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UNIFORM SEMIGROUP SPECTRAL ANALYSIS OF THE DISCRETE,
FRACTIONAL & CLASSICAL FOKKER-PLANCK EQUATIONS

STEPHANE MISCHLER AND ISABELLE TRISTANI

ABSTRACT. In this paper, we investigate the spectral analysis (from the point of view of semi-
groups) of discrete, fractional and classical Fokker-Planck equations. Discrete and fractional
Fokker-Planck equations converge in some sense to the classical one. As a consequence, we first
deal with discrete and classical Fokker-Planck equations in a same framework, proving uniform
spectral estimates using a perturbation argument and an enlargement argument. Then, we do
a similar analysis for fractional and classical Fokker-Planck equations using an argument of en-
largement of the space in which the semigroup decays. We also handle another class of discrete
Fokker-Planck equations which converge to the fractional Fokker-Planck one, we are also able
to treat these equations in a same framework from the spectral analysis viewpoint, still with
a semigroup approach and thanks to a perturbative argument combined with an enlargement
one. Let us emphasize here that we improve the perturbative argument introduced in [7] and
developed in [11], relaxing the hypothesis of the theorem, enlarging thus the class of operators
which fulfills the assumptions required to apply it.
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1. INTRODUCTION
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1.1. Model and main result. In this paper, we investigate from a spectral analysis point of
view some discrete and fractional Fokker-Planck equations. They are simple models for describing
the time evolution of a density function f = f(t,z), t > 0, x € R?, of particles undergoing both

diffusion and (harmonic) confinement mechanisms and write
(1.1) Orf =Aof =D f +div(zf).

The diffusion term may be either a discrete diffusion (Section 2)

D.(f) = ke x f = ),
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2 S. MISCHLER AND I. TRISTANI

for a convenient (centered, nonnegative, smooth and decaying fast enough) kernel k, with the usual
notation k.(x) = k(z/¢)/e?, e > 0. It can also be a fractional diffusion (Section 3)

12 D)= (A F fo) =, [ TN oo )

dy,

with £ € (0,2), x centered in D(R?) satisfying 1,1y < X < 1p(@,2), and a convenient renor-
malization constant c. > 0. Both families of equations are related to the classical Fokker-Planck
equation, because in the limit £ — 0, one may recover

Of = ANof = Af +div(zf).
In Section 4, the diffusion term is a fractional one, discrete for e > 0:

De(f) = ke * f — ||kl f

where k. is another convenient kernel which converges towards the kernel of the fractional diffusion
operator kg 1= co | - |74 for some fixed a € (0,2). In the limit ¢ — 0, one may recover the
fractional Fokker-Planck equation

Of = Aof = —(=A)*2f +div(zf).

The main features of these equations are (expected to be) the same: they are mass preserving,
positivity preserving, have a unique positive stationary state with unit mass and that stationary
state is exponentially stable, in particular

(1.3) f(t) =0 as t— oo,

for any solution associated to an initial datum fy with vanishing mass. Such results can be obtained
using different tools as the spectral analysis of self-adjoint operators, some (generalization of)
Poincaré inequalities or logarithmic Sobolev inequalities as well as the Krein-Rutman theory for
positive semigroup.

The aim of this paper is to initiate a kind of unified treatment of these equations and more
importantly to establish that the convergence (1.3) is exponentially fast uniformly with respect
to the diffusion term for a large class of initial data which are taken in a fixed (large) weighted
Lebesgue or weighted Sobolev space X. Our approach is a semigroup approach in the spirit of the
semigroup decomposition framework introduced by Mouhot in [10] and developed subsequently in
[7,4, 12, 6]. A typical result we are able to prove is the following.

Theorem 1.1 (rough version). There exist e € (0,2), a < 0 and C > 1 such that:

[Sa. (£)f =TI, 082, () fllx < Ce®||f —Ha.ofllx Vt>0, Vee[0,e), VfeX,

where X is (for instance) a L' weighted space, Sy_(t) = eM<t stands for the semigroup associated

to the generator A, and Ila_o for the projector onto the null space of A..

Theorem 1.1 generalizes to the discrete diffusion Fokker-Planck equation and to the discrete
fractional Fokker-Planck equation similar results obtained for the classical Fokker-Planck equation
in [4, 6] (Section 2) and for the fractional one in [12] (Section 4). It also makes uniform with
respect to the fractional diffusion parameter the convergence results obtained for the fractional
diffusion equation in [12] (Section 3). It is worth mentioning that there exists a huge literature
on the long-time behaviour for the Fokker-Planck equation as well as (to a lesser extend) for the
fractional Fokker-Planck equation. We refer to the references quoted in [4, 6, 12] for details. There
also probably exist many papers on the discrete diffusion equation since it is strongly related to
a standard random walk in R?, but we were not able to find any precise reference in this PDE
context.
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1.2. Method of proof. Let us explain our method. First, we may associate a semigroup Si_ to
the evolution equation (1.1) in many Sobolev spaces, and that semigroup is mass preserving and
strongly positive. In other words, Sa, is a Markov semigroup and it is then expected that there
exists a unique positive and unit mass steady state G to the equation (1.1). Next, we are able to
establish that the semigroup splits as

(1.4) Sp, = SL 4852, Sl e T, finite dimensional, S? = O(e™), a <0,

in these many weighted Sobolev spaces. The above decomposition of the semigroup is the main
technical issue of the paper. It is obtained by introducing a convenient splitting

(1.5) A= A +B.

where B. enjoys suitable dissipativity property and .A. enjoys some suitable B.-power regularity (by
analogy with the B.-power compactness notion introduced by Voigt [13]). It is worth emphasizing
that we are able to exhibit such a splitting with uniform (dissipativity, regularity) estimates with
respect to the diffusion parameter € € [0, 0] in several weighted Sobolev spaces.

As a consequence of (1.4), we may indeed apply the Krein-Rutman theory developed in [9, 5]
and exhibit such a unique positive and unit mass steady state G.. Of course for the classical and
fractional Fokker-Planck equations the steady state is trivially given through an explicit formula
(the Krein-Rutman theory is useless in that cases). A next direct consequence of the above spectral
and semigroup decomposition (1.4) is that there is a spectral gap in the spectral set X (A.) of the
generator A., namely

(1.6) e :==sup{Re & € Z(A)\{0}} <0,
and then that an exponential trend to equilibrium can be established, namely
(1.7) 1Sa. () fo — Gellx < Coe®||fo — Gellx VYVt >0, Ve €[0,e0], Va > A,

for any unit mass initial datum fy € X.

Our next step consists in proving that the spectral gap (1.6) and the estimate (1.7) are uniform
with respect to &, more precisely, there exists A* < 0 such that A\. < A* for any ¢ € [0,¢0] and C-
can be chosen independent to € € [0, g¢].

A first way to get such uniform bounds is just to have in at least one Hilbert space E. C L'(R%)
the estimate

VIED®Y. ()= [ fde=0, (AfDp <Nl

and then (1.7) essentially follows from the fact that the splitting (1.5) is true with operators
which are uniformly bounded with respect to ¢ € [0,e0]. It is the strategy we use in the case
of the fractional diffusion (Section 3) and the work has already been made in [12] except for the
simple but fundamental observation that the fractional diffusion operator is uniformly bounded
(and converges to the classical diffusion operator) when it is suitable (re)scaled.

A second way to get the desired uniform estimate is to use a perturbation argument. Observing
that, in the discrete cases (Sections 2 and 4),

Ve e [0,e0], A:—Ag=0(e),

for a suitable operator norm, we are able to deduce that ¢ — A. is a continuous function at 0,
from which we readily conclude. We use here again that the considered models converge to the
classical or the fractional Fokker-Planck equation. In other words, the discrete models can be
seen as (singular) perturbations to the limit equations and our analyze takes advantage of such a
property in order to capture the asymptotic behaviour of the related spectral objects (spectrum,
spectral projector, ...) in order to get the above uniform spectral decomposition. This kind of
perturbative method has been introduced in [7], improved in [11]. In Section 4, we again improve
it in the sense that we are able to relax the assumptions needed to use such an argument, some of
the assumptions are only required to be satisfied on the limit operator (¢ = 0).
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1.3. Comments and possible extensions.

Motivations. The main motivation of the present work is rather theoretical and methodological.
Spectral gap and semigroup estimates in large Lebesgue spaces have been established both for
Boltzmann like equations and Fokker-Planck like equations in a series of recent papers [10, 7,
4,9, 2, 1, 12, 6, 8]. The proofs are based on a splitting of the generator method as here and
previously explained, but the appropriate splitting are rather different for the two kinds of models.
The operator A is a multiplication (0-order) operator for a Fokker-Planck equation while it is an
integral (—1-order) operator for a Boltzmann equation. More importantly, the fundamental and
necessary regularizing effect is given by the action of the semigroup Sp. for the Fokker-Planck
equation while it is given by the action of the operator A. for the Boltzmann equation. Let
us underline here that in Section 4, we exhibit a new splitting for fractional Fokker-Planck like
operators (different from the one introduced in [12]) in the spirit of Boltzmann like operators
(the operator A. is an integral operator whereas it was a multiplication operator in [12] and in
Section 3). Our purpose is precisely to show that all these equations can be handled in the same
framework, by exhibiting a suitable and compatible splitting (1.5) which does not blow up and
such that the time indexed family of operators A.Sp. (or some iterated convolution products of
that one) have a good regularizing property which is uniform in the singular limit & — 0.

Probability interpretation. The discrete and fractional Fokker-Planck equations are the evolution
equations satisfied by the law of the stochastic process which is solution to the SDE

dX, = - X, dt — d.Z7,
where Zf is the Levy (jump) process associated to k./e? or c./|z|9727¢. For two trajectories X;

and Y; to the above SDE associated to some initial datum X, and Yp, and p € [1,2), we have
d| Xy = Y|P = —p|X; — Yi[Pdt,
from which we deduce
E(|X; - Vi[P) < e"E(|Xo - YoP), Vt>0.
Denoting by f-(t) the law of X; and G, the law of the stable process Y;, we classically deduce the
Wasserstein distance estimate
(1.8) Wp(fe(t),Ge) < e™" Wy(fo,Ge), YVt =0.

Estimate (1.8) has to be compared with (1.7). While the proof of (1.8) is just straightforward, the
proof of (1.7) is not. In particular, for p = 1, the Kantorovich-Rubinstein Theorem says that (1.8)
is equivalent to the estimate

(19) ||f€(t> - GEH(WI,OO(]Rd))/ < e_t ||f0 - G€||(W1,oo(Rd))/, Vit > 0.

Estimates (1.8) and (1.9) have to be compared with (1.7). Proceeding in a similar way as in [9, 6]
it is likely that the spectral gap estimate (1.9) can be extended (by “shrinkage of the space”)
to a weighted Lebesgue space framework and then to get the estimate in Theorem 1.1 for any
a € (—1,0).

Trotter-Kato. From the Trotter-Kato formula
SA. — Sag = Sa. * (Ae — Ag)Sa,

€

and the two observations
D(AY") € D(A2) € D(Ag), A= = Aol pag)x = O(),
we should deduce
[Sa. — SAo||D(Ag)—>X = O(e).

