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UNIFORM SEMIGROUP SPECTRAL ANALYSIS OF THE DISCRETE,

FRACTIONAL & CLASSICAL FOKKER-PLANCK EQUATIONS

STÉPHANE MISCHLER AND ISABELLE TRISTANI

Abstract. In this paper, we investigate the spectral analysis (from the point of view of semi-
groups) of discrete, fractional and classical Fokker-Planck equations. Discrete and fractional
Fokker-Planck equations converge in some sense to the classical one. As a consequence, we first
deal with discrete and classical Fokker-Planck equations in a same framework, proving uniform
spectral estimates using a perturbation argument and an enlargement argument. Then, we do
a similar analysis for fractional and classical Fokker-Planck equations using an argument of en-
largement of the space in which the semigroup decays. We also handle another class of discrete
Fokker-Planck equations which converge to the fractional Fokker-Planck one, we are also able
to treat these equations in a same framework from the spectral analysis viewpoint, still with
a semigroup approach and thanks to a perturbative argument combined with an enlargement
one. Let us emphasize here that we improve the perturbative argument introduced in [7] and
developed in [11], relaxing the hypothesis of the theorem, enlarging thus the class of operators
which fulfills the assumptions required to apply it.

Keywords: Fokker-Planck equation; fractional Laplacian; spectral gap; exponential rate of
convergence; long-time asymptotic; semigroup; dissipativity.
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1. Introduction

1.1. Model and main result. In this paper, we investigate from a spectral analysis point of
view some discrete and fractional Fokker-Planck equations. They are simple models for describing
the time evolution of a density function f = f(t, x), t ≥ 0, x ∈ Rd, of particles undergoing both
diffusion and (harmonic) confinement mechanisms and write

(1.1) ∂tf = Λεf = Dεf + div(xf).

The diffusion term may be either a discrete diffusion (Section 2)

Dε(f) :=
1

ε2
(kε ∗ f − f),
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2 S. MISCHLER AND I. TRISTANI

for a convenient (centered, nonnegative, smooth and decaying fast enough) kernel k, with the usual
notation kε(x) = k(x/ε)/εd, ε > 0. It can also be a fractional diffusion (Section 3)

(1.2) Dε(f)(x) := −(−∆)
2−ε
2 f(x) = cε

∫

Rd

f(y)− f(x)− χ(x− y)(x − y) · ∇f(x)

|x− y|d+2−ε
dy,

with ε ∈ (0, 2), χ centered in D(Rd) satisfying 1B(0,1) ≤ χ ≤ 1B(0,2), and a convenient renor-
malization constant cε > 0. Both families of equations are related to the classical Fokker-Planck
equation, because in the limit ε→ 0, one may recover

∂tf = Λ0f = ∆f + div(xf).

In Section 4, the diffusion term is a fractional one, discrete for ε > 0:

Dε(f) := kε ∗ f − ‖kε‖L1 f

where kε is another convenient kernel which converges towards the kernel of the fractional diffusion
operator k0 := cα | · |−d−α for some fixed α ∈ (0, 2). In the limit ε → 0, one may recover the
fractional Fokker-Planck equation

∂tf = Λ0f = −(−∆)α/2f + div(xf).

The main features of these equations are (expected to be) the same: they are mass preserving,
positivity preserving, have a unique positive stationary state with unit mass and that stationary
state is exponentially stable, in particular

(1.3) f(t) → 0 as t→ ∞,

for any solution associated to an initial datum f0 with vanishing mass. Such results can be obtained
using different tools as the spectral analysis of self-adjoint operators, some (generalization of)
Poincaré inequalities or logarithmic Sobolev inequalities as well as the Krein-Rutman theory for
positive semigroup.

The aim of this paper is to initiate a kind of unified treatment of these equations and more
importantly to establish that the convergence (1.3) is exponentially fast uniformly with respect
to the diffusion term for a large class of initial data which are taken in a fixed (large) weighted
Lebesgue or weighted Sobolev space X . Our approach is a semigroup approach in the spirit of the
semigroup decomposition framework introduced by Mouhot in [10] and developed subsequently in
[7, 4, 12, 6]. A typical result we are able to prove is the following.

Theorem 1.1 (rough version). There exist ε0 ∈ (0, 2), a < 0 and C ≥ 1 such that:

‖SΛε(t)f −ΠΛε,0SΛε(t)f‖X ≤ C eat ‖f −ΠΛε,0f‖X ∀ t ≥ 0, ∀ ε ∈ [0, ε0], ∀ f ∈ X,

where X is (for instance) a L1 weighted space, SΛε(t) = eΛεt stands for the semigroup associated
to the generator Λε and ΠΛε,0 for the projector onto the null space of Λε.

Theorem 1.1 generalizes to the discrete diffusion Fokker-Planck equation and to the discrete
fractional Fokker-Planck equation similar results obtained for the classical Fokker-Planck equation
in [4, 6] (Section 2) and for the fractional one in [12] (Section 4). It also makes uniform with
respect to the fractional diffusion parameter the convergence results obtained for the fractional
diffusion equation in [12] (Section 3). It is worth mentioning that there exists a huge literature
on the long-time behaviour for the Fokker-Planck equation as well as (to a lesser extend) for the
fractional Fokker-Planck equation. We refer to the references quoted in [4, 6, 12] for details. There
also probably exist many papers on the discrete diffusion equation since it is strongly related to
a standard random walk in Rd, but we were not able to find any precise reference in this PDE
context.
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1.2. Method of proof. Let us explain our method. First, we may associate a semigroup SΛε to
the evolution equation (1.1) in many Sobolev spaces, and that semigroup is mass preserving and
strongly positive. In other words, SΛε is a Markov semigroup and it is then expected that there
exists a unique positive and unit mass steady state Gε to the equation (1.1). Next, we are able to
establish that the semigroup splits as

(1.4) SΛε = S1
ε + S2

ε , S1
ε ≈ etTε , Tε finite dimensional, S2

ε = O(eat), a < 0,

in these many weighted Sobolev spaces. The above decomposition of the semigroup is the main
technical issue of the paper. It is obtained by introducing a convenient splitting

(1.5) Λε = Aε + Bε

where Bε enjoys suitable dissipativity property and Aε enjoys some suitable Bε-power regularity (by
analogy with the Bε-power compactness notion introduced by Voigt [13]). It is worth emphasizing
that we are able to exhibit such a splitting with uniform (dissipativity, regularity) estimates with
respect to the diffusion parameter ε ∈ [0, ε0] in several weighted Sobolev spaces.

As a consequence of (1.4), we may indeed apply the Krein-Rutman theory developed in [9, 5]
and exhibit such a unique positive and unit mass steady state Gε. Of course for the classical and
fractional Fokker-Planck equations the steady state is trivially given through an explicit formula
(the Krein-Rutman theory is useless in that cases). A next direct consequence of the above spectral
and semigroup decomposition (1.4) is that there is a spectral gap in the spectral set Σ(Λε) of the
generator Λε, namely

(1.6) λε := sup{ℜe ξ ∈ Σ(Λε)\{0}} < 0,

and then that an exponential trend to equilibrium can be established, namely

(1.7) ‖SΛε(t)f0 −Gε‖X ≤ Cε e
at ‖f0 −Gε‖X ∀ t ≥ 0, ∀ ε ∈ [0, ε0], ∀ a > λε,

for any unit mass initial datum f0 ∈ X .

Our next step consists in proving that the spectral gap (1.6) and the estimate (1.7) are uniform
with respect to ε, more precisely, there exists λ∗ < 0 such that λε ≤ λ∗ for any ε ∈ [0, ε0] and Cε

can be chosen independent to ε ∈ [0, ε0].

A first way to get such uniform bounds is just to have in at least one Hilbert space Eε ⊂ L1(Rd)
the estimate

∀ f ∈ D(Rd), 〈f〉 =

∫

Rd

f dx = 0, (Λεf, f)Eε ≤ λ∗‖f‖2Eε
,

and then (1.7) essentially follows from the fact that the splitting (1.5) is true with operators
which are uniformly bounded with respect to ε ∈ [0, ε0]. It is the strategy we use in the case
of the fractional diffusion (Section 3) and the work has already been made in [12] except for the
simple but fundamental observation that the fractional diffusion operator is uniformly bounded
(and converges to the classical diffusion operator) when it is suitable (re)scaled.

A second way to get the desired uniform estimate is to use a perturbation argument. Observing
that, in the discrete cases (Sections 2 and 4),

∀ ε ∈ [0, ε0], Λε − Λ0 = O(ε),

for a suitable operator norm, we are able to deduce that ε 7→ λε is a continuous function at 0,
from which we readily conclude. We use here again that the considered models converge to the
classical or the fractional Fokker-Planck equation. In other words, the discrete models can be
seen as (singular) perturbations to the limit equations and our analyze takes advantage of such a
property in order to capture the asymptotic behaviour of the related spectral objects (spectrum,
spectral projector, ...) in order to get the above uniform spectral decomposition. This kind of
perturbative method has been introduced in [7], improved in [11]. In Section 4, we again improve
it in the sense that we are able to relax the assumptions needed to use such an argument, some of
the assumptions are only required to be satisfied on the limit operator (ε = 0).
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1.3. Comments and possible extensions.

Motivations. The main motivation of the present work is rather theoretical and methodological.
Spectral gap and semigroup estimates in large Lebesgue spaces have been established both for
Boltzmann like equations and Fokker-Planck like equations in a series of recent papers [10, 7,
4, 9, 2, 1, 12, 6, 8]. The proofs are based on a splitting of the generator method as here and
previously explained, but the appropriate splitting are rather different for the two kinds of models.
The operator Aε is a multiplication (0-order) operator for a Fokker-Planck equation while it is an
integral (−1-order) operator for a Boltzmann equation. More importantly, the fundamental and
necessary regularizing effect is given by the action of the semigroup SBε for the Fokker-Planck
equation while it is given by the action of the operator Aε for the Boltzmann equation. Let
us underline here that in Section 4, we exhibit a new splitting for fractional Fokker-Planck like
operators (different from the one introduced in [12]) in the spirit of Boltzmann like operators
(the operator Aε is an integral operator whereas it was a multiplication operator in [12] and in
Section 3). Our purpose is precisely to show that all these equations can be handled in the same
framework, by exhibiting a suitable and compatible splitting (1.5) which does not blow up and
such that the time indexed family of operators AεSBε (or some iterated convolution products of
that one) have a good regularizing property which is uniform in the singular limit ε→ 0.

Probability interpretation. The discrete and fractional Fokker-Planck equations are the evolution
equations satisfied by the law of the stochastic process which is solution to the SDE

dXt = −Xtdt− dL ε
t ,

where L ε
t is the Levy (jump) process associated to kε/ε

2 or cε/|z|d+2−ε. For two trajectories Xt

and Yt to the above SDE associated to some initial datum X0 and Y0, and p ∈ [1, 2), we have

d|Xt − Yt|
p = −p|Xt − Yt|

pdt,

from which we deduce

E(|Xt − Yt|
p) ≤ e−ptE(|X0 − Y0|

p), ∀ t ≥ 0.

Denoting by fε(t) the law of Xt and Gε the law of the stable process Yt, we classically deduce the
Wasserstein distance estimate

(1.8) Wp(fε(t), Gε) ≤ e−tWp(f0, Gε), ∀ t ≥ 0.

Estimate (1.8) has to be compared with (1.7). While the proof of (1.8) is just straightforward, the
proof of (1.7) is not. In particular, for p = 1, the Kantorovich-Rubinstein Theorem says that (1.8)
is equivalent to the estimate

(1.9) ‖fε(t)−Gε‖(W 1,∞(Rd))′ ≤ e−t ‖f0 −Gε‖(W 1,∞(Rd))′ , ∀ t ≥ 0.

Estimates (1.8) and (1.9) have to be compared with (1.7). Proceeding in a similar way as in [9, 6]
it is likely that the spectral gap estimate (1.9) can be extended (by “shrinkage of the space”)
to a weighted Lebesgue space framework and then to get the estimate in Theorem 1.1 for any
a ∈ (−1, 0).

Trotter-Kato. From the Trotter-Kato formