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Abstract 

 
We explore in the present work the near-field radiative heat transfer between two semi-

infinite parallel nonlocal dielectric planes by means of fluctuational electrodynamics. We use 

atheory for the nonlocal dielectric permittivityfunction proposed byHalevi and Fuchs. This 

theory has the advantage to includedifferent models performed in the literature. According to 

this theory, the nonlocal dielectric function is described by a Lorenz-Drude like single 

oscillator model, in which the spatial dispersion effects are represented by an additional term 

depending on the square of the total wavevector k. The theory takes into account the 

scattering of the electromagneticexcitation at the surface of the dielectric material, which 

leads to the need of additional boundary conditions in order to solve Maxwell’s equations and 

treat the electromagnetic transmission problem. The additional boundary conditions appear as 

additional surface scattering parameters in the expressions of the surface impedances. It is 

shown that the nonlocal modeling deviates from the classical 1/d
2
 law in the 

nanometerrangeat distances still larger than the ones where quantum effects are expected to 

come into play. 
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I. Introduction 

 

In the last two decades, a growing theoretical and experimental research has been devoted 

to the study of radiative heat transfer at distances much smaller than the typical wavelength of 

thermal radiation [1-7]. This so-called near field radiative heat transfer follows physical laws 

that are different from the ones governing classical radiative heat transfer i.e. the laws of 

geometrical optics. At subwavelength distances, the wave behavior of light has to be 

considered and phenomena such as tunneling or interferences control radiative heat transfer. 

These phenomena completely change the usual behavior of radiative heat transfer which is 

classically seen as a broadband signal limited in intensity to the exchanges between 

blackbodies. In the near-field, radiative heat transfer which is ruled by the density of 

electromagnetic states can be strongly changed due the presence of additional modes at 

certain frequencies: radiative heat transfer can surpass classical radiation due to the presence 

of modes close to the surface able to tunnel between heated bodies [8-10]. These new features 

have open the way to the search of very promising energetics applications such as near field 

thermophotovoltaics.Indeed, the control of the near-field thermal radiation could lead to a 

quasi-monochromatic transfer enhanced by several orders of magnitude from the far field 

values and potentially leading to high conversion ratios [11-17]. Other applications such as 

cooling [18], nanolithography [19,20] or subwavelength source [21] are concerned with these 

physicslaws changes at subwavelength scales. 

Experimental research has confirmed near field radiative heat transfer theoretical 

predictions. The thermal density of energy is much higher in the near field in comparison to 

the far field, which is due to the presence of surface waves [22], whereas near field radiative 

heat transfer between bodies at different temperatures is increased as well as in tip-surface 

geometry [23-25] or in plane parallel geometry [26-30]. Moreover, the change in thermal 

radiation spectral content has also been observed in the near field [31-33], where a quasi-

monochromatic spectral behavior has been reported above SiC and SiO2. 

In the work presented here, we will focus on the radiative heat transfer behavior between 

two heated semi-infinite parallel dielectric solid planes at small distance of separation d. In 

past theoretical studies, it has been shown that near field radiative heat transfer follows a 1/d
2
 

law as long as the separation distance is of the order of few hundreds of nanometers [2-4,9]. 

Metals follow a quite different behavior due to the presence of magnetic effects which are 

surpassed by the 1/d
2
 law only at distances below the angstrom range [2,34]. At such low 
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separation distances, fluctuational electrodynamics has to be questioned, in particular the fact 

that the material optical response is still local. Moreover, the fact that radiative heat transfer is 

the dominant heat transfer mode has also to be questioned. Of course, when the separation 

distances are going to be around the typical atomic distances in matter, quantum effects could 

appear especially for metals where electrons are the dominant heat carriers [35-37] but also in 

dielectrics for which quantum effects influence has been recently proved with molecular 

dynamics [38]. At these interatomic separation distances, transition to a regime where thermal 

conduction dominates occurs. However, it still remains an open question about whether 

corrections due to the nonlocal optical response of the material appear at distances larger than 

the one where quantum effects appear and at what distances these nonlocal effects prevail. 

