below the material skin depth and then diverges with a 1 𝑑2  law at 

extremely small separation distance d below 1 nm [5,12,14]. Following these theoretical 

predictions, some experimental studies were carried out to study the RHT between 

different bodies as the separation distance decreases [14−18]. The obtained results 

confirmed the enhancement of the RHF in the nanometer regime due to the tunneling of 

evanescent EM waves at the surfaces. Some of the experimental studies have roughly 

confirmed the 1 𝑑2  law mostly at micrometric distances [16]. 

Physically, the 1 𝑑2  diverging law as the separation distance d is reduced, cannot be 

followed at extremely small distances as no heat transfer can become infinite; in addition 

to the fact thatat the atomic scale, the continuous behavior of matter does not exist andthe 

matter response necessarily changes for high spatial frequency. This leads to the need of a 

nonlocal description of the matter response as suggested by various authors [4,9,19], where 

the dielectric permittivity function will not be only frequency dependent but also 

wavevector dependent. For the case of dielectrics, Singer et al. [6] have recently shown 

that saturation of theradiative heat transfer coefficient (RHTC)between two semi-infinite 

parallel dielectric planes at short distances is achieved using a single-oscillator model in 

combination with the so-called hydrodynamic model of the dielectric permittivity [20,21], 

based on Halevi−Fuchs theory [22].For the case of two metallic planes, Chapuis et al. [5] 

studied few years ago the Lindhard−Mermin nonlocal dielectric permittivity function 

model and showed that the NFRHT saturated at distances of the order of the 

Thomas−Fermi length and also suppressed the 1 𝑑2  divergence that occurred at extremely 

small distances. 
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 In this article, we are interested in studying the case of highly doped semiconductors. To 

our knowledge, no nonlocal model of the dielectric permittivity for doped semiconductors 

has been studied and approved in the NFRHT study. We will carry our calculations by 

considering highly n-doped silicon (n−Si) planes. Doped Si is obtained when someof the Si 

atomsin the diamond crystal lattice are replaced byelectron donors(As, P, Sb) orelectron 

acceptors(B, Al, In, Ga),and it is thus called n-doped or p-doped Si, respectively. Due to 

theseimpurities,thedopedsilicon iscapable of supportingsurfaceplasmonpolaritonsin the 

near infrared range. Theresonant angular frequencyis thus found inthe near infrared 

anditspositiondepends onthenature ofthe doping(norp)andtheamountofdopants, or in other 

words, the doping concentrationN.Doped Siis of great interest in different technology 

domains including the thermos-photovoltaic applications that are attracting a lot of 

attention and baring extensive research [23−38];our near-field studyof n-Si could be of 

greatconcern for thelatter researches and could enhance theirapplications. 

In the n-doped Si, the number of outer electrons acquired by the dopant exceeds the 

numbers of the silicon atoms. When the dopant concentration is so high that it is 

comparable to the effective density of states of Si, or the host semiconductor in general, the 

band of donor states overlap the bottom of the conduction band. It follows that when the 

concentration of electrons in the conduction band exceeds the effective density of states (in 

the conduction band), the Fermi energy lies within the conduction band and the highly 

n−doped Si is called a degenerate semiconductor. This results in changing the properties of 

Si (or the host semiconductor in general) to resemble those of metals. Thesefacts drive us 

to represent the optical properties of this material using the dielectric permittivity models 

used for metals and eventually applying them in the study of the RHTC between two 

highly n−doped Si planes. 

Our system consists of two semi-infinite parallel solid planes of temperatures 𝑇1 and 𝑇2, 

respectively. They are considered to be separated by a vacuum gap of width d 

(Fig.1).TheRHFis obtained by considering the fluctuational−dissipation theorem that 

describes the EM field in the near field using Maxwell’s equations and was first suggested 

by Rytov [12,39]. The detailed explanation of this theorem and the detailed derivation of 

the RHF are not given here as they are well presented in many references [1,2,4,8,40−42]. 

Therefore, we will only recall the final expressions of the RHF 𝜙 𝑇, 𝑑 and the 

RHTC𝑕𝑟𝑎𝑑  𝑇, 𝑑  [4,6,42]. 
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Figure 1: Two parallel semi-infinite material planes separated by a vacuum gap of widthd. 
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𝛿𝑇 = 𝑇1 − 𝑇2such that 𝛿𝑇 𝑇1 ≪ 1.𝑘0 = 𝜔 𝑐 ,𝜔 is the wave angular frequency and c is the 

speed of light in vacuum, 𝐾 and 𝛾3 =  𝑘0
2 − 𝐾2 are the wavevector components parallel 

and normal to the surface in vacuum, respectively. 𝑟31
𝛼 and𝑟32

𝛼  represent the reflection 

factors for the EM waves of polarization 𝛼 = 𝑠 , 𝑝 incident from medium 3 and reflected 

on medium 1 and 2, respectively. 𝑕0 𝑇, 𝜔 is the derivative of the blackbody specific 

intensity of radiation with respect to temperature (Planck's law), see Eq. (2).  

𝑕0 𝑇, 𝜔 =
ћ𝜔3

4𝜋2𝑐2

ћ𝜔

𝑘𝐵𝑇2
 2 sinh  

ћ𝜔

2𝑘𝐵𝑇
  

−2

   (2) 

whereћ = 1.054571 × 10−34𝐽. 𝑠 is the reduced Planck constant and 𝑘𝐵 = 1.380648 ×

10−23𝐽. 𝐾−1 is Boltzmann constant. It is clear in Eqs. (1) that the RHTC is the sum of the 

contributions of propagative  𝐾 < 𝑘0 and evanescent (𝐾 > 𝑘0) waves of s and p 

polarizations. Thegeneral expressions of the reflection factors (Eqs. 3) [4,6,42] depend on 

the surface impedances 𝑍𝑚
𝛼 between media 3 and m defined as the ratio of the parallel 
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component of the electric field on the parallel component of the magnetic field. Their 

general expressions are given in Eqs. 4 [5,6,42,43]. 
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       (4)  

wherek is the total wavevector, q and K are the perpendicular and the parallel 

wavevector components, respectively.𝜀𝑡 𝑘, 𝜔 and𝜀𝑙 𝑘, 𝜔  denote the transverse and the 

longitudinal components of the dielectric permittivity.Eqs. (4) show that in the general 

case, the dielectric permittivity function is dependent on 𝜔 and 𝑘.In the local case, by 

assuming the medium to be isotropic,𝜀𝑡 𝑘, 𝜔 = 𝜀𝑙 𝑘, 𝜔 = 𝜀 𝜔 .Eqs.(4) are thus 

simplified and by substituting them in the expressions of the reflection factors (Eq. (3)) we 

end up with the very known Fresnel reflection factors Eqs. (5).  

 

𝑟3𝑚
𝑝 =

𝜀𝑚𝛾3 − 𝜀3𝛾𝑚
𝜀𝑚𝛾3 + 𝜀3𝛾𝑚

𝑟3𝑚
𝑆 =

𝛾3 − 𝛾𝑚
𝛾3 + 𝛾𝑚

     (5) 

where𝜀𝑚 = 𝜀 𝜔  is the dielectric permittivity of the medium m and𝛾𝑚 =  𝜀𝑚𝑘0
2 − 𝐾2is 

the normal wavevector component in the medium 𝑚.To calculate the RHTC between two 

semi-infinite parallel planes of n−Si, we use the Drude local model of the dielectric 

permittivity, usually used for metallic planes[4,5,31,42,44].We considered the average 

temperature of the n−Si system to be T=300K (𝑇1 = 300.5𝐾 and 𝑇1 = 299.5𝐾.Theresults 

obtained show that for any considered doping concentration, the contributions of the 

propagative EM waves of s and p polarizations and the contributionof the evanescent EM 

waves of s-polarizationsaturated.The contribution of the evanescent EM waves ofp-

polarization diverged non-physically at extremely small distances as 1/d²; these resultsare 

similar to those obtained in previous work and recalled in the introduction [5,12,14]. 

2 2 2k q K 
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In the following section we will repeat the RHTC study using Lindhard−Mermin nonlocal 

model of the dielectric permittivity. In section three we will present the results and their 

interpretations andthe last section will be devoted to our conclusions. 