We believe that these arguments can be made rigorous and then that the same analysis we have
performed here should make possible to improve the above estimate into

Sup [ Sa. (£) = S0 (Dl x) e " =0(e).
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Singular kernel and other confinement term. We also believe that a similar analysis can be handle
with more singular kernels that the ones considered here, the typical example should be k(z) =
(0_1+01)/2 in dimension d = 1, and for confinement term different from the harmonic confinement
considered here, including other forces or discrete confinement term. In order to perform such an
analysis one could use some trick developed in [9] in order to handle the equal mitosis (which uses
one more iteration of the convolution product of the time indexed family of operators A.S5,).

Linearized and nonlinear equations. We also believe that a similar analysis can be adapted to
nonlinear equations. The typical example we have in mind is the Landau grazing collision limit of
the Boltzmann equation. One can then expect to get an exponential trend of solutions to its asso-
ciated Maxwellian equilibrium which is uniform with respect to the considered model (Boltzmann
equation with and without Grad’s cutoff and Landau equation).

Kinetic like models. A more challenging issue would be to extend the uniform asymptotic analysis
to the Langevin SDE or the kinetic Fokker-Planck equation by using some idea developed in [1]
which make possible to connect (from a spectral analysis point of view) the parabolic-parabolic
Keller-Segel equation to the parabolic-elliptic Keller-Segel equation. The next step should be to
apply the theory to the Navier-Stokes diffusion limit of the (in)elastic Boltzmann equation. These
more technical problems will be investigated in next works.

1.4. Outline of the paper. Let us describe the plan of the paper. In each section, we treat a
family of equations in a uniform framework, from a spectral analysis viewpoint with a semigroup
approach. In Section 2, we deal with the discrete and classical Fokker-Planck equations. Section 3 is
dedicated to the analysis of the fractional and classical Fokker-Planck equations. Finally, Section 4
is devoted to the study of the discrete and fractional Fokker-Planck equations.

1.5. Notations. For a (measurable) moment function m : R? — R, we define the norms

k
N erimy = I mllzo@ay, 1 Ipbnimy = DN iy k21,
i=0

and the associated weighted Lebesgue and Sobolev spaces L?(m) and W (m), we denote H*(m) =
WH2(m) for k > 1. We also use the shorthand LP and WP for the Lebesgue and Sobolev spaces
LP(m) and WP (m) when m(z) = (z)", (z) := (1 + |z|?)/2.

From now on, we fix a polynomial weight m(z) := (z)? with ¢ > 0, the range of admissible ¢
will be specified in each section.

Throughout this paper, we will use the same notation C' for positive constants that may change
from line to line. Moreover, the notation A ~ B shall mean that there exist two positive constants
Cq, C5 such that C1 A < B < (L A.

Acknowledgments. The research leading to this paper was (partially) funded by the French
“ANR blanche” project Stab: ANR-12-BS01-0019. The second author has been partially supported
by the fellowship I’Oréal-UNESCO For Women in Science.

2. FROM DISCRETE TO CLASSICAL FOKKER-PLANCK EQUATION

In the sequel, we consider a kernel k € W21(R9) N Léq . 3 satisfying the centered condition

1 1
(2.1) / k(z) x de=10 1,
R TRx 21,

as well as the positivity condition: there exist s, > 0 such that

(22) k Z K’IlB(O,T)-
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Let us notice that assumptions made on %k imply

(2.3) EQ(&)SCIK—’;@, Ve e R?

for some constant C' > 0.

We define k.(z) := 1/e%k(z/e), * € RY for ¢ > 0, and we consider the discrete and classical
Fokker-Planck equations

0uf = (ke wa f = f) +diva(ef) = Acf, €30
atf = Azf + dlvz(zf) = AOf

(2.4)

The main result of the section reads as follows.

Theorem 2.1. Assume q > d/2+ 5 and consider a kernel k € W21 (R%) N L, 3 which satisfies
(2.1) and (2.2).

(1) For any e > 0, there exists a positive and unit mass normalized steady state G. € L}(R?)
to the discrete Fokker-Planck equation (2.4).

(2) There exist an explicit constant ag < 0 and a constant eg > 0 such that for any e € [0,e¢], the
semigroup Sp_ (t) associated to the discrete Fokker-Planck equation (2.4) satisfies: for any f € L;
and any a > agp,

1Sa. () f = Gy < Cae™ |f = Ge(f)llLz, ¥E=0
for some explicit constant C, > 1. In particular, the spectrum X(A¢) of Ac satisfies the separation
property 3(A:) N A, = {0} in L}].

The method of the proof consists in introducing a suitable splitting A, = A, + B, in establishing
some dissipativity and regularity properties on B, and A.Sp. and finally to apply the Krein-
Rutman theory revisisted in [9, 5] and the perturbation therory developed in [7, 11, 5].

2.1. Splitting of A.. We recall that x € D(RY) is centered and satisfies Tro,1) < x < 1p0,2),
we define xr by xr(z) := x(x/R) for R > 0 and we denote x% := 1 — xr.
We define the splitting of A, for € > 0 as follows.
Splitting of A. for e > 0. We define
Ao f =M xr (ke * f)
and

B.f = (Ei —M) (ke * £ = 1)+ M X (ke f = ) + div(af) = Mxa f.

for some constants M, R to be chosen later. One can notice that A, = A, + B..
Splitting of Ag. We define Agf := M xrf and By f := Aof — M xgrf so that Ag = Ag + Bp.

2.2. Convergences A. — Ay and B. — By.
Lemma 2.2. Consider s € N. The following convergences hold:

e = Aollaar-+r.maremy) 57 0 and - [1Be = Bollag(zze+(m) 12 my) 57 0-
Proof. Step 1. We first deal with A, in the case s = 0:

Mef = Aofllzzgmy = IM xR (ke * | = fymllzz < Cllke+ f = fllz2 < 0@ fllar,  nle) — 0.

Concerning the first derivative, writing that

Op(Acf = Aof) = M (0uxr) (ke * f = f) + M xg (ke % Orf — Ouf)

and using that d,xr is uniformly bounded as well as x g, we obtain the result. We omit the details
of the proof for higher order derivatives.
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Step 2. In order to prove the second part of the result, we are going to prove that
1Ae = Nollaz(rro+smy, e (my) —57 0-

First, let us remark that (A. — Ag)f = 1/e%(k. * f — f) — Af. Using (2.1), we have
Af(e) = Mof @) = 5 [ kel = )(f0) = @) dy — Af(a).

We now write a Taylor development of f between x and y:

Fly) — F(@) = (g — ) VI (@) + 5D F @)y — v,y — )

1

+§/O (1—8)2D3f($+s(y—x))(y—x,y—x,y—x)ds,

the first involving the gradient of f will give no contribution using (2.1). Performing a change of
variables, we obtain:

Acf(z) = Aof(x)
1, e [ 9
:/Rd k(z) <§D f(z)(z,z)+§/0 (1—29) D3f(x+s€z)(z,z,z)ds) dz — Af(z).

Using that

- 0% f(x)
(2.5) D2 Z 8x +Z %% axzazj

and (2.1), we deduce that the first term on the rlght-hand 51de of (2.5) will be canceled by A f(z)
and that the second one vanishes. It thus implies

3

Acf(x) —Aof(x) = 3 /Rd k:(z)/o (1 —8)2D*f(x + se2)(z, 2, 2) ds dz.

Consequently, using (2.1), Jensen inequality with the probability measure 1y 11(s) ds and perform-
ing a change of variable, we get

[Ae = Aol L2 (m)

<Ce </ </de(z)/01(1 5)2D3f(xJrssz)(z,z,z)dsdz)QmQ(:c)d:c> -

1 1/2
</ / |z|3/ |D3 f(x 4 se2)[* m?(x + sez) m?(sez) dsdzd:c)
Rd JRe 0

<Ce (/R D% f () 2m(x) dx) v (/R k() |z|3m2(z)dz)1/2

<
< Cellfllasm — 0,

where we have used k € Léq 13 and this concludes the proof of the second part in the case s = 0.
Since the operator 0, commutes with A. — Ay, there is no need here to write the proof for s > 0. O

2.3. Uniform boundedness of A..

Lemma 2.3. For anyp € [1,00], s > 0 and any weight function v > 1, the operator A. is bounded
from W=P into W*P(v) with a norm which does not depend on .

Proof. For any f € LP(v), we have
[Aefllzew) < Cllke * fllr < Cllkellzr £l ze-

thanks to the Young inequality. We conclude that A is bounded from L? into L?(v) by observing
that ||ke||pr = [|k||r = 1. The proof for the case s > 0 is similar and it is thus skipped. O
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2.4. Uniform dissipativity properties of B..

Lemma 2.4. We suppose that ¢ > d/2. For any a > d/2 — q, there exist e > 0, M > 0 and
R >0 such that for any e € [0,&0], Be — a is dissipative in L*(m).

Proof. We consider a > d/2 — q. We are going to estimate the integral [, (B-f) fm?fore >0
which can be split into several pieces:

1 C
[ @nsm= (L) [ Gegepim s [ 2o g g

Jr/ div(zf)me—/ M xgr f?m?
R4 R4
:ZT1+T2+T3+T4.

We fix e1 > 0 such that M < 1/(2¢%) and consider € € (0,&1].

We first deal with T} performing a classical computation and using that f]Rd ke = 1:
fi= (G -01) [ ka0 () - @) F0) (o) dyd
Rd xR4
(%—M)/ (fy) = f())? ke(z — y) m*(z) dy dw
3 Rd xRd
r5(3-2) [, (P - £6) ko -y dyds

(i B M) / (m?(y) = m*(z)) ke(x —y) f(x) dy da

where we have performed a change of variables to get the last inequality. We then write a Taylor
development of m? between 2 and v:

() = (@) = (y — ) - V(@) + 5 D e+ 0y — )y — 2, —2)

for some 6 € (0,1). The term involving the gradient of m? will give no contribution because of (2.1)
and using that

|D*m?(x +0(y — 2))(y — 2,y — 2)| < Clo —yl* (@)*17% (x — )*172,

and that k € Lj,, we obtain
1 _ _
Li=C <_2 - M> / ke(z —y) o — yl* (@ — )12 dy f(a)(2)*17% do
9 Rd xRd

(2.6) <C <Ei2 - M> e /R k(2) |2]2 ()22 dz /R F2(2) ()22 da

<C [ P @) de.
Rd

We now treat the second term T5:

2= / M (@) ke(x — y) f(2) Fy) mP (@) dydae — | M xG(x) (@) m?(x) do
R4 xRd ha
< % /Rded M xR () ke(z —y) fQ(x) mQ(x) dy dx

3 [ M@ k=) P mt @) dydo— [ M) £ m @) do

=:T51 + Too + Tha.
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To estimate T5;, we use again the fact that f]R'i ke =1 to get

M
(27) T21 S —/ X% f2 m2.
2 Jpa
Then, to estimate Tho, we first perform a change of variable:
M :
Toy = — k(2) Xa(y +e2) m®(y + e2) dz f(y) dy.
2 Rd X]Rd

Using the mean value theorem, we deduce that there exists 6,6 € (0,1) such that
Xa(y +e2) = Xg(y) +e2- Vxg(y +0e2), m*(y+e2) = m*(y) + ez - Vm?(y + 0'cz).
We then use the fact that [Vx%| < Cr in R It implies that
M
T <5 | k) (Xaly) +elzl Cr) (m*(y) +el2l - [Vm*(y + 0 2)]) dz f2(y) dy.
RIXR
Then, because of (2.1) and the fact that [Vm?(y + 0'cz)| < C (y)*1=(2)?171, since k € L}, 3, we

conclude that

M
(2.8) Too < M Cg ke Pm? 4+ — X% fPm? ke — 0.
R4 2 R4 e—0

Putting together (2.7), (2.8) and the contribution of the term Tbg, it yields
(2.9) Ty <MCrke | fPm? k. —0.
R4 e—0
As far as T5 is concerned, we just perform an integration by parts:

Ts :/ div(zf) fm?
Rd

=d f2m2+/ x-Vffm?
Rd Rd

1
=d | f*m?*-= f2div(zm?)
Rd 2 Rd

- Wf%@m%m(g—igf)w

(2.10)

The estimates (2.6), (2.9) and (2.10) together give

L, d 2
/Rngffm2§/Rdf2m2 <c<z> 2+§‘I<L‘"”>|2 +MCRKEMXR>

= [ £ m? 5~ M),

where we have denoted
£ —2 d q |1'|2
(2.11) YR(x) =Cx) "+ - — +MCrke — d/2 —q.
2 <.’L'>2 |z|—00,e—0
We can thus choose M >0, R > 0 and ¢ < g1 such that
VzeRY, 4%(z) < a.

As a conclusion, for such a choice of constants, we obtain that for any e € (0, gg],

/ (B —a) f fm® <0
Rd

and we refer to [4, 6] for the proof in the case e = 0. O

Lemma 2.5. For any a > —gq, there exist g > 0, M >0 and R > 0 such that for any ¢ € [0, 0],
B. — a is dissipative in L'(m).
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Proof. We estimate the integral
. 1 . .
[ Bertinym= (% -1) [ (g = psmpmes [ 20w s - 1) Gignf)m
Rd 3

+/ div(zf) (signf)m /MXR|f|
Rd
=Ty + 1o+ T3+ Ty

We omit the details of the proof which is very similar to the one of Lemma 2.4. We have
T1<C/ (@) (2)72 da, T2<MCRHE/ Iflm and Ts= 4d|f|mx'zm.
This implies that
[ BerGimpms [ ifim (€)== T 40 G - M xa)

and we conclude as in the proof of Lemma 2.4. We refer to [4, 6] for the proof in the casee = 0. O

Lemma 2.6. Let s € N and ¢ > d/2+s. For any a > d/2 — q+ s, there exist g > 0, M >0 and
R > 0 such that for any € € [0, 0], B: — a is hypodissipative in H*(m).

Proof. The case s = 0 is nothing but Lemma 2.4. We now deal with the case s = 1. We consider
ft a solution to

Oifr = Be ft.
From the previous lemma, we already know that
1d
(2.12) G < [ g2 5 = Mxn).
2.dt Rd
We now want to compute the evolution of the derivative of f;:

atamft = B(azft) +M81(X?2) (ks *ft - ft) +8Ifta

which in turn implies that

er LT CRALICRATE

- /]Rd (azft) B(azft) m® + Max(X?%) (ks * ft) (axft) m?

Rd
- [ Mot fi@utymt + [ (0ufm?
R4 Rd
= T1+T2+T3+T4.
Concerning T7, using the proof of Lemma 2.4, we obtain

(2.13) T < /Rd(amft)Q m? (Y5 — M xR) -

Then, to deal with T», we first notice that using Jensen inequality and (2.1), we have

I sy = [ ([ 5o =0 1) dy)2m2<x> o

< /R kel =) m(a) da () dy

[ ety + e ds ) dy
Rd xRd
<C / k(z)m?(z) dz f*m?

Rd R4
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. . 1 .
We thus obtain using that k € Ly, 5:

ke * fllL2m) < Cllf2gm)-

The term 75 is then treated using Cauchy-Schwarz inequality, Young inequality and the fact that
|02 (x%)| is bounded by a constant depending only on R:

T, < MCr ||ks *x ftHLZ(m)HaxftHLZ(m)
(2.14) < M Cr | fellL2ml10z fill L2(m)
< MCgr K(C)”ft”QL?(m) +MCgr d'azftHQL?(m)

for any ¢ > 0 as small as we want.
The term T3 is handled using an integration by parts and with the fact that [02(x%)| is bounded
with a constant which only depends on R:

@15) TG [ 0wt [ 0.0 £20umt) < MOl
Finally, we have

(2.16) Ty = (00 fill32(m)-
Combining estimates (2.13), (2.14), (2.15) and (2.16), we deduce

Ld

2 2,2
5710y < Crve [ fim

(2.17)
+/ (@ fi)>m® (W5 + M CRC 41— Moyp).
Rd

To conclude the proof in the case s = 1, we introduce the norm

AWy 2= NN Z 2y + 2100 fl T2y, 1> 0.

Combining (2.12) and (2.17), we get
1d 2 2. 2/
s g Mfelliromy < [ fim” (R +nCrasc — Mxr)
]Rd
+77/d(azft)2m2 (YR +MCrC+1—Mxg).
R

Using the same strategy as in the proof of Lemma 2.4, if a > d/2 — ¢+ 1, we can choose M, R
large enough and ¢, ¢, 1 small enough such that we have on RY

Yr+nCrye —Mxr<a and Yp+MCr(+1-Mxr<a
for any e € (0, gp], which implies that
1d

5 il el oy < @l Fills -

The higher order derivatives are treated with the same method introducing the norm

(2.18) [P Sl (73 [ Pes

Jj=0
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2.5. Uniform regularization properties of A.Sg_(t). We introduce the notation

(2.19) L) =5 [ (@)= 1) k(e =) dedy,

Lemma 2.7. There exists a constant K > 0 such that for any € > 0, the following estimate holds:
(2.20) ke # fll 7 < K L(f).
Proof. First, performing a change of variable, one can notice that
VEERY, k(€)= k(8.
Using that [, ke = 1, we have

LN =53 [ P@ke-id+gs [ POk
= [ F@i) k(e -y dedy
€7 JRdxRd

S ([ 2= [ oeni).

As a consequence, using Plancherel formula, we get

=z ([ 7P [EP) - [ P g

Then, we again use Plancherel formula to obtain
Ik * £l 102 (ke * )22 = 1 F(0x (ke * £))lI72
[P ee?
Rd

We conclude to (2.20) by using (2.3). O

We now introduce the following notation A := 1/(2K) > 0. Before going into the proof of
regularization lemmas, we recall a result from [5] which is going to be useful.

Lemma 2.8. Consider two Banach spaces X, Y and a function v : RT — B(X) + B(Y). For
ap, b € R, ag < b, we assume that

(1) ue= € LY(0,00; B(X)NB(Y)) for any a > ap;
(2) ue= € L1(0,00; B(X,Y)).

Then, for any a > ag, there exists n € N such that u®*™e=% € L'(0,00; B(X,Y)), with explicit
constant uniquely depending on the two assumed bounds (1) and (2).

Lemma 2.9. Consider s1 < s2 € N and ¢ > d/2+ s3. Let M, R and g so that the conclusion of
Lemma 2.6 holds in both spaces H®* (m) and H*?>(m). Then, for any a € (max{d/2—q+s2,—A},0),
there exists n € N such that for any e € [0, g¢], we have the following estimate

/ 1(AS5) ™ ()| o1 (my—s o2 (my € dt < Cly
0

for some constant C, > 0.

Proof. We first give the proof for the case (s1,s2) = (0,1). We consider a € (max{d/2 — ¢ +
1,=X},0), b € (max{d/2 — g+ 1,—)A},a) and f; := Sp_(t)f, i.e. that satisfies

atft = Beft, fO = f
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From the proof of Lemma 2.6, for any ¢ € (0, ], we have

d
%Eﬂftﬂi%m) = _% (si? _M) /]R LU - F(@))? ke(a — y)m*(2) dy dz + a || fillF2(m)

1
452 Rd xRd

1
-3 L(ft) + all fill22(m)

where we have used that M < 1/(2¢?) for any € € (0,5¢]. Using Lemma 2.7, we obtain

(f(y) = F(@) ke(z —y) dyda + a | fll} 2 ()

IN

d
E"ftH%Z(m) < =2)|lke *a fil F 4 20 || fell 22 m)
< 2a ke *a fell + 20| fell72(my-

—2at

Multiplying this inequality by e , it implies that

d _ _
o (1) 72 < 2l v fill 3 €72
and thus, integrating in time
t
iy 72 = 20 [ b 5o ol ds < 1
0
In particular, we obtain

t
—4as 1
(221) bt ol ds < = 5 Ry, VEZ 0
0

‘We now want to estimate
¢ t
VA8 2% s = [ AT 72 ds
0 0
t t
= /0 ||‘A8fé||%2(m) 6_2a8 ds + /0 ||am (.Aafs) ”%2(771) 6_20’8 ds
t t
= / ||A€fs||2L2(m) ™ ds * / ”Maz(XR) ke x4 sz%Z(m) e 2% ds
0 0
t
+ / ||MXR 8x(ks *z fS)”%?(m) e—2as ds
0

= Il + 12 + Ig.
Using dissipativity properties of 5. and boundedness of A, we get

t
I < / 25720 s || F112 2y < C U F 1122 m)-

We deal with I using the fact that Md,(xgr) is compactly supported, Young inequality and
dissipativity properties of B.:

t t t
L<C / ke 50 ful2ds < C / | fell22ds < © / € ds || F10m) < C 1f25(0m)
0 0 0
Finally, for I, we use (2.21) to obtain

t
I < / ke %0 foll% €72 ds < C[| £l 20m)-
0

Passing to the limit ¢ — co, we obtain

/0 1A (5) F 1201 oy €2 ds < C |12 0m)-
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Consequently, using Cauchy-Schwarz inequality, we have

oo 2 0o
</ ”AeSBJS)fHmew‘”/st) </ ||AESB€(S)f|H1(m)e‘”e‘”/?dS)
0 0

< / 1A, ()20 gy €22 dis / €% ds
0 0
< C|f1E2(m)-

To conclude the proof in the case (s1, s2) = (0, 1), we use Lemma 2.8 with X = L'(m), Y = L?(m)
and u(t) = A.S98.(t). Lemmas 2.3 and 2.4-2.6 allow us to check that assumptions (1) is satisfied
and assumption (2) comes from (2.22).

Using the same strategy, we can easily obtain that

2

(2.22)

|14 (5 sy 722 s < C 1 sy
We can thus deduce that

/0 1(A=S5.) 2 (6) f g2 (my €2 dt
o0 t
S/ / 1A-Ss. (t — 5)A-Sp. (5)f 2120y €20 €72 ds it
0 0
< / / IA-S5, (t — 5)AcSs. (5)f |22y €220 di 72 ds
0 s
) N 2 —2at —2as
g/ / 1A= S5, (1) AcSp, (5) F1122 gy €2 dt €20 dis
0 0

t
<C [ A () e ds
0

SO 72(my-

Reiterating the process, we can conclude the proof of the lemma. We refer to [4, 6] for the proof

in the case ¢ = 0.
O

Lemma 2.10. Consider ¢ > d/2 and M, R, o so that the conclusions of Lemmas 2.4 and 2.5
hold. Then, for any a € (—q,0), there exists n € N such that the following estimate holds for any
e € [0,e0]:

vt >0, / 1(AS5.) ™ (Dl (1 L2 (myy € dt < C,
0
for some constant C, > 0.

Proof. We first introduce the formal dual operators of A, and B.:

1
Alp:=k.« (M xr¢), Bigp:= E—Q(kz8 x¢p— @) —x-Vo—kex (M xRo).

We use the same computation as the one used to deal with 73 is the proof of Lemma 2.4 and
Cauchy-Schwarz inequality:

[ Eoos—on [ k-9 60) - s@)dyds
R4 €% JrdxRd

tom [ (@) - @) k(e -y dyda
9 Rd xRd

d
"2 /]Rd ¢ + [k (M xR d)ll> |0l 2-
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We then notice that the second term equals 0 and we use Young inequality and the fact that
[kellLr =1 to get

1 d 1 1
[ Eoec—g5 [ k-6 -s@)ad+§ [ 6+ 5Ixolt+ 5ol

sfls(¢)+0/w¢2

where I is defined in (2.19). We also have the following inequality:
1
Lord) < % [ ele =) 6%(0) (xrly) - xu(a))? dydo
3 Rd xRd
1

= ke(x —y) xB() (6(y) — ¢(x))* dy dz:
€% JRdxRd

< CIVxnls [ ¢ +21(0)

If we denote ¢; := Sp: (t)$, we thus have

1d

57l oelie < =Alkex (er )l +blloellze, 5> 0.
Multiplying this inequality by e~%, we obtain

d _ _

= (l9l1Z: e ") < —2X[|ke + (xr @) |G e, VE>0,

and integrating in time, we get
t
(2.23) el 72 €™ + 2 / ke (xr &)1 €™ ds < |01 22(mys V20
0
We now estimate

¢ t
/0 Az Sp=(s) 817 =208 go — /O AL bs||2 €2 ds

t t
= / [ke % (M xR ¢s)[|72 €2 ds +/ [ke * (M XR 6s)l| 72 €7 ds.
0 0
Using Young inequality and (2.23), we conclude that
|1 S0 6l e ds < €
0

As in the proof of Lemma 2.9, we can obtain that for any s € N, there exists a constant C' > 0
such that for any ¢ € (0, g¢],

[ ) O <

From this, we deduce that for any ¢ € (0, o],
| 1S5 A IO ar < .

Taking £ > d/2 and using the continuous Sobolev embedding L'(R%) ¢ H~¢(R?), we obtain
| 185 AN OO e e < .

The integer ¢ is thus fixed such that ¢ > d/2. Then noticing that
(Acp,) ) = A (S5, 4:) "0 * S,
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and using the fact that A, is compactly supported combined with Lemma 2.5, we get

/ (A8 ) D f(12 2, €2 dt

0
oo t

S/ / (S5, A) "0 (s) Sp. (t — ) f||22 e~ 2t dt
0 0

<[] NS AN O e St = ) g drds
0 s

< / (S5, Ae) O ()21 o €20 ds / @D Gt |72, 0

< CfIF s my-

Consequently, using Cauchy-Schwarz inequality, we have
(2.24)

(/ |(AES&)(*““”fHLz(m)6‘2“‘“)
0

2

< [ NS D et [ e ar
0 0
< CN 2 (my-

To conclude the proof, we use Lemma 2.8 with X = L'(m), Y = L?(m) and u(t) := (A.Sp. )=+ (¢).
We are able to check that assumption (1) is satisfied thanks to Lemmas 2.3 and 2.4-2.5. Assump-
tion (2) is nothing but inequality (2.24). We refer to [4, 6] for the proof in the case ¢ = 0.

(]

2.6. Spectral analysis.
Lemma 2.11. For any € > 0, A satisfies Kato’s inequalities:
VieD), A(0(f) Z0(f)(Af), 0(s)=]s| or 0(s) = sy

It follows that for any € > 0, the semigroup associated to A. is positive in the following sense that
if f € LY(m) and f >0, then for any t >0, Sx_(t)f > 0.

Proof. First, we have

signf(z) Ac f(x)

= 5% g ke(x —y) (f(y) — f(x)) dysignf(z) + d f(z) signf(z) + - V f(z) signf(z)
SE% dee(wfy)(lfl(y)*Ifl(:c))dy+d|f|(z)+:c-V|f|(w):Aslfl(w),

which ends the proof of the Kato inequality in the case 0(s) = |s|. Using that s; = (s+ |s])/2, we
obtain the result in the case 6(s) = sy.

We consider f < 0 and denote f(t) := Sa_(t)f. We define 5(s) = s = (|s|+s)/2. Using Kato’s
inequality, we have 9;8(f:) < A:B(ft), and then

o< [ s< [ sw=o vezo
Rd Rd
from which we deduce f; < 0 for any t > 0. [l

The operator —A. satisfies the following form of the strong maximum principle.

Lemma 2.12. Any nonnegative eigenfunction associated to the eigenvalue 0 is positive. In other
words, we have

feDA), Af=0, f>0, f#0 implies f>0.
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Proof. We define

1

1
Cf=—k-xf. Df=a-Vof+Af, Ai=d— =
e e

and the semigroup
Sp(t)g := gle'w) e
with generator D. Thanks to the Duhamel formula
t
Sa(t) = Sp(t) + / Sp(s)CS(t — ) ds,
0

the eigenfunction f satisfies

;o= SAE(t)f:SD(t)f—i-/O Sp(s) CSa. (t — ) f ds

t
> /Sp(s)Cfds Vi > 0.
0

By assumption, there exists zg € R? such that f # 0 on B(zo,7/2). As a consequence, denoting
p = HfHLl(B(xU,r/z)) > 0, we have
Kp
Cf = = 1B(zo,r/2)s

and then
Kp t
f> — sup/ s ]lB(efsmo,eftT/Q) ds > filllB(Z07T/4), K1 > 0.
€% t>0Jo
Using that lower bound, we obtain
RKi—1
Cf > 04 - ]lB(mo,uir)v and then f > h:i]lB(Io,U»ﬂ‘))

2
€
with @ = 2, us = 1, ke > 0, vo = 3/4. Repeating once more the argument, we get the same lower
estimate with ¢ = 3, ug = 7/4, k3 > 0 and v3 = 3/2. By an induction argument, we finally get
f>0onR% O

We are now able to prove Theorem 2.1.

Proof of part (1) in Theorem 2.1. Using Lemmas 2.3-2.6-2.5, 2.11, 2.12 and the fact that AZ1 =0,
we can apply Krein-Rutman theorem which implies that for any € > 0, there exists a unique G. > 0
such that ||Gc||pr =1, AcGe =0 and II. f = (f)G. where (f) = [, f. It also implies that for any
e > 0, there exists a. < 0 such that in X = L'(m) or X = H*(m) for any s € N, there holds

S(A)NA, ={0}
and
(2.25) V>0, [ISa.()f = (f)Gellx <e|If = (f)Gellx, Va>a..

Proof of part (2) in Theorem 2.1. We now have to establish that estimate (2.25) can be obtained

uniformly in € € [0,20]. In order to do so, we use a perturbation argument in the same line as in

[7, 11] to prove that our operator A. has a spectral gap in H3(m) which does not depend on e.
First, we introduce the following spaces:

X1 :=H(m) C Xo:= H3(m) C X_1(m) := L*(m)
where m = (x)? with ¢ > d/2 + 5 so that the conclusion of Lemma 2.6 is satisfied in the three
spaces X;, 1 = —1,0,1.
One can notice that we also have the following embedding
X, € H)(m) € D(A.) = D(B.) € D(A.) C Xo.

We now summarize the necessary results to apply a perturbative argument (obtained thanks to
Lemmas 2.2, 2.3, 2.4, 2.6 and 2.9 and from [4, 6]).
There exist ag < 0 and g9 > 0 such that for any € € [0, £¢]:
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(i) For any i = —1,0,1, A. € #(X;) uniformly in .
(ii) For any a > ag and ¢ > 0, there exists Cy > 0 such that
Vi=—1,0,1, Vt>0, |Ss. *(AS585.)%)1)|x,5x, < Crae®.

(iii) For any a > ag, there exist n > 1 and C), 4 > 0 such that

Vie 1,0, [ IS8 Ol ¢l < Co
0
(iv) There exists a function 7(e) - 0 such that
e—
Vi=-1,0, [A.— Ao

(v) X(Ag) NA,, = {0} in spaces X;, i = —1,0, 1, where 0 is a one dimensional eigenvalue.

X=X, < 77(5) and HBE - BO|

Xio X S 77(5)'

Using a perturbative argument as in [11], from the facts (i)—(v), we can deduce the following
proposition:

Proposition 2.13. There exist ag < 0 and €9 > 0 such that for any ¢ € [0,e0], the following
properties hold in Xog = H3(m):
(1) X(Ac) N Agy = {0};
(2) for any f € Xo and any a > ap,
1Sa.()f = Ge{f)lxo < Cae™ |f = G(llxe, Y20

for some explicit constant C, > 0.

To end the proof of Theorem 2.1, we enlarge the space where the previous estimates hold. To do
that, we use an extension argument (see [4, 7]) and Lemmas 2.3, 2.5-2.6 and 2.9-2.10. Our “small
space” is H3(m) and our “large” space is L (m).

3. FROM FRACTIONAL TO CLASSICAL FOKKER-PLANCK EQUATION
In this part, we denote o := 2 — e € (0, 2] and we deal with the equations
Of=—(—N)2f 4 div(zf) = Ao_of = Lof, a€(0,2)
{atf =Af+div(xf) = Aof = Laf.

We here recall (see (1.2)) that for a € (0,2), the fractional Laplacian of Schwartz function is
defined using an integral formulation as follows:

(3.26)

(@4Jﬁ0+x@*yﬂxfw-vﬂ@dy

(827)  VfeSRY), (-A)f(2):=ca s ,

R? |z -y

where x € D(RY) and 1p0,1) < X < 1p(0,2)- Moreover, ¢, is a constant depending on « satisfying

2
Ca / Z5 .

— —— =1, Vi=1,...,d,
2 Jjz<i |2]dte

which implies that ¢, =~ (2 — «). Also, notice that by duality, we can extend the definition of the
fractional Laplacian to the following class of functions:

{£etham, [ 1710 <oof.

Consequently, one can define (—A)*/?m when ¢ < a.

We recall that the equation 0; f = L, f admits a unique equilibrium of mass 1 that we denote G,
(see [3] for the case a < 2). Moreover, if a < 2, one can prove that G, (z) ~ (x) =97 (see [12])
and for o = 2, we have Gy () = (27)~%2¢~1#/2, The main result of this section reads:
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Theorem 3.14. Assume ag € (0,2) and q < ag. There exists an explicit constant ag < 0 such that
for any « € [ap, 2], the semigroup S¢_ (t) associated to the fractional Fokker-Planck equation (3.26)
satisfies: for any f € Lé, any a > ag and any « € |[ag, 2],

1S2.(0f = Galf)lzy < Cac™lIf = Gal s

for some explicit constant Co, > 1. In particular, the spectrum X(L,) of Lo satisfies the separation
property X(La) N Ag, = {ao} in L} for any a € o, 2].

3.1. Exponential decay in L*(G, 1/ %). We recall a result from [3] which establishes an expo-
nential decay to equilibrium for the semigroup S¢_ (t).

Theorem 3.15. There exists a constant ag < 0 such that for any o € (0,2),
(1) in L2(Ga''?), there holds X(La) N Ag, = {0}

(2) we have the following estimate for any a > ao,
||Slla (t)f - Ga<f>||L2(G;1/2) < et ”f - Go‘<f>||L2(G;1/2)’ Vit > 0.

Proof. The proof is immediate going back to the proof of the exponential decay in the space
LQ(G;1/2) from [3]. Indeed, we can notice that the rate of decrease is uniform in a. O

3.2. Splitting of L,. We define A, := M xr and B, := L, — A, for some M, R > 0 to be chosen
later.

3.3. Uniform boundedness of A,.

Lemma 3.16. Consider s € N and p > 1. The operator is uniformly bounded in « from W*P?(v)
to WP with v =m orv = G;l/Q.

Proof. The proof is immediate using that M x r and all its derivatives are compactly supported. [

3.4. Uniform dissipativity properties of B,.

Lemma 3.17. For any a > —q, there exist M > 0 and R > 0 such that for any « € [ag, 2], Bo —a
is dissipative in L'(m).

Proof. We just have to adapt the proof Lemma 5.1 from [12] taking into account the constant c,.

Indeed, we have
. I, (m z-Vm
/ (Eaf)SIgnfmS/ |flm (L - —)
Rd Rd m

m
We can then show that thanks to the rescaling constant ¢y, I, (m)/m goes to 0 at infinity uniformly
in a € [, 2). As a consequence, if a > —g, since (x - Vm)/m goes to —q ate infinity, one may
choose M and R such that for any « € [ap, 2),
In(m) x-Vm

m

- MXR <a, on Rdv
which gives the result. O

Lemma 3.18. For any a > ag where ag is defined in Theorem 3.15, B, — a is dissipative
in L2(Ga''?).

Proof. The proof also comes from [12, Lemma 5.1]. O
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3.5. Uniform regularization properties of A, Sz, (t).

Lemma 3.19. There exist some constants b € R and C > 0 such that for any a € [, 2], the
following estimates hold:

ebt

Vt >0, [[SB,() w2y <C 200"
As a consequence, we can prove that for any a > max(—q,ap) and any « € [ayg, 2],

(3.28) Ve 0, (AaS5.)"" Ol g (my. 12z 72y < Ce™.

Proof. We do not write the proof for the case a = 2 and refer to [4, 6].

Step 1. The key argument to prove this regularization property of Sg_(t) is the Nash inequality.
For a € [, 2), from the proof of [12, Lemma 5.3], we obtain that there exist b > 0 and C' > 0
such that for any « € [, 2),

ebt

Vt>0, [SB.()fllre < Ctd/(To) (FAIFES

Step 2. Then, using that A, is compactly supported, we can write
bt
L AaSB, () fll2(m) < Cl1SB. () fllL: < C 74720 £l
Using the same method as in [4], we can first deduce that there exists {p € N, v € [0,1) and K € R
such that for any « € [ag, 2],

. ebt
[(AaS5) " (012 172 < € S 1l

We can then conclude that (3.28) holds using [4, Lemma 2.17] combined with Lemmas 3.17 and 3.16.
O

3.6. Spectral analysis. Before going into the proof of Theorem 3.14, let us notice that we can
make explicit the projection II, onto the null space N (L) through the following formula: I1, f =
(f) Go. Moreover, since the mass is preserved by the equation 0;f = L, f, we can deduce that
I, (Se, (t)f) = f for any ¢ > 0.

Proof of Theorem 3.14. We can apply [4, Theorem 2.13] for each o € [, 2] because combining
Theorem 3.15 with Lemmas 3.16, 3.17, 3.18 and 3.19, we can check the assumptions of the theorem
are satisfied. O

4. FROM DISCRETE TO FRACTIONAL FOKKER-PLANCK EQUATION

Let us fix a € (0,2). We consider the equations
(4.29) Of =kex f— kel f +dive(zf) =2 Acf, >0
‘ Onf = —(=0)"2f +divy(af) = Aof

where
k&-(l') = ]1€§|I|§1/8 ko(l‘) + ]l|m|<5 /{30(6), k/’o(m) = |$|_d_a.
Notice that

(4.30) Vo e RI\ {0}, k.(z) "ko(x) as & —0.

We here recall that for a € (0,2), the fractional Laplacian on Schwartz functions is defined
through the formula (3.27). Since « is fixed in this part, we can get rid of the constant ¢, and
consider that it equals 1. The main theorem of this section reads:
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Theorem 4.20. Assume 0 < g < a/2.

(1) For any € > 0, there exists a positive and unit mass normalized steady state G. € Lé (R9)
to the discrete fractional Fokker-Planck equation (4.29).

(2) There exist an explicit constant ap < 0 and a constant g > 0 such that for any € € [0, 0], the
semigroup Sa_(t) associated to the discrete and fractional Fokker-Planck equations (4.29) satisfies:
for any f € Lé and any a > agp,

1Sa.(8)F = Gelfly < Cac® [If = GelPly VE >0,

for some explicit constant Co > 1. In particular, the spectrum %(A:) of A satisfies the separation
property $(Ac) N Ag, = {0} in L.

The method of the proof is similar to the one of Section 2. We introduce a suitable splitting
A. = A + B., establish some dissipativity and regularity properties on B, and A.Sp. and apply
the Krein-Rutman theory revisisted in [9, 5]. However, let us emphasize that we introduce a new
splitting for the fractional operator (a different one from Section 3 and from [12]) and we also
develop a new perturbative argument in the same line as [7, 11, 5] but with some less restrictive
assumptions on the operators A, and B, recquiring that they are fulfilled only on the limit operator
(i.e. for e = 0).

4.1. Splittings of A.. For any 0 < 8 < [/, as previously, we denote xg(z) = x(2/8), x§ =
1 — xp; we also define xp 4 := xp — xg and introduce the function ¢z defined on R? x R¢ by

a2, y) == xp(x) + x5(y) — xs(x)xs(y) and & := 1 — &5 We denote Io(f) := —(—=A)*/2f and
I.(f) :=ke x f — ||ke|| L1 f for & > 0. We split these operators into several parts: for any € > 0,

L(f)(@) = / e — 1) xol — 1) (F@) — F(@) — x(& — 1)y — 2) - V(2)) dy
ke =y) (@ —y) (fy) = f(2)) dy

ke(z —y) xn(x —y) (f(y) — f(@) —x(xz —y)(y —z) - Vf(z))dy

+
"

(4.31) ke(z —y) X3 (x —y) (fy) = f(x) dy

(= y) xno(r —y) (f(y) — f(2)) Er(z,y) dy

_l’_
%\ﬁ\%\
oyl

ke(z —y) xn..(x — y) Er(@,y) dy f(x)

+ [ bela =)o =) €nle. ) ) dy
= Blf+B2f+B2f +Bf + A.f.

where the constants n € [e,1], R > 0 and 0 < L < 1/e will be chosen later. One can notice that
given the facts that n > ¢ and L < 1/, we have for any ¢ > 0, A. = Ay =: A. Finally, we denote
for any € > 0,

Bif =div(zf) and B.f=Blf+Bif+B3f+Bif +B2f.

4.2. Convergence B. — By.
Lemma 4.21. Consider p € (1,00) and q € (0,a/p). The following convergence holds:

||BE — BO||%(W5+2,p(m),WS,p(m)) < ’171(6) Q 0, s=-2,0.
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Proof. Let us notice that B. — By = A, — Ayg.
Step 1. We first deal with the case s = 0 and we introduce the notation kg . := ko — k.. We then
compute

HAsf - AOf”iP(m) = /]Rd /]Rd k075(2> (f(:C =+ z) — f(:L') — X(Z)Z . Vf(:c)) dz mp(z) de
<C /Rd /|Z|§1 koe(2) (f(x+2)— f(z) — x(2)z- Vf(x))dz| mP(z)dx

mP(z) dx

/| | Focle) (o 2) = @)~ ()2 V@) ds

= T1 + TQ.

To deal with T3, we perform a Taylor expansion of f:

flx+2)=f(z)+2z V() —|—/0 (1 —8)D?f(x + s2)(z, 2) ds.

Since x(z) = 1if |z] < 1, we thus obtain
p

T1§C’/Rd </|Z|<1k01€(z)|z| /0(15)|D f(z+sz)|dsdz> mP(z) dx.

Then, from Holder inequality applied with the measure ji.(dz) := 1|;/<1 ko,(2) |z|2 dz, we have

T, <C (/R ,ug(dz))p/pl /}R]R (/01(1 —s) |D2f(:v+sz)|ds)pug(dz)mp(x) dz

<C (/}R ,ug(dz))p/p/ /RR (/01 |D2f(x+sz)|d8)pug(dz)mp(x) do

where p’ = p/(p—1) is the Holder conjugate of p. Using now Jensen inequality with the probability
measure 1o 1)(s) ds, we get

/D’ 1
fisc (/ us<dz>>pp // |D?f(x + s2)|P ds pe(dz) m? () da

/v’ 1
<C (/Rd Ma(dZ))p p /]Rdx]Rd/O D f (@ + s2)[P mP (x + s2) mP(s2) ds pe (dz) dzx

<o ([, MEW}),)/,, L] D2 (@) P (x)dis e (d2) s

where we have used that for |z| < 1 and s € [0,1], m”(sz) < C and have performed a change of
variable. We then deduce that

ti<o ([ @) [ i pm i
with

/ pe(dz) = / koc(2) |z[*dz — 0
R ‘Z‘Sl e—0

by dominated convergence since for any € > 0,

ko (2)] |2)? Tjz<1 < 2ko(2) | 2|2 1< € LY'(RY).
To treat Ts, we first notice that the term involving V f(x) gives no contribution so that
P

T, <C /||>1 ko (2) (flz + 2) — f(2))dz| mP(x) da.

Rd
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Then, using again Holder inequality with the measure 1|.>; koc(2) dz, we get doing similar com-
putations as for Ty

p/p’
1< ( / >1koys<z>dz> L [ oI +2) 11 ) o) do

with
/ ko e(z)mP(z)dz — 0
2121

e—0

by dominated convergence since for any € > 0,
koe(2) mP(2) 12> < 2ko(2) mP(2) 1j4>1 € Ll(Rd).
As a consequence, we obtain

(A = Ao) (Nl zrm)y < 0@ fllwzrmy,  n(E) — 0

Step 2. We now consider the case s = —2, and we recall that by definition
[Aef = Aofllw-20(m) = sup f(Ae = Ao)*(pm) = sup f(Ae = Ao)(pm)
ol 2, <1 JRE oIl 2,pr <1 J/RA

where p’ = p/(p — 1) and because (A — Ag)* = A. — Ay (where A* stands for the formal dual
operator of A). We then estimate the integral in the right hand side of the previous equality:

f(Ae*Ao)(aﬁm):/ (A — Ao)(9m)
Rd -

m
Moreover,

fm <|[(Ae = Ao)(@m)/ml| Lo [ £ o (m)-

(Ae = Ao)(¢m)(x) = (I — Lo)(¢m)(x)

sy = ROE@mE@) + [ Foul) et 2) (o +2) = mle) = Vm(a) - x(2) ds

4 [ Boca)x() 2 Tm(o) (9 + 2) - o(a) de
Rd

‘We deduce that
[(Ae = Ao)(¢m)/mll o < ||(Le = Lo)() |l 1o

(L
(Lm

=:J;+ Jo+ Js.

o 1/p'
d:c)

/R oe(2) 6l + 2) (m(o + 2) — m(z) — Vm(z) - 2x(2)) dz

% 1/p’
dm)
To deal with J;, we use the step 1 of the proof which gives us

I(Te = 10)(&) | o < n(E)l|llw2r s 7€) —53 0.