To the best of our knowledge, no nonlocal correction to the radiative near field heat 

transfer has been addressed in the past in the case of dielectrics apart from a very 

phenomenological description [39]. In the case of metals however, an important and complete 

work has been performed by Chapuis et al. [34] using the Lindhard-Mermin nonlocal 

dielectric permittivity model. It was shown that a deviation from the 1/d
2
 law was observed 

for separation distances in the angstrom range. In this case it is therefore clear that quantum 

effects will appear at larger distances than nonlocal effects. The goal of this paper is to pursue 

this work of Chapuis et al. [34] and to extend it to dielectric materials where 1/d
2
 law occurs 

at much larger distances typically few hundreds of nanometers, in a domain where it is very 

likely to observea deviation from the local behavior at distances larger than quantum effects 

threshold distance. 

As already suggested, we study in this paper the radiative heat transfer between two semi-

infinite parallel dielectric solid planes as the gap distance 𝑑 between them tends to zero. We 

will carry on this study using a macroscopic nonlocal dielectric permittivity model suggested 

by Halevi and Fuchs [40] in which spatial dispersion is considered. The paper is organized as 

follows: in section II, we briefly review the near field radiative heat transfer calculation 

obtained in the framework of fluctuational electrodynamics formalism for a local modeling of 

the material optical response. In section III, we present the nonlocal modeling of the dielectric 

optical properties using the theory developed by Halevi and Fuchs. This theory is then used to 

calculate the radiative heat transfer coefficient between two 6H-SiC semi-infinite parallel 

planes. In section IV, we present the results obtained and discuss them comparing both local 

and nonlocal optical properties. Section V will be dedicated to the conclusions and future 

outlooks. 
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II. Radiative Heat Transfer Formalism 

 
Fluctuational electrodynamics introduced by Rytov [8,41] states that a body at a 

temperature 𝑇 radiates thermal energy due to the fluctuations of random currents generated by 

electrons in metals or ions in polar crystals. The properties of these currents are given by the 

fluctuation-dissipation theorem relating the currents correlation function (fluctuations) to the 

medium radiative losses (dissipation). These currents radiate an electromagnetic (EM) field 

related to the currents by the Green’s tensors of the system. The emitted surfacedensity of the 

radiative heat flux (in W m
-2) is given by the Poynting vector 1 2 𝑅𝑒  𝑬(𝒓,𝜔) × 𝑯∗(𝒓,𝜔)  , 

where 𝑬(𝒓,𝜔) and 𝑯(𝒓,𝜔) are the electric field and magnetic field, respectively. 

In the most general sense, constitutive relations in a medium that relate bound charges to 

the electric field depend on the wavevector and the frequency so that for example𝑫 𝒌,𝜔 =

𝜖 𝒌,𝜔 𝑬(𝒌,𝜔). When the EM field varies on a spatial scale larger than the microscopic 

characteristic lengths of the propagation medium, the medium is usually considered to be 

local so that 𝑫 𝒓,𝜔 = 𝜖 𝒓,𝜔 𝑬(𝒓,𝜔). When it is not the case, the medium is nonlocal i.e. 

the optical properties depend on the wavevector of the EM field [6,18]. 

As mentioned earlier, the surface density of the radiative heat flux𝜙between two semi-

infinite parallel planes in local thermodynamic equilibrium, maintained at temperatures 𝑇1 and 

𝑇2and separated by a gap distance 𝑑 (Fig 1), can be calculated by means of fluctuational 

electrodynamics. When the temperature difference is small , 𝜙 can be 

linearized and written as a radiative heat transfer coefficient (RHTC)h multiplied by the 

temperature difference𝛿𝑇. The extended derivation of the RHTChas been done by many 

authors [2,3,6,9,42-46], and we just recall here the main expressions: 

 

Figure 1 :Two semi-infinite parallel material planes separated by a gap distance d. 

 

𝜙 𝑇, 𝑑 = ℎ𝑟𝑎𝑑 (𝑇, 𝑑)𝛿𝑇(1) 

 1 2 1 1T T T 
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ℎ𝑟𝑎𝑑  𝑇, 𝑑 =   𝑑𝜔 ℎ𝑝𝑟𝑜𝑝
𝛼  𝑇, 𝑑, 𝜔 + ℎ𝑒𝑣𝑎𝑛
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𝛼 𝑟32

𝛼 𝑒2𝑖𝛾3𝑑  2

+∞

𝑘0  
 
 
 
 

 
 
 
 

(2) 

 

where𝜔 is the wave angular frequency, 𝑘0 = 𝜔 𝑐 , and 𝐾and𝛾3 =  𝜔2 𝑐2 − 𝐾2 are the 

wavevector components parallel and normal to the surface in vacuum, respectively.It is worth 

mentioning here that due to the continuity conditions, K is considered the same in all 

mediums. 𝑟31
𝛼  and 𝑟32

𝛼  represent the reflection factors for the EMwaves of polarization 

𝛼 = 𝑠 , 𝑝 incident from medium 3 and reflected on media 1 and 2, respectively.ℎ0 𝑇, 𝜔 is the 

derivative of the blackbody specific intensity of radiationwith respect to temperature (Planck's 

law). These last quantities are given by the following equations: 

 

 
 
 

 
 𝑟3𝑚

𝑝 =
𝛾3 − 𝜀3 𝜔𝑍𝑚

𝑝

𝛾3 + 𝜀3 𝜔𝑍𝑚
𝑝

𝑟3𝑚
𝑆 =

𝑐2𝛾3𝑍𝑚
𝑆 −𝜔

𝑐2𝛾3𝑍𝑚
𝑆 + 𝜔 

 
 

 
 

(3)    

 

ℎ0 𝑇, 𝜔 =
ћ𝜔3

4𝜋2𝑐2

ћ𝜔

𝑘𝐵𝑇2
 2 sinh  

ћ𝜔

2𝑘𝐵𝑇
  

−2

(4) 

 

Note that Eqs. (2)show that the RHTC is the sum of the contributions of propagative  𝐾 <

𝑘0 and evanescent (𝐾 > 𝑘0) waves of s and p polarizations. Note also that the reflection 

factors depend on the surface impedances𝑍𝑚
𝛼 between media 3 and mwhich are defined as the 

ratio of the parallel component of the electric field on the parallel component of the magnetic 

field. 

Radiative heat transfer calculations were performed for 6H-type silicon carbide (SiC), a 

non-magnetic polar material characterized by a hexagonal crystallographic structure and a 

lattice constant ratio c / a ≈ 4.9. The crystallographic configuration of SiC is widely used in 

research and is studied especially at high temperatures due to its semiconducting and heat 

resistant properties [47]. 
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Let us first recall what is happening in the local case. As an example, we consider two 

6H-SiC semi-infinite parallel planes at temperatures 𝑇1 = 299.5 𝐾 and 𝑇2 = 300.5 𝐾so that 

the average temperature of the system is 𝑇 = 300 𝐾. We start by substituting the Lorentz-

Drude local dielectric function given below in Eq. (5) [48], in the general equations of the 

surface impedances (seeEqs. (6) below)by assuming that the longitudinal and the transverse 

components of the dielectric function are equal in the static limit 𝜀 𝜔 = lim𝑘→0 𝜀𝑡 𝑘, 𝜔 =

lim𝑘→0 𝜀𝑙 𝑘, 𝜔  . 

𝜀 𝜔 = 𝜀∞  1 +
𝜔𝑝

2

𝜔𝑇
2 − 𝜔2 − 𝑖𝛾𝜔

 (5) 

 
 
 

 
 
𝑍𝑚
𝑝 =

2𝑖

𝜋𝜔
 

𝑑𝑞

𝑘2
 

𝑞2

𝜀𝑡 𝑘, 𝜔 −  𝑐𝑘 𝜔  2
+

𝐾2

𝜀𝑙 𝑘, 𝜔 
 

+∞

0

𝑍𝑚
𝑠 =

2𝑖

𝜋𝜔
 

𝑑𝑞

𝜀𝑡 𝑘, 𝜔 −  𝑐𝑘 𝜔  2

+∞

0  
 
 

 
 

(6) 

 

where . 

By substituting these equations into the expressions of the reflection factors as given by Eqs. 

(3), we obtain the classical Fresnel reflection factors: 

 

𝑟3𝑚
𝑝

=
𝜀𝑚𝛾3 − 𝜀3𝛾𝑚
𝜀𝑚𝛾3 + 𝜀3𝛾𝑚

𝑟3𝑚
𝑆 =

𝛾3 − 𝛾𝑚
𝛾3 + 𝛾𝑚

 (7)    

where  
2 2

m m c K    . Then, we replaceEqs. (7) into the expression of the RHTC as 

given by Eqs. (2)to obtainits expression as a function of the separation distance 𝑑. We report 

in Fig 2, the calculated dependences of the different contributions to the RHTC. 