II. Theory of the nonlocal model of the dielectric permittivity: 

Lindhard−Mermin nonlocal model 

         In this section, we repeat the calculation of the RHTC between two n−doped Si semi-

infinite parallel planes of average temperature T=300K by considering a nonlocal model of 

the dielectric permittivity. This model differs from the local one by accounting for spatial 

dispersion in the medium so that the dielectric permittivity function is of frequency and 

wavevector dependence, i.e.𝜀 = 𝜀 𝜔, 𝑘 . As we mentioned in the introduction, due the 

metallic-like properties of the highly n−doped Si, we consider in our calculations the 

Lindhard−Mermin nonlocal model of the dielectric permittivity usually applied for metals 

[5,40,45−49]. This model describes the optical properties of a semi-infinite free electron 

gas. It was extended by Mermin [47] from the longitudinal dielectric constant derived by 

Lindhard [50] to obtain finite-electron-lifetime generalized equations. Mermin used the 

relaxation−time approximation to account for the collisions in the electron gas; the 

longitudinal term expression obtained is combined with the transverse term derived by 

Ford and Weber [48,49] to form the nonlocal dielectric model used in our study. 

This model is the classical nonlocal model of the dielectric permittivity for metalsand it 

was shown by Chapuis et al. [5]that using it in the study of the RHTC between two semi-

infinite parallel planes of Al lead to saturation along with different features that were well 

explained, analytically and physically[5,42]. It follows that the validity of this nonlocal 

model in the case of highly n-doped Si system is supported not only by the physical 

characteristics of the material that lead to using this model in the first place, but bythe 

physical significance of the upcoming results as well.   

Lindhard−Mermin nonlocal model of thedielectricpermittivity is composed of longitudinal 

and transversal termsgiven by Eqs. (6) [5,42]: 

 
 
 

 
 𝜀𝐿𝑀

𝑙  𝜔, 𝑧 = 𝜀𝑏 +
3 𝜀𝑏𝜔𝑝

2 

𝜔 + 𝑖
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𝜀𝐿𝑀
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2 

𝜔2 𝜔 + 𝑖 
 𝜔 𝑓𝑡 𝑧, 𝑢 − 3𝑧2𝑓𝑙(𝑧, 𝑢) + 𝑖 𝑓𝑡 𝑧, 0 − 3𝑧2𝑓𝑙(𝑧, 0)  

 
 
 

 
 

   (6) 
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where the detailed expressions of 𝑓𝑙(𝑧, 𝑢),𝑓𝑡 𝑧, 𝑢 ,𝑓𝑙(𝑧, 0) and 𝑓𝑡 𝑧, 0  are given in the 

references [5,42]. 𝑧 = 𝑘 2𝑘𝐹 and𝑢 =  𝜔 + 𝑖 𝑘𝜐𝐹 , 𝑘𝐹 = 𝑚∗𝜐𝐹 ћ  is the Fermi 

wavevector, 𝜐𝐹 =  
2𝑘𝐵𝑇

𝑚∗ log 𝑁 𝑁𝑐   
1 2 

is the Fermi velocity and  = 𝑁𝑒2𝜌 𝑚∗  is the 

losses factor. N denotes the doping concentration, 𝑁𝑐 is the density of carriers at the 

bottomof the conduction band (for T=300K, 𝑁𝑐 ≈ 3.5 × 1018𝑐𝑚−3). 𝑚∗ = 0.27 × 𝑚0is 

the electron effective mass, 𝑚0 = 9.109 × 10−31𝐾𝑔 is the free electron mass, and 

𝑒 = 1.602 × 10−19 𝐶 is the electron charge.𝜀𝑏 = 11.7is the static permittivity.The 

expression of 𝜐𝐹  is deduced from the relation𝐸𝐹 =
1

2
𝑚∗𝜐𝐹

2, taking into account that𝐸𝐹 ≈

𝑘𝐵𝑇log 𝑁 𝑁𝑐  forthe n−doped semiconductors. The validity of the model implies that 

𝜐𝐹 > 0 which is equivalent to the imperative condition 𝑁 > 𝑁𝑐  that should be always 

satisfied.𝜌is the electric resistivity of the doped Si[23,51] and.𝜔𝑝  is the plasma frequency 

given by 𝜔𝑝
2 = 𝑁𝑒2 𝑚∗𝜀𝑏𝜀0  , where 𝜀0 = 8.854 × 10−12𝐹. 𝑚−1is the vacuum 

permittivity. 