[ o) x(2) - Vm(a) (00 +2) = ota) dz
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The term Js is split into two parts:

/

p

4 # z €T z m(x Z)—m\x) — m(x)-zZx(2 z X
<[ | [ o) ota+2) (ma +2) = mia) = Vinle) - 2x()] d2| d

1
C _
" / ()
=: Jo1 + Joa.

’

p
dx

/| _ Joc(E) 6w +2) (o +2) = m(a) = Vma) - 2x(2)) dz

We first notice that for |z| <1,
m(z + z) —m(x) — Vm(x) - zx(z) = m(z + z) — m(z) — Vm(x) - z = %DQm(:c +02)(z, 2)

for some 0 € (0, 1), which implies that

/

P
! </ ko,g(z)|z|2|D2m(:v+6’z)||q§|(m+z)dz> da.
=<1

ra M ()

Jop <C

Since 0 < ¢ < 2, |[D?m| < C and l/mp/ < C in R?, we thus deduce using Holder inequality and a
change of variable,

’

p
mec | ( JICRCIERECES dz> d

’

p
<C / koe(2)2[2dz | [o]”, with / ko< (2) 2|2 dz — 0.
|2I<1 |21<1 e=0

Concerning Joz, we use that |2x(z)| < C for any |z| > 1 and that [Vm| < Cm in R?, we obtain

/

: </>1k°’5(’2)|¢|<“z) (m(z + 2) + m(z) + [Vm(z)|) d2> da

Joo < C R
2 = ra mP' ()

’

1 p
<c / —( /Z>1ko,e<z>|¢|<x+z> (m(@)m(z) + m()) dz) dz

« mP' ()
’

1 P
=¢ /]Rd mP () (/Z>1 koe(2)|0|(z + z) m(xz) m(z) dz) dx

/

<C /Rd </|Z|>1 koe(2) |9(z + z) m(z) dz> dr,

which implies, using Holder inequality and a change of variable,

p/
Jag < C </ ko.c(z) mP(z) dz) ||¢)Hi/p, with / koe(z) mP(z)dz — 0.
|z[>1 |z[=1

e—0

Finally, we handle J3 performing a Taylor expansion of ¢:

oz + z) — d(x) :/0 (1—8)Vo(xr+sz)-zds
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which implies, using that |[Vm[?' /m?" e L°°(R%), Holder inequality and a change of variable,

/ 1/p’
’ p
|Vm[P (x) / 2/1
J3 < / - koe(2) |2 Vo|(x + sz)dsdz dx
s | [ S ke le [ i9eltes2)

<0 [ koo(2) |22 dz |V with /

koo(2)|2]*dz — 0.
|2]<2 |z]<2 e=0

As a consequence, we obtain that

I(Ae = Ao)(@m)/m o < n(E)[Sllwzsrs  1(e) —+ 0,

which concludes the proof. (]

4.3. Regularization properties of A..

Lemma 4.22. For any p € (1,00), (s,t) = (=2,0) or (0,2), the operator A. = Ay = A defined
in (4.31) by

af = [ tole =) xnne =) éne )10 dy
is bounded from WP to WHP(v) for any weight function v.
Proof. First, one can notice that
Er(@,y) xn.L(@ —y) < (Xr(2) + XRY)) X0.0(T —Y)
(4.33) < (Ljoj<2r + Ljyj<2r) Iygjo—yi<ar
< 21 <je—yl<or Ljzj<2(ri ) Ljy|<2(R4 L)
the proof is hence immediate in the case s = ¢ = 0 using Young inequality:
[AfllLrwy < ClASflLe < (1Ko Ly<p <zl [ £l e
We now deal with the case (s,t) = (0,2). First, we have for £ = 1,2
QAN = 3 [ Bilhols — 1)) Al e ) 2 en(r. ) £(0) dy
- Rd
i+j+k=~
and for any (i, j, k) such that i +j 4+ k = ¢,
|8;(k0(x —y)) ai(Xn,L(ZE -9)) 55(51%(33; y) <C |5jv(k?0(95 —y))l 1< je—y|<2r Vz|<2(R+L)-
As a consequence, for £ =0,1,2,

2
105 (AN Loy < D 10k Ly <arllor | fllze,
i=0
which concludes the proof in the case (s,t) = (0,2).
Finally, we argue by duality to prove the last part corresponding to the case (s,t) = (—2,0), we
use the previous case:

[Aflzrw) < CllAfllr =€ sup (Af) o

ol pr <1 JRE

=C sup (Ag) f

11l pr <1 R
<C s | fllw-zr [| A2

gl <

<C sup |[fllw-zr 9l < Cllfllw-2s-
ol pr <1
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4.4. Dissipativity properties of B. and By.

Lemma 4.23. Consider p € [1,2] and q € (0,a/p). For any a > d(1—1/p) —q, there exist £1 > 0,
n >0, L>0 and R > 0 such that for any € € [0,e1], B: — a is dissipative in LP(m).

Proof. We consider a > d(1 —1/p) — q and we estimate the integral [, (BLf) (signf)|f[F~* m?,
fori=1,...,5.
We first deal with B! in both cases € > 0 and & = 0 simultaneously noticing that for any & > 0,

Bf(e) = [ | helo =) ol = 9) (F0) = £(2) — (y =) - V() d
Then, using that ® : s +— |s|?/p is convex, we have

(f(y) = F(@)sign(f (@) | £ (@)
(.34 = () — @) (f(@) + B(f(2) — (W) + (B(f(y) — ()

(IF1P(y) = [f1P(2))-

<

SRR

Consequently,

[, (B20) Gigaf) 77t

<L P = 1P — (= 0) - DI @) bl — ) ol — 9) dymt () d
P JrdxRrd

o ) = mPe) — (v =) - VP @) ke = ) ol = )y | (0) o

We estimate the last term for any € > 0 thanks to a Taylor expansion:
1
m?(y) = m?(z) = (y — z) - Vm®(2) = 5 D*m"(z + 0y — 2))(y — =,y — 7)

for some 0 € (0,1). Using that pg < a < 2, we deduce that
[ ) = () = (= ) T @) kel = ) ol =)

<C |2|% ko(2) dz

|z[<2n

and thus
/ (BLf) (signf) [f[P~'mP < “n/ [fIPmP  with &k, = / ko(2) |z|* dz — 0.
R4 R |z|<2n =0
Concerning B2, we also treat the case € > 0 and € = 0 in a same time using (4.34):

[ @) sl me <L [ ke -y (7P~ 1590 X~ ) m(e) dy de
Rd P JRrdxRrd

1

[ hele =) ) = (@) X (o~ ) [P0 dy e

P Jrdxrd

We now use the fact that the function s — s7%/? is pg/2-Holder continuous since pg/2 < a/2 < 1
to obtain

[m? () —m? ()] < C lla] = [yl " (|| + ly])"*"
< Cla =y’ min (o] + |o =yl + [2)™ , (iyl + 2 = ] + y))"*"?)
(4.35)
< € (min (| =y, | = ylPo/2 1y 22) 4 fo -y

< C (z — y)P min (<$>pq/2’ <y>pq/2) )
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‘We deduce that
[ @0 st <o [ k@ [ e e
R Rd

|2|>L

§/~@L/ [fIPmP,  with HLQ'J/ ko(z) mP(z)dz — 0.
R4 |z|>L L—+o00

We now handle the third term B2 first using inequality (4.34):

[ 820 i) 17 e

<! / ke(z = y) xn.(@ —y) Er(@,y) ([f17(y) = [fP(x)) mP(z) dy d
P JraxRrd

- / ke(2) oz (2) €5y + 2,) | FP() (mP(y + 2) — mP(y)) dy dz.
P JRrdxRd

We then use the Taylor-Lagrange formula which gives us the existence of 6 € (0,1) such that
mP(y +2) =mP(y) + 2z - VmP(y + 0z).

Notice that there exists a constant C7, > 0 depending on L such that |[Vm?(y + 0z)| < O, (y)Pa~1
for any y € R?, |z| < 2L. We hence obtain

/Rd (B2f) (signf) [f[P~' mP < CL / ke (2) | 2] X, (2) €5 (y + 2, 9) | fIP () ()"? " dy d=

R4 xRd

N
<c / )l ) o) 170 "

p) W)
e[ w@d [ e T

which leads to

[, 0 el < e [ 10ve) "5 a

As a consequence, we obtain

1
/ (Bgf)(signf)|f|p_1mpSF;RCmL/ [flm with ,%Rzﬁ—>0.
R4 Rd

R— 400

We just estimate the term involving B2 using that &g(z,y) > xr(z), we get

[ @i ws— [ ke [
R4 2n<|z|<L |[z|<R

Finally, using integration by parts, we have

[ @Ensamnipor = [ ir@mee (a(1- 1) - S )

P pmP(z)

< (5 2) ) 1

If we gather all the previous estimates and we denote
1 x - VmP(z)
,L/JE x)::li +/€L+I€RC7L—/ k z)dz]lx<R—(d(1——)—7)]lz>R,
el ! 2m<|2|<L ol o= P pm?P(z) =
we obtain
[ Ensmn) 5 e < [ s 7P @) m ) de
R4
We notice that A7 ; := f2n§\z\§L ke(z)dz — o0 as € — 0 and 7 — 0. We can thus choose €1, 7, L,
and R such that for any € € [0, 1],
by + kKL + kRO L — A;L <a.
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Then, using that —(z - VmP(x))/(pm?(z)) goes to —q at infinity and that a > d(1 — 1/p) — ¢, up
to change the value of R, we have

1 . P
|.T| Z2R$HU+I€L+HRCL— (d(l——) —M) Sa.
p pmP(z)
As a conclusion, for any z € R?, we have Yy 1. r(7) < a, which yields the result. O

Lemma 4.24. Consider ¢ € (0,a/2). There exists b € R such that for any s € N, By — b is
hypodissipative in H*(m).