2 2 2k q K 
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Figure 2 :Variation of the radiative heat transfer coefficient (RHTC) (evanescent and 

propagative contributions of EM waves of s and p polarizations) between two semi-infinite 

6H-SiC parallel planes, for the local model case. 

From these graphs,we observe that the evanescent EM wave p term has a well-known 

divergence behaving as 1/𝑑2. This is due to the presence of surface polaritons on SiC which 

increases the density of EM states close to the surface as described in many articles [5-

7,9,15,49-51]. In the case of spolarization, the RHTC saturates when the distance is smaller 

than the skin depth [34].Note on the contrary that the contribution of propagative EM waves 

in both s and p polarizations does not change a lot for submicronic distances since the density 

of EM propagative states at small distances does not change significantly.  

The divergence of the evanescent EM waveppolarization contribution cannot be physical 

at extremely small distances at which the EM fields begin to feel the microscopic variations of 

the matter properties. This led us, as few authors did before, to take into account the nonlocal 

behavior of matter by introducing a nonlocal dielectric permittivity function in order 

toovercome this problem. 

 

III. Nonlocal macroscopic dielectric permittivity function 

theory 

 

Studying the nonlocal behavior of matter is not an easy task and is, to some extent 

controversial. The main problem is that in the presence of nonlocality, an incoming transverse 

EM wave gives birth not only to a single transverse wave in the material but also to a second 
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transverse wave and a supplementary longitudinal wave. In this case, the usual boundary 

conditions on the continuity of the tangential components of 𝑬 and 𝑯are not sufficient to 

solve the transmission problem of Maxwell’s equations. Additional boundary conditions 

(ABC), often involving conditions on the polarization vector have to be set. However, in the 

literature, several ABC have been proposed [52-75]. 

Halevi and Fuchs [40] have suggested a theory in which all ABC (typically conditions on 

the component of polarization or its derivatives at the boundary) developed by different 

authors are included. The advantage of this theory is that it includes the main nonlocal 

modeling developed in the literature.Basically, spatial dispersion effects lead in the dielectric 

function expression to the addition of a term dependent on the square of the wavevector 

𝑘.One of the simplest modeling is to use the single oscillator model in combination with the 

so-called hydrodynamic model [76]. The latter model has been used in a large variety of 

forms. In Halevi and Fuchs modeling, a spatial dispersion parameter𝐷is introduced. It is 

typically related to a diffusion phenomenon of the carriers in the medium. It is homogeneous 

to the square of a velocity divided by a typical frequency.  Under these assumptions: 

𝜀 𝜔, 𝑘 = 𝜀∞  1 +
𝜔𝑝

2

𝜔𝑇
2 − 𝜔2 − 𝑖𝜈𝜔 + 𝐷𝑘2

 (8) 

where , T is the frequency of an isolated transition (for example an 

exciton), and 𝑚𝑒  and 𝑚ℎ  are the electron and hole masses, respectively. The frequency P is a 

measure of the oscillator strengthand 𝜈represents the losses parameter. In the case of SiC, the 

parameters in Eq. (8) take the following values: 𝐷 = 1.77 × 1010𝑚2. 𝑠−2,  𝜔𝑝 = 1.049 ×

1014  𝑟𝑎𝑑. 𝑠−1 , 𝜔𝑇 = 1.49 × 1014  𝑟𝑎𝑑. 𝑠−1  and 𝜈 = 8.97 × 1011  𝑟𝑎𝑑. 𝑠−1.As mentioned 

before, one has to add ABC in order to solve the reflection and transmission problems in 

Maxwell’s equations. The ABC take the following forms as conditions on the polarization 𝜌 

at the interface [40] which allowsobtaining relations between the amplitudes of the waves 

(three transmitted waves and one reflected wave): 

  

where𝜌 denotes the polarization.Eq. (9) apply for p-polarized EM wave. For s-polarized EM 

wave, one has a similar equation for𝜌𝑦 𝑧 . 

 T e hD m m 

     0 0 0   ,    9i i i i z i x z        
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Table 1 : Five different sets of surface scattering parameters proposed in literature. 

ABC 

 

𝑼𝒙 𝑼𝒚 𝑼𝒛 

Kliewer & Fuchs [52-56] 1 1 −1 

Rimbey& Mahan [57-61] −1 −1 1 

Pekar [62-65] −1 −1 −1 

Ting et al. [54] 1 1 1 

Agarwal et al. [66-75] 0 0 0 

 

These ABC therefore necessitate a choice of the ratio 𝛼𝑖/𝛽𝑖of the parametersi and i. 