It is important to highlight the fact that the main difference between applying the 

Lindhard−Mermin model for metals and applying it for n−doped Si is the dependence of 

the Fermi velocity 𝜐𝐹  on the doping concentration N in the case of Si, where for metals it is 

a constant [5,42]. The dependence of the dielectric permittivity and the different 

parameters of the material on the doping concentration Nallows us to predicta direct 

dependence of the properties of the obtained results on N.  

The reflection factors and the surface impedances needed to calculate the RHTC are given 

by the general Eqs. (3) and Eqs. (4), respectively. By substituting these equations in the 

RHTC equations (Eqs. (1)), we are able to calculate the different contributions to the 

RHTC between two semi-infiniteparallel n−Si planes of average temperatureT=300Kas the 

separation distance d decreases, for the cases where 𝑁 = 1019 𝑐𝑚−3, 1020 𝑐𝑚−3 and 

1021 𝑐𝑚−3. 

III. Results and discussions 

In Fig. 2 we present the plots of the different contributions to the RTHC for 𝑁 =

1020 𝑐𝑚−3 using Lindhard−Mermin nonlocal model of the dielectric permittivity, and the 

total contributions to the RHTC using the same model for three different values of the 

doping concentration. 
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(a) (b) 

Figure 2: (a)Variation of the contributions of the evanescent and the propagative EM waves of s and p 

polarizations to the RHTC as function of the distance between two semi-infinite n−doped Si parallel planes of 

doping concentration 𝑁 =  1020  and average temperature T=300K, for the nonlocal model case. (b)Variation 

of the total radiative heat transfer coefficient (summation of the contributions of the evanescent and 

propagative EM waves of s and p polarizations) as function of the distance between two semi-infinite n−doped 

Si parallel planes of doping concentration 𝑁 = 1019cm−3, 1020cm−3and 1021cm−3,  and average temperature 

T=300K for the nonlocal model case. The two-headed arrow highlights the distance range in which quantum 

effects come into play. 

 

 

In Fig. 2 (a) we observe that all the contributions to the RHTC saturated at short distances 

for 𝑁 =  1020 . Similar plots are obtained for the cases where 𝑁 = 1019cm−3and 𝑁 =

1021cm−3except that the saturation values are different. In Fig.2 (b) we observe that the 

RHTC saturated at short distances for the three cases of the different doping 

concentrations. To analyze the different contributions to the RHTC and their effects, we 

will start with those of the propagative EM waves of s and p polarizations. 

Thecontributions of these waves almost do not depend on the separation distance d(in 

contrary to the contributions of the evanescent EM waves of s and p polarizations) and 

they attain relatively small values at short distances, rendering them with negligible effects 

to the RHTC at these distances scales. The saturation of the contribution of the evanescent 

EM waves of s-polarization which is well interpreted in the local case [5,42] is completely 

similar to the nonlocal case;this contribution is not affected by the nonlocality. The 

nonlocality affected only the contribution of the evanescent waves of p-
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polarization;itsinfinite divergence is replaced by a physical saturation of finite value at 

short distances.By presenting the plots of the RHTC for distances as short as 10−12𝑚, we 

show that saturation is mathematically obtained at extremely short distances where the 

modeling presented here more likely ceases to be valid. Indeed, below 5 Å quantum effects 

dominate; i.e. when the separation distances are around the typical atomic distances, 

quantum effects appear especially for metals (and eventually highly doped 

semiconductors) where electrons are the dominant heat carriers [52−54].It follows 

thatthese quantum effects should be accounted for starting from distances of the order of 

the lattice constant (𝑎 ≈ 5.43Å for Si)as to obtain a physically correct and complete study 

of the RHT [55]. To analyze the saturation results obtained, we plot in Fig. 3 the 

contributions of the evanescent EM waves of p-polarization in the local and the nonlocal 

cases within the “physical” distance range of our study (minimum distance ≈ 1Å). At 

distances of the order of 10𝑛𝑚 the curves of the nonlocal model corresponding to the cases 

where 𝑁 = 1019cm−3and 1020cm−3 deviate from the diverging curves of the local model. 

The deviation of these curves is followed by aslowincreasing rate of their values. The 

curves thensaturateat values two orders of magnitude smaller than those of the diverging 

curves of the local model. The deviation of the curve of the nonlocal model of 𝑁 =

1021cm−3from that of the diverging curve of the local model takes place at 𝑑 ≈ 1𝑛𝑚. The 

curve did not reach the saturation value at 𝑑 = 1Å, but from Fig. 2b we observe that 

saturation takes place at shorter distances. We notice that the curves of the nonlocal model 

tend to saturate starting from distances of the order of the Thomas−Fermi length 𝑙𝑇𝐹 =

𝜗𝐹 𝜔𝑝  [5,41]; 𝑙𝑇𝐹 𝑁 = 1019 𝑐𝑚−3 ≈ 1.86 𝑛𝑚 ,𝑙𝑇𝐹 𝑁 = 1020 𝑐𝑚−3 ≈ 1.05 𝑛𝑚, and 

𝑙𝑇𝐹 𝑁 = 1021 𝑐𝑚−3 ≈ 0.43 𝑛𝑚. Since for metals, and eventually for highly doped 

materials that exhibit metallic-like characteristics, nonlocal effects appear at distances 

smaller than the Thomas−Fermi length [56], it is expected that the saturation starts to take 

place at distances of the order of 𝑙𝑇𝐹; a result attained before for the metallic systems 

[5,42].In Fig. 3 we also notice that the values (almost equal to the saturation values) 

reached by the curves of the cases 𝑁 = 1019𝑐𝑚−1 and 𝑁 = 1020𝑐𝑚−1at extremely short 

distances, are equal and larger than that of the curve of the case 𝑁 = 1021𝑐𝑚−1. For all 

distances larger than few angstroms, the value of the RHTCfor the nonlocal model 

decrease as N increases; a trend shown by the results of the local model for all distances. 

To explain this result, we refer to the interpretations given in references [42,44].It was 

shown that for the case of two n-doped Si planes, the RHT is enhanced significantly due to 
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the excitation of surface plasmon-polaritons, as in the case of metals. The excitation 

frequency of these surface waves was found to be 𝜔𝑝𝑙𝑎𝑠𝑚𝑜𝑛 ≈ 𝜔𝑝 . Due to the dependence 

of the plasma frequency, and eventually the plasmon frequency on the doping level N, the 

value of 𝜔𝑝  will change as N changes. This implies that as the value of 𝜔𝑝  vary within the 

Planck range, the corresponding spectrum shows a similar behavior as Planck spectrum; 

i.e. the radiative spectrum will increase in values as 𝜔𝑝  increases, until reaching a 

maximum, after which it decreases in magnitude. This explains the decrease in the values 

of the RHTC as Ndecreases, in the local model and the nonlocal model cases.  

The above results show that taking into account the nonlocal effects in the dielectric 

permittivity equations allows representing correctly the optical response at short distances 

and lead finally to the physical saturation of the RHTC between the highly n−doped Si 

planes. 

Figure 3: Variation of the contribution of the evanescent EM waves of p-polarization to 

the RHTC as function of the distance between two semi-infinite n-doped Si parallel planes 

of doping concentration 𝑁 = 1019𝑐𝑚−3, 1020𝑐𝑚−3and 1021𝑐𝑚−3 and average 

temperature T=300K, for the local and the nonlocal model cases. For any N, the graph of 

the nonlocal model tend to saturate starting from distances of the order of the 

Thomas−Fermi length; 𝑙𝑇𝐹 𝑁 = 1019 𝑐𝑚−3 ≈ 1.86 𝑛𝑚 ,𝑙𝑇𝐹 𝑁 = 1020 𝑐𝑚−3 ≈
1.05 𝑛𝑚, and 𝑙𝑇𝐹 𝑁 = 1021 𝑐𝑚−3 ≈ 0.43 𝑛𝑚 . 
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An important factor to study is the transmission coefficient of the p-polarized evanescent 

EM waves 4(𝐼𝑚 𝑟31
𝑃  )2𝑒2𝑖𝛾3𝑑  1 −  𝑟31

𝑃  2𝑒2𝑖𝛾3𝑑  
2

 . In Fig.4 we plot its variation in the 

(,K) plane at different distances for the local and the nonlocal models, for the doping 

concentration 𝑁 = 1020𝑐𝑚−3 and average temperature T =300K. 

  

 
 

(a) (b) 

Figure 4: Plot of the transmission coefficient 4(𝐼𝑚 𝑟31
𝑃  )2𝑒2𝑖𝛾3𝑑  1 −  𝑟31

𝑃  2𝑒2𝑖𝛾3𝑑  
2

  of the p-polarized 

evanescent EM waves in the plane (ω,K) for the local model case (a) and the nonlocal model case (b) for 

the doping level 𝑁 = 1020 𝑐𝑚−3 and average temperature T=300K and at different separation distances 𝑑. 
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We notice from the curves of the local model in Fig. 4(a) that at any d, the transmission 

factor increases in magnitude as K increases. As the distance decreases the maximum is 

reached at larger K values. This implies that more modes are able to couple well to the 

transmission as K increases and d decreases leading to the increases of the RHT.This is 

thus consistent with the results shown in Fig. 3 for the infinite increase of the RHTC as the 

separation distance decreases. From the curves of the nonlocal model in Fig. 4 (b), we 

notice that the plot of the transmission coefficient at 𝑑 = 10−7𝑚 is quite similar to that of 

the local model case; at large distances, i.e. in the far-field regime, the nonlocal effects are 

negligible and the results obtained in the local and the nonlocal casesare the same. This is 

consistent with the results shown in Fig. 3 where we observe that the curves of the local 

and the nonlocal models overlap for all distances larger than few nanometers.For shorter 

separation distances,the transmission factor of the nonlocal model case increases as K 

increases; in all cases the range of K values covered by the spectrum is shorter than that 

covered by the spectrum of the local model case. This is consistent with the result shown in 

Fig. 3 where at distance of order of 1𝑛𝑚 the curves of the nonlocal model increase in a rate 

which is much slower than those of the local model curves and they acquire smaller values 

than those of the local model curves. At extremely short distance, the transmission 

coefficient of the nonlocal model acquires a cutoff after which the values decrease 

gradually and tend to zero where no modes are able to be transmitted. This cutoff takes 

place at Kof the order of the inverse of the Thomas−Fermi length 𝐾𝑐𝑢𝑡𝑡𝑜𝑓𝑓 = 1 𝑙𝑇𝐹 ≈

9.4 × 108𝑚−1. This is consistent with the results obtained for the RHTC plots where 

theirtendency to saturate starts to take place at distances of the order of the Thomas−Fermi 

length. Therefore, the results obtained for the RHTC and the supporting results of the 

transmission coefficients spectrum emphasize the fact that the values of wavevectors larger 

than 𝐾𝐹  are not screened by the electron plasma. This leads to the decrease in the value of 

the imaginary part of the reflection factor and eventually to the decay of the transmission 

coefficient; the divergence of the RHT is thus limited. For the other doping concentrations, 

similar spectra of thetransmission coefficient are obtained, leading eventually tosimilar 

observations and arguments. In other words, as the value of the doping concentration 

decreases, the K value at which the cutoff takes place decreases, and in all cases it is of the 

order of the inverse of the Thomas−Fermi length. 
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IV. Conclusions     

 In this work we studied the RHTC between two n−doped Si semi-infinite parallel planes 

as the distance between them decreases. The key-idea in this study is using the dielectric 

permittivity models of metals due to the fact that the highly doped Si acquires metallic-like 

properties. Since the usage of a local model of the dielectric permittivity leads to the 

infinite nonphysical 1/d² divergence of the RHTC at extremely small distances, we 

suggested using a nonlocal model of the dielectric permittivity. In the second part of the 

paper we calculated the RHTC between the n−doped Si planes using the Lindhard−Mermin 

nonlocal dielectric model of the dielectric permittivity. We showed that for all N, the 

contribution of the evanescent p-polarized EM waves saturates as the distance decreases, in 

contrary to the divergence obtained in the local model case. The saturation in each case 

starts to take place at distances of the order of the Thomas−Fermi screening length 𝑙𝑇𝐹 , 

which is consistent with the fact that for metals and materials with metallic-like properties, 

the nonlocal effects appear at distances smaller than 𝑙𝑇𝐹 . We also studied the plot of the 

transmission factor in the plane (ω,K) for the local and the nonlocal cases at distances𝑑 =

10−7𝑚, 10−9𝑚 and 10−12𝑚for the case where 𝑁 = 1020cm−3. In the local case the values 

of the transmission factor increase as K increases while the curves of the nonlocal case 

showed saturation at K values of the order of the inverse of the Thomas-Fermi length for 

short distances, supporting by this the related obtained results of the RHTC 
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