Proof. Step 1. We first treat the case s = 0. We write that By = Ay — Ag and compute
Jaa(Bof) fm?*:

2 _ 2 2
[ an fmt = [ o) o~ [ (Aof) fm
:/ Io(f)fm2+/ div(:z:f)me—/ (Aof) fm? =Ty + T+ Ts.
Rd R4 R4

Concerning T, we have

T, = / bolw — ) (F@) — F(@) — x(z —v) (y — ) - V() () m?(z) dy da
R4 xRd

- / o =) (F9) = £(@)) dym (@) da
b3 [ k=) () - @) - o - ) - 2) - V@) m ) dy do
R4 xRd
1 2 2 1 2y, 2
=5 [, Rle =) (1) = f@)P dymP(@) o+ 5 [ (r%)m
=3 [ W@ =n (@) - (@R dymi@ e g [ I,

Since one can prove that In(m?)/m? goes to 0 at infinity (cf Lemma 5.1 from [12]) and is thus
bounded in R%, we can deduce that there exists C' € R such that

7 <- L / ko(w —y) (f(y) = f(@)* dym?(x)dz+C [ [>m?
R4

We can notice that

% /]R y) (F(y) = f(2))? dym?(z) dz

! 2
=" Z/RW y) (Fm)(y) — (fm)(2))” dy dz
£ [t o) £

Moreover, there exists 6 € (0,1) such that

/| _ Fole ) (m(y) —m(e) de £2) dy

<[ ole =)o~y [Vinla + 0y — @) do () dy
|lz—y|<1

<C k:o(z)|z|2dz/ f?m?
R4

lz<1

S C f2 m2
Rd
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and

[ b =) () @) de £ ) dy

=C e ko(z — ) (m*(y) +m?(y) m*(z — y)) dz f>(y) dy

<C / ko(z) mP(z) dz f?m?
[z|>1 R4

<C f2m?.
Rd

We here recall that the homogeneous Sobolev space H* for s a real number is the set of tempered
distributions u such that @ belongs to Lj,. and

Julf, = [P @) de < oc.
Rd
oreover, if s € (0, 1), one can prove that there exists a constant ¢y > 0 such that
M if 0,1 hat th i 0 h th
_ 2
Rixpd |7 — y|dtE

from which we deduce the following important identity:
(4.36) ollulls = [, (0(e) = ) oo~ y)dady Ya e (©0,2)
R4 xR
As a consequence, up to change the value of C', we have
¢
<=Ll +c/ P2 m?,
Rd

Then, we compute
d x-Vm? d
T, — 2,2 (& _ T V) 2,2
2= 0m (2 2 m2 )—2 L
Concerning T3, we use Lemma 4.22 and Cauchy-Schwarz inequality:

T3 < | AofllL2m 1f | 22(m)y < CUFIZ20m)-

As a consequence, gathering the three previous inequalities, we have

C
/(Bof)fm2§—Zollfmllfga/meo/ fPm?, b €R.
R4 Rd

Step 2. We now consider b > by and we prove that for any s € N, By — b is hypodissipative in
H*(m). For s € N*, we recall the definition of the triple norm introduce in (2.18):

AWz my = D W N F T 2(mys 1> 0
§=0
which is equivalent to the classical H*(m) norm. We use again that By = Ay — Ay and we only

deal with the case s = 1, the higher order derivatives being treated in the same way. First, we
have

Then, we can notice that

Aof(@) = [ Foe) x01(2) o+ 2) fa +2) s

so that
Oz (Ao f)(x) = Ao(0x f)(x) + Aof(x), with [[AofllL2m) < ClIfl12,
where the last inequality is obtained thanks to inequality (4.33) as in the proof of Lemma 4.22.
We deduce that .
0z(Bof) = Bo(0xf) + 0xf — Aof.
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Then, doing the same computations as in the case s = 0, we obtain

0, (Bof) (9 f) m? = / Bo(0 f) (9 f) m + / @uf)?m® = [ Aof (0 f)m?
Rd Rd Rd Rd

=:J1+ Jo+ J3.
with
C
T2 =N @S mlyeys + b0 [ (@)
Rd
Co Co
< s+ DS Ol + b0 [ (@
Rd
Co
< =2 mllprass + C (1 Wy + 1 %)
and also

1
T < 5 (11 2my + £ mll%. )
and finally using Cauchy-Schwarz inequality, we have
Js < | Ao fllz2m) 195 £ 220my < © (1 3mmy + 1F mll3 )

As a consequence, we have

C
[ 0uBo) @:5)m* < =20 i+ b1 (1 + 1l ) b1 € R

We now introduce f; solution of
Ot =Boft, fo=1Ff

and we compute
1d
S = [ Bos) fom? v [ 0ulBu) @ufi)m
2dt Rd R

€0 €0
< =g Ifemle . = nglfemliGa .
+ 1 fell 22y (bo +n01) + by || fem|F-
We now use the following interpolation inequality:
a2 1—a/2

1Bl s < RIS Il
which implies
(4.37) 1801 F: < K N0lZase + CIBI 0 ¢ > 0.
We obtain

1d
§E|||ft|||%11(m)
C C
< (=00 KQ) Memldes +1 (=3 +C00) Ifemll s + 15l (o + 1 b1).

Choosing ¢ small enough so that —co/8 + (b1 < 0 and then n small enough so that —co/4 +
nby K(¢) < 0 and by + nby < b, we obtain

1d
§E|||ft|||§11(m) < b felllzr my
which concludes the proof in the case s = 1. O

We now introduce the “renormalized” operator By ,, defined by
(4.38) Bo,m(h) = mBo(m™*h).

Corollary 4.25. Consider q such that 2q < «. There exists b € R such that for any s € N,
Bo,m — b is hypodissipative in H®.
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Proof. The proof comes from Lemma 4.24 and is immediate noticing that the norms defined on
H*(m) by

15 =D N2 f ey and  [|F113 = I mF
§=0
are equivalent. O
Lemma 4.26. Consider q such that 2¢ < a. There exists b € R such that for any s € N, By, —b
is hypodissipative in H %, (or equivalently, By — b is hypodissipative in H~*(m)).
Proof. We introduce the dual operator of By ,, defined by:
B ¢ =wlo(me) —a- Ve — ¢ —wAo(m o)

where w := m~!. We now want to prove that B ., is hypodissipative in H*.
Step 1. We consider first the case s = 0 and we estimate [,(5;,,9) ¢:

z-Vm

m

. B B . B z-Vm 2
[ @inoro= [ nmoyws— [ o-vojo- [ g [ wanme)s
=Ty 4+ Ty
We have p
To=—[ ¢ and T3 <O0.
2 Jpa

Next, using (4.33), we have || Ao(m ¢)||r2 < C||Ao(|¢|)|/ 72 and thus
Ty < C (IMo(IoDI* + ¢ll72) < Cliollz:

from Lemma 4.22. Let us now estimate 7.
Case o < 1. We can write that

T = / ko(z —y) (me)(y) — (mo)(z)) w(z) ¢(x) dy dz
R4 xRd
N / ko(z —y) (8(y) — ¢(x)) ¢(x) dy dx
R4 xR4
+ /I e ko(x —y) (m(y) — m(z)) w(x) ¢(y) d(x) dy dx

+ /I . ko(x —y) (m(y) — m(z)) w(x) ¢(y) d(x) dy dx

=: T + Tha + Ths.
Let us point out here that from (4.36), we have

T = /Rd Io(¢) ¢

1 1
=5 [, Fole =) 0) = @) dyda + 3 [ ol
= — 1l o

Then, using a Taylor expansion, there exists € (0,1) such that

Tip = / ol =) (mly) — (@) w(@) 6(y) o) dy do
(4.30) _ /| Lo D) Il 0y =) = 2)le) 9) ) dy

<C ko(z —y) |z — yl [Vm(z + 0(y — z))|w(z) (6*(y) + ¢*(2)) dy da.

|[z—y|<1
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Using then that for any z, y € RY, |z —y| < 1, we have |Vm(z + 0(y — z))|w(z) < C and that
a < 1, we deduce that

T, <C ¢°.
]Rd
Concerning T3, we have from (4.35)
[m(y) = m(@)| < C (@ — y) min ()22, (5)7/2),
from which we deduce that we also have

Tis<C [ ¢°
R4

We thus obtain
co
Ty < =206l +C [ 8.
Rd
Case o € [1,2). We have:

/R () () — (me)(z) — V(me)(x) - (y — ) x(& — y)) w(x) $(x) dy da
= [ hale =9) (600) = 9(0) = Vola) - (3 = ) x(o — ) 6(a) dy da
- / ko(x —y) [(m(y) —m(z)) ¢(y) — Vm(z) - (y — x) x(z — y)| w(x) ¢(z) dy dx
R4 xRd
= In(9) @

- /I e ko(x —y) (m(y) — m(z) — (y — x) - Vm(a) x(@ — y)) w(z) ¢(y) ¢(z) dy da:

_|_

/I . ko(x —y) (m(y) — m(z) — (y — x) - Vm(z) x(@ — y)) w(z) ¢(y) ¢(z) dy da:

+ / kol — ) (6(y) — 6(x)) d(x) w(z) Vim(z) - (y — ) x(y — 2) dy da
R4 x R4
=T + Tio + T3 + Tha.

We still have .
0
Ty = *5”‘%5”?'{&/2-

Arguing similarly as for T2 in (4.39) i.e. using a Taylor expansion (at order 2 instead of 1), we
obtain

T <C [ ¢°.
Rd

Next, we split T3 into two parts:

Ti3<C / - ko(z —y) |m(y) — m(z)| w(z)($? () + ¢ (y)) dx dy
+C /<| s ko(z —y) |z — y| | Vm(x)| w(x) (¢2(z) + ¢2(y)) dz dy

<C ko(z —y) (@ — )? (@) 712 (¢°(2) + ¢*(y)) du dy

le—y|>1
vC [ hele =) (@) + ) dody
<|z—y|<L2
where we have used (4.35), we thus obtain:

Tis<C [ ¢°
R4
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Concerning 714, we use Young inequality which implies that for any ¢ > 0,

Ty <¢ - ko(z —y) (6(y) — ¢($))2 dy dx

FKQ [ | hale =) 0%0) TRy - o - ) dy do

<Caloly +K© [ k)RR [ o

|z|<2
Consequently, taking ¢ > 0 small enough, we have

C

T < —2o|%, C/ 2,
1< = ll9lle 2 + Rdaﬁ

We hence conclude that
. c
[ Bind)o <= Fhola 4t [ & mer
R4 Rd

Step 2. We now consider b > by and we prove that for any s € N, Bg,, — b is hypodissipative
in H°. Asin (2.18), for s € N*, we introduce the norm

s
fe= 0 |006l72 0 >0

J=0

ol

which is equivalent to the classical H® norm. We only deal with the case s = 1, the higher order
derivatives are treated in the same way. First, using the identity (4.32) (with ko instead of ko ),
we notice that

x-Vm

B 6 = To(6) + w0 Ch(6) + 0C(6) — - V6~ T 6y Ag(m )
where
Co(9)(x) = /Rd ko(z —y) ¢(y) (m(y) —m(z) — (y —x) - Vm(z) x(z — y)) dy
= [ Kol 9o+ 2) (m(o -+ 2) = mlz) — = Vin(a) (=) dz
and

C.(0)(@) = [ Fow =) (6ly) — 0(a)) ma) - (v~ 2) (o =) dy
= [ ke (0la -+ 2) = 6a)) V(o) - 2x(2)
Before going into the computation of d,(Bf,,,¢), we also notice that
O (w Ao(m ) = w Ao (m Da)) + A i (6)

.
where Ay ,,, satisfies

[Ao,m(@)llzz < C ¢l 12
thanks to (4.33). Consequently, we have

Oa(Bin®) = Bl (0:0) + wC (6) + wCn(6) + Bsw CL (6) + Bt C2, (6)
0,60, (z'vm> 6~ Aom(d)
m
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and

[ 00(B500)0:0 = [ | B5,n(0:0) 0.0)+ [ Ch0) 0.0)+ [ 0Chnl0) 0:0)
+ [ o0 @)+ [ 00 @r0) - [ (0107
[ (z'Vm> 60:0) ~ [ Aa(9) 010)

m
= J1+-+ Js.
We have from the step 1 of the proof
co
I =l + b0 [ (@0
Rd

Moreover, we easily obtain that

Jo+ Jr +Js < C (/qus%r/m(az(pf).

The term Js is first separated into two parts:
Jo =

/ e ko(z —y) d(y) ((8zm)(y) — (Oem)(z) — (y — x) - V(0em)(z) x(z — y)) w(z) Op¢(z) dy da

+ / e ko(z — 4) () (8.m)(y) — (Bam)(z) — (y — x) - V(9em)(z) x(z — y))w(x)dpd(x) dy dz

=: Jo1 + Joo.

The term Jo; is treated as 172 is the step 1 of the proof. Concerning Jas, as for Ti3, we divide it
into two parts:

s |, _ fol@ =) [@m) (1) = Oem)(2)] w(e)(*(0) + (0:0)* @) dody
" /1<| e 0@ W =yl IV@em)@)] (@) (0*) + (0:0)" (1) do dy
¢ /l - |>1’fo(fc*y) ($2(y) + (0:0)2(x)) dz dy

e /1< —yl<2 ko(z —y) (6° (y) + (8.0)*(y)) dz dy,

where the second inequality comes from the fact that
|(02m)(y) — (Dem)(2)|w(z) <C and  [V(9zm)(z)|w(z) <C VY, yeR?
because ¢ < a/2 < 1. We hence deduce that

Jp < C (/qub%/Rd(@quF)-

Concerning J3, we perform a Taylor expansion of ¢ and use that |V (0,m)|w € L= (R%):
1
Ja= [ kee=y) [(A-0Vol+ta ) - o
R xRY 0
V(@@em)(x) - (y — ) x(z = y) w(z) Do d(z) dy d

(4.40) SC/_ ‘<2k0(z7y) |z7y|2/0 Vo (x + ty — )| dt |0, 6(x)| dy dx

1
SC/ZS2ko(z)|z|2/O |V¢(ac+tz)|2dtdzdx+/l Fo(2) |2I2 |0s () 2 dz da

z|<2
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where we have used Jensen inequality with the probability measure 1 11(t) dt and Young inequality.
We use a change of variable for the first term of the RHS of (4.40), it implies that

J3 < C -

We deal with J; splitting it into two parts (|z —y| < 1 and |z —y| > 1) and using the same method
as for T1o and 713 in the step 1 of the proof, we obtain

Ji<C (/qub%/Rd(@quF)-

To deal with J5, we proceed exactly as for J3 and obtain
Js < C 6] 3 -

Summarizing the previous inequalities and using (4.37), we obtain that for any ¢ > 0,

% C
|, 00(5306) 0.6 < =6l + b1 (0l + 1015

C

0
< *Il\fbllfqum +b1 ([0l + K(OISlFasn + ClolFiarn), bR

This implies that if ¢; is the solution of

Oy = Bymdr, b0 =6
then

1d Co Co
S llodllEs < (= + b0 K(O) 19113 + 1 (= +C1) 10e1Zreas + (o + n02) 00l

Taking ¢ and n small enough, we deduce that

1d
5 ol < blloul,
this concludes the proof in the case s = 1. (I

We now fix 0 < ¢ < /2. From Lemma 4.23 applied with p = 1, there exists a < 0 such that
B. — a is dissipative in L!(m) for any € € [0,&1] (or equivalently, B. ,,, — a is dissipative in L
where Bg p, is defined as By, in (4.38)). From Lemma 4.23 applied with p = 2, Corollary 4.25
and Lemma 4.26, there exists b € R such that B. — b is dissipative in L?(m) for any e € [0,¢1]
(or equivalently, B. ,, — b is dissipative in L?), By, — b is hypodissipative in H* and H~* for any
s € N*.

We choose 6 € (0,1) such that ag := af + b(1 —0) < 0 and 2/(1 — 0) € N. We introduce
pg :=2/(1+ 6) and we denote

X1 := WP (m) C X := LP?(m) C X_y := W 2P (m).

Lemma 4.27. The operator By — ag is hypodissipative in X;, 1 = —1,0,1 and the operator B. — ay
is dissipative in X for any e € (0,&1].

Proof. We prove that By, — ag is hypodissipative in W~=2P¢ [P and W?P¢ by interpolation.
To conclude for Xy, we just have to interpolate the results coming from Lemma 4.23 with p =1
and Lemma 4.24 with s = 0 and use the fact that [L', L?], = L?* with 1/pg = 0 4 (1 — 0)/2 i.e.
po = 2/(1+ 0). Then, for X; and X_1, we first choose sy large enough so that so(1 — 6) = 2.
We then have [L', H*|, = W*?e, [L', H=*] = W~*P¢ and we conclude thanks to Lemma 4.23
with p = 1 and Lemma 4.24 with s = s¢.

We prove that B. — ag is dissipative in X exactly in the same way as we proved that By — ag
is dissipative in Xj. O
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4.5. Spectral analysis. We here divide the proof of Theorem 4.20 into two parts, using Krein
Rutman theory for the first part and using both perturbative and enlargement arguments for the
second part.

Proof of part (1) of Theorem 4.20. First, we notice that as in Section 2 (Lemmas 2.11 and 2.12),
we can prove that the operator A, satisfies Kato’s inequalities, Sa_ is a positive semigroup and
— A, satisfies a strong maximum principle. Using Krein-Rutman theory, this gives the first part of
Theorem 4.20 i.e. that there exists a unique G. > 0 such that ||G¢||;1 = 1, AcG: = 0. Moreover,
it also implies that II. f = (f)G-.

Proof of part (2) of Theorem 4.20. We first develop a perturbative argument which is detailed in
what follows, improving a bit similar results presented in [6, 11]. We then ends the proof using an
enlargement argument.

Lemma 4.28. For any z € Q := Ay, \{0} we define the family of operators
Ke(z) := —(Ae — Ao) R, (2) (AR, (2)).

There exists a function na(e) —O> 0 such that
E—r

(4.41) | Ke(2)||m(xo) S m2(e) Vz€Qe:=A\B:, B::=B(0,n(e)).

Moreover, there exists €5 € (0,e1) such that for any € € (0,e2) the operators I + K.(z) and Az — z
are invertible for any z € Q. and

VzeQ, Ra(z)=U(2)+K(2))"
with
Us :=Rp. — Ra,(ARB. ).
As an immediate consequence, there holds
Y(A) NA,, C B..

Proof. We know that the operators ARp_(z) : X9 — X1 (from Lemmas 4.22 and 4.27) and
Ra,(z) : X1 — X3 (previous works from [4, 6]) are bounded for any z € ) and that the operators
A — Ap - X5 — Xp are small as ¢ — 0 uniformly in z € Q (Lemma 4.21). Because 0 is a simple
eigenvalue, we have

[Rao(2)ll(x1) < Clz|™" Vze

for some C' > 0. We introduce the constant C,, > 0 (coming from Lemmas 4.22 and 4.27) such
that

[ ASB. ()| (x0,x1) < Cay €.
Defining 72 (¢) := (C Cqp m (E))l/Q, we deduce that for any z € Q.,
c
12(€)

We choose g2 > 0 such that 72(g) < 1 for any ¢ € (0,e3), we thus obtain that ||K.(z)| < 1 for any
e € (0,e2) and z € Qc, which implies that I + K_(z) is invertible.

We compute
Ae—2)U: = (Be—2z4+ARp. — (A — Ao+ Ao — 2)Ra, ARB.
1d+ K.
For z € Q., € € (0,£3), we denote J(2) :=U:(z) (I + K.(2))~ 1, so that
(Ae — 2) Je(2) = Id,
which implies that A. — z has a right-inverse J.(2).

(4.42) 1K (2) |z (x0) < m(e) Cay = 12(€)-

Since A. — z is invertible for $e z large enough and J.(z) is uniformly locally bounded in €.,
we deduce that A. — z is invertible in €2, and its inverse is its right-inverse J-(z). O
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Lemma 4.29. Let us denote
7
- 2—/ Ra.(2)dz, T.:i={z€C:|z| = m(e)}
™ T,

the spectral projector onto eigenspaces associated to eigenvalues contained in B.. There exists n3(¢)
such that

[T — Mo ||z (x,) < m3(e) — 0.

e—0

Proof. First, we have
Il = i/ {Rp.(2) = Rao (2)(ARp.(2))} (I + Kc(2)) ' dz
= / Ri.(2) {I — K.(2)(I + K<(2))"'} dz

/RAU 2)(ARp_(2)) {1 — Ko(2)(I + Ko(2)) 7'} dz

- i R (2)Ke(2) (I + Ko (2)) " dz

2w Jp,

/RAO JARp.(2)) {1 — K.(2)(I + Ke(2)) "'} dz

1
= %/FERAO(Z)CZZ

L / {Ri,(2) = Ray (2) (AR, (2))} dz

and similarly,

5im , Roul) (AR (2))

Consequently,

oL = & / Rao(2) {ARs, (2) — ARg.(2)} dz

- 5iz | (R () =~ Ras () AR, ()} ()T + K2
=11 +T5.
Concerning 77, we use the identity
AR, (2) — ARp.(2) = ARp, (2)(B: — Bo)Rs.(2)
with Lemmas 4.21, 4.22 and 4.27 which imply that
Rp.(2) € B(X0), 1B = Bollxosx <mile) — 0, ARp,(2) € B(X 1, Xo).

To treat Th, we use estimate (4.41) on K.(z) and the facts that Rp.(z) € B(Xy) and that we also
have R, (2)ARp.(z) € #(Xo). It concludes the proof. O

Proposition 4.30. There exists g € (0,e2) such that for any e € (0,eq), the following properties
hold in Xo:

(1) 2(A:) N A, = {0}

(2) for any f € Xo and any a > ag,

188 (8)f = Ge(f)xo < Cae™ [If = Ge(f)llxo, V=0

for some explicit constant Cy > 1.
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Proof. We know that if P and @ are two projectors such that | P — Q|| zx,) < 1, then their ranges
are isomorphic. Lemma 4.29 thus implies that there exists g € (0, 1) such that for any ¢ € (0, &),

dim R(II.) = dim R(ITy) = 1.

We also know that 0 is an eigenvalue for A. (cf. part (1) of Theorem 4.20). This concludes the
proof of the first part of the proposition.

To get the estimate on the semigroup, we use a spectral mapping theorem coming from [9,
Theorem 2.1]. The hypothesis of the theorem are satisfied because B, — a is hypodissipative in X
(and thus in D(A. ) = D(B: ) and A € %(Xo, W2P?(m)) (and thus A € B(Xo, D(Ac i, ))-

O

To conclude the proof of part (2) of Theorem 4.20, we use the previous Proposition 4.30 combined
with an enlargement argument (see [4, 6]): our “small space” is E = LP?(m) and our “large”
space is & = L*(m). We then use Lemmas 4.22 and 4.23-4.27 and the fact that we clearly have
Ac BEE).
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