Different choices correspond to different surface scattering parameters (SSP), imposed in the 

expressions of the surface impedances and the reflection factors coefficients of the system. 

These parameters depend on the nature of the polarization of the EM field (𝑈𝑦 for s 

polarization,𝑈𝑥  and 𝑈𝑧  for p polarization). The derived expressions of the reflectivity and the 

susceptibility depend on these SSP. Halevi and Fuchs have made a correspondence between 

the SSP values (Ux,UyandUz) and the ABC taken by different authors (Table 1). 

 

 

𝛼𝑗

𝛽𝑗
= 𝑖

1 − 𝑈𝑗

1 + 𝑈𝑗
         𝑗 = 𝑥, 𝑧

 =   𝜔2 − 𝜔𝑇
2 + 𝑖𝜈𝜔 − 𝐷𝐾2 𝐷  1 2 

    (10) 

 

We obtain the final expressions of the surface impedances by performing some algebra 

and introducingthe parameters 𝑎𝑙and 𝑏𝑙 . The latter are given by: 

 

 
  
 

  
 𝑎𝑙 =

1

𝑞𝑙 − Γ
+

𝑈𝑥
𝑞𝑙 + Γ

𝑏𝑙 =  
1

𝑞𝑙 − Γ
+

𝑈𝑧
𝑞𝑙 + Γ

 𝜇𝑙 𝑙 = 1,2,3

𝜇1 = −
𝐾

𝑞1
, 𝜇2 = −

𝐾

𝑞2
 , 𝜇3 =

𝑞3

𝐾  
  
 

  
 

(11) 

 

andthe nonlocal surface impedances are expressed as: 
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 𝑍𝑝 =

 1,2 +  2,3 +  3,1 

𝜀1  
𝑘0

𝑞1
  2,3 + 𝜀2  

𝑘0

𝑞2
  3,1 

 ,  𝑖, 𝑗 = 𝑎𝑖𝑏𝑗 − 𝑏𝑖𝑎𝑗

𝑍𝑠 =
𝑘0 𝑎1 − 𝑎2 

𝑞2𝑎1 − 𝑞1𝑎2  
 
 

 
 

    (12) 

In Eq. (12) we made use of the definition . The reflection factors at the 

surface are then obtained using the following general equations: 

 
𝑟𝑝 =

𝑍𝑝−𝑍𝑝
𝐿𝑜𝑐𝑎𝑙

𝑍𝑝+𝑍𝑝
𝐿𝑜𝑐𝑎𝑙

𝑟𝑠 =
𝑍𝑠−𝑍𝑠

𝐿𝑜𝑐𝑎𝑙

𝑍𝑠+𝑍𝑠
𝐿𝑜𝑐𝑎𝑙

 (13) 

 

where  and . 

Considering the nonlocal medium to be infinite, the frequency and the wavevector should 

satisfy the following dispersion equations for transverse and longitudinal waves, respectively: 

 
𝜀 𝜔, 𝑘 = 𝑘2 𝑘0

2 

𝜀 𝜔, 𝑘 = 0
       (14) 

The solution of these equations gives three expressions for the zcomponent of the 

wavevector (𝑞𝑧 = 𝑞1, 𝑞2and𝑞3), that we substituted in the previous equations for each set of 

SSP to calculate thecorresponding surface impedances and reflection factors. 

One can wonder what is the maximal spatial frequency for which the nonlocal modeling 

presented here remains valid. Clearly, in this modeling, the discrete nature of the atoms is not 

taken into account which will appear for typical sizes of the order of the atomic size i.e. in the 

angstrom range.  This means that the modeling will lose its pertinence for spatial frequencies 

larger that 2𝜋/10−10 or separation distances smaller than a fraction of a nanometer. 

 

IV. Results and discussions 

 
Nonlocal RHTC variations as a function of the separation distance dbetween two 6H-SiC 

semi-infinite parallel planes are plotted in Fig3. Each nonlocal graph corresponds to a 

different set of ABC. Up to a distance of approximately 𝑑 ≈ 10−7𝑚, the RHTC calculated in 

both local and nonlocal models are almost identical (see the inset). This is the domain of the 

local regime in the radiative heat transfer, where the use of a nonlocal dielectric function does 

not bring any change compared to the case where local EM properties are considered. Let us 

remind the reader what is happening in this regime: 

 ;  1,2,3l lq l  

1 1 0

Local

PZ q k 0 1

Local

SZ k q
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Figure 3 :Variation of the total radiative heat transfer coefficient (RHTC) between two semi-

infinite 6H-SiC parallel planes, for the local model and the five ABC of the nonlocal model; 

(1): Rimbey& Mahan, (2): Agarwal et al., (3): Ting et al., (4): Kliewer and Fuchs, (5): Pekar. 

The inset shows the variation of the total RHTC for the nonlocal models in comparison with 

the local model. 

At large distances compared to the thermal wavelength, exponentially decaying 

evanescent EM waves do not contribute to the RHTC. The value of the latter is then limited to 

the contribution of propagative EM waves and is somewhat less than the value 4𝜍𝑇3. This is 

due to the fact that SiC is highly absorbent over a wide spectral range, except around 𝜆 =

10.6 µ𝑚 where it is reflective. We also note that the term of thep polarized propagative EM 

waves gives values slightly higher than those of the s polarized propagative EM waves due to 

the existence of the Brewster angle for which the reflection contribution of the p polarized 

EM waves is zero and thus allowing greater absorption. 

At subwavelength distances, some of the evanescent EM waves decay slowly (those with 

a small parallel wavevectorK but Kis still larger than k0) so that these waves can tunnel 

between the surfaces. Their contributions to the RHTCcan become dominant. Indeed, the 

contribution to the transfer (Eq. (2)) appears as a double integral over the angular frequency 

and the wave vector K.The integration domain in angular frequency is governed by the Planck 

spectrum emission band whereas the integration in Kdomain is typically between 0 and 2𝜋/𝑑. 

For large wavevector𝐾, the static limit of the reflection factor 𝑟3𝑚
𝑠 =  𝜀 − 1 4 𝐾 𝑘0  2  

tends to zero leading to saturation of the heat flux at distances smaller than the skin depth[34]. 
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Concerning theppolarized term, the reflection factor 𝑟3𝑚
𝑃 ≈  𝜀 − 1  𝜀 + 1   gives a finite 

non-zero value for large K. If there is a frequency for which 𝜀 = −1, as it is the case for 

materials supporting surface waves [6], the contribution to the transfer will be very large at 

this frequency. As integration over K is between 0 and 2𝜋/𝑑,  it easy to see from Eq. (2)that 

the transfer will follow a 1/d
2
dependence dominated spectrally by the resonant frequency. 

Note, that this enhancement corresponds also to a large increase of the EM density of states 

which number at the surface increases as 1 𝑑2  for small distances [6].  

At distances of the order of10−8𝑚, one sees that the nonlocal graphs deviate from the 

1 𝑑2  asymptote. We note that this distance is of the order of the distance at which the term 

𝐷𝑘2 dominates in the denominator of theexpression of the nonlocal dielectric function [Eq. 

(8)]. For sufficiently large k, the reflection coefficient will go to zero contrary to the local 

case. This means that the transfer is controlled by a critical wavevector limit and not by the 

inverse of the separation distance.Let us consider𝑘 ∼ 2𝜋/𝑑at a certain distance𝑑 and the 

condition 𝐷𝑘2 ≫ 𝜔𝑇
2 in the denominator ofEq. (8), we find a critical distance 𝑑 ∼

 𝐷4𝜋2/𝜔𝑇
2approximately equals to 5 × 10−9𝑚 for which nonlocal behavior will be 

dominant. This distance can be seen as the distance travelled by the resonant heat carriers on 

an oscillation period at 𝜔𝑇 .We therefore find that the nonlocal behavior occurs at distances of 

few nanometers, for which in principle quantum effects are still non-dominant since these 

effects have been reported at sub nanometer scale [35-38].At distances of the order of 1 nm, 

the deviation of the nonlocal graphs from the local graph is significant and the values attained 

by these graphs are of one order of magnitude difference. 

Moreover, in the graphs representing the nonlocal media with the ABC of Ting et al. 

andKliewer and Fuchs, we note two bumps in the graphs at distances𝑑1 ≈ 1 × 10−8𝑚and 

𝑑2 = 2 × 10−8𝑚, respectively. It is not trivial to link these distances to the optical 

parameters. We have shown however by a parametric study that the bump position is closely 

related to the 𝜔𝑝  value and is almost insensitive to the value of the losses parameter ν in Eq. 

(8). 

Atsubnanometric separation distances, all radiative heat transfer calculation obtained with 

different ABC have very similar behaviors. They all saturate to a certain value that can be 

considered as the ultimate radiative conductance between two semi-infinite parallel planes of 

6H-SiC.Note that ultimately small values of the separation distance  10−12  𝑚  taken in the 

inset graph of Fig. 3 are nonphysical but they are considered just in order to show that the 

nonlocal matter description mathematically leads to a saturation value in the radiative heat 
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transfer. This conductance is around 10
6
 W m

-2
 K

-1
. Note that this conductance is much 

smaller than the one which is obtained in conduction if we make the ratio of the thermal 

conductivity of SiC (400 W m
-1

 K
-1

) on the size of the typical distance between atoms in 

SiC 𝑟𝑜 = 15.1 × 10−10𝑚 .This means that heat transfer by radiation is always beaten by 

conduction heat transfer in the matter. This also means that when the distances are going to 

reduce as small as 1 nm, other effects such as quantum effects, that are completely different 

from electromagnetic effects described here have to be taken into account to describe the full  

heat transfer process. As this work limits itself to radiative heat transfer, this quantum 

treatment is beyond the scope of this paper. 

The saturation value of the thermal radiation can also be interpreted in terms of the 

number of coupled modes. Heat transfer can actually be written in the Landauer way as a 

summation over the system eigenmodes of the product of the number of modes by the mean 

energy carried by each mode and by the transmission coefficient of the mode through the 

cavity. Each mode of the system being determined by the angular frequency and the parallel 

wavevector, summation is performed over these two quantities.The transmission coefficients 

are given by the following equations for the propagative and evanescent contributions, 

respectively: 

 
 
 
 

 
 
 
ℎ𝑟𝑎𝑑  𝑇, 𝑑 =   𝑑𝜔ℎ0 𝑇, 𝜔 

+∞

0𝛼=𝑆,𝑃

 
𝐾𝑑𝐾

𝑘0
2

∞

0

𝜏(𝜔, 𝐾)

𝜏(𝜔, 𝐾 < 𝑘0 = 𝜔 𝑐 ) =
 1 −  𝑟31

𝛼  2  1 −  𝑟32
𝛼  2 

 1 − 𝑟31
𝛼 𝑟32

𝛼 𝑒2𝑖𝛾3𝑑  2

𝜏(𝜔, 𝐾 > 𝑘0) =
4𝐼𝑚 𝑟31

𝛼  𝐼𝑚 𝑟32
𝛼  𝑒2𝑖𝛾3𝑑

 1 − 𝑟31
𝛼 𝑟32

𝛼 𝑒2𝑖𝛾3𝑑  2  
 
 
 

 
 
 

(15) 

Finally, after integration over 𝜔 and K, the RHTC can be seen as the total number of 

coupled modes per surface unit multiplied by the quantum of the thermal conductance

2 2

0 3bg k T h  whichcan be seen as the rate at which heat is transported by a bosonic carrier 

channel. Therefore the number of modes per surface unit at 300 K can be estimated and is 

around 3 x10
15

 coupled modes per m
2
. 

In order to understand which modes contribute to the radiative heat transfer when the two 

SiC surfaces are approached one to each other, we plot the transmission coefficientfor the 

evanescent EM waves4(𝐼𝑚 𝑟31
𝑃  )2𝑒2𝑖𝛾3𝑑  1 −  𝑟31

𝑃  2𝑒2𝑖𝛾3𝑑  
2

 at different separation distances 

for the local model and the nonlocal model with Kliewer andFuchsABC. The transmission 

coefficient plotsin the  𝜔, 𝐾  plane represented as a function of the angular frequency 𝜔and 
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the parallel wavevector Kare reported inFig. 4. We note that for a separation distance of 100 

nm, the transmission coefficients in both cases are very similar. The modes are very well 

coupled (𝜏 = 1) for the modes corresponding to coupled surface phonon-polaritons of SiC in 

the cavity. For the local dielectric modeling case, the transmission coefficient map has a 

similar shape when the separation distance is reduced except that more and more modes 

contribute to the transfer. We see that the same map shape is obtained as long as we increase 

the parallel wavevector scale as the inverse of the separation distance. This explains why the 

transfer increases as 1/d
2
 and why the spectral contributions to the transfer are always 

occurring at the same frequencies. Indeed, as the separation distance decreases, the shape of 

the transfer spectrum does not change except that the scale increases as 1/d
2
. This spectrum is 

narrow and the transfer occurs around surface-polaritons frequencies. 

  

  
(a)                                                                     (b) 

Figure4:  2D-plot in the plane (,K) of the transmission coefficient 

4(𝐼𝑚 𝑟31
𝑃  )2𝑒2𝑖𝛾3𝑑  1 −  𝑟31

𝑃  2𝑒2𝑖𝛾3𝑑  
2

  of the p-polarization evanescent EM waves for the 

local case (a) and the nonlocal case ofKliewer and Fuchs ABC (b) at different separation 

distances𝑑. 
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On the other hand, the case of the nonlocal modeling of the dielectric function, shows 

a somewhat different situation. We note that most of the transfer still occurs around phonon-

polariton angular frequencies. However, by decreasing the distance, the transmission 

coefficient map starts to show a clear cut-off in the parallel wavevector. Contrary to the local 

case, for separation distances below 1 nm, the transmission coefficient map does not change. 

We note that the angular frequency domain at which the transfer occurs broadens. Moreover, 

there are no modes able to well couple for parallel wavevector larger than few hundreds of k0. 

This can be seen in Fig. 5 where the radiative transfer spectrum (a) is represented with the 

density of EM energy spectrum (b). We see that the spectrum broadens and saturates as the 

distance is reduced. We also show that the transfer spectrum is very similar to the energy 

density spectrum. This is not surprising since this last quantity is directly proportional to the 

local density of EM states (LDOS) and the transfer spectrum is also related to the LDOS. 

  

 
 

(a)                                                             (b) 
Figure5:Plots of the spectral energy flux (a) and the spectralEM energy density (b) of the P-

polarization evanescent EM waves as functions of the angular frequency for the nonlocal case 

of Kliewer and Fuchs ABC at different distancesd. 
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V. Conclusions 
 

We have studied in this work the radiative heat transfer between two semi-infiniteparallel 

dielectric 6H-SiC planes taking into account the nonlocal corrections in the material optical 

properties.  We chose to followHalevi and Fuchs nonlocal dielectric permittivity function 

theory that considers scattering of the electromagnetic excitation at the surface of the 

dielectric material and which includes most of the different nonlocal modeling of dielectrics. 

This assumption leads to defineadditional boundary conditions (ABC) needed to solve the 

transmission problem in Maxwell’s equations. These ABC appear as additional surface 

scattering parameters in the derived expressions of the surface impedances and reflection 

factors. Taking into account the spatial dispersion that is given as an additional term 

depending on the square of the total wavevector in the dielectric permittivity function, we 

studied the above mentioned different cases to calculate the radiative heat transfer coefficient 

(RHTC). We showed that for separation distances between few nanometers and few hundreds 

of nanometers, the RHTC follows a 1/d
2
dependence law identical for both nonlocal and local 

material optical responses. On the other hand, at distances of few nanometers, the RHTC 

calculated with nonlocal modeling deviates from 1/d
2
 law: heat transfer is also broadened 

when compared to the local case. 

Different features were revealed from the RHTC graphs, as two bumps appeared for the 

cases of Kliewer andFuchsand Ting et al. ABC.Saturation of the flux in the nonlocal case is 

obtained for distances much smaller than the atomic size, where the modeling presented here 

more likely ceasesto be valid. At sub nanometer scale, heat transfer by electromagnetic waves 

probably ceases to be the dominant transfer process and quantum effects enter into play 

leading to a transition between radiation and conduction [35-38].  

In futureworks,we will have to compareour theoretical resultswith 

experimentalmeasurements of near field thermal radiation. This would allow us to determine 

at the same time the distance at which the radiative heat transfer stops to bethe dominant heat 

transfer process (below 1nm) as well as the distance where local medium approximation 

becomes not valid (few nanometers). Experiment measurement could also be a wayto 

choosebetween the different ABC that are suggested in the literature. The existence or non-

existence of “bumps” could eliminate some of the modeling approachesandsuggest a 

consistent nonlocaldielectricpermittivity function model for dielectrics.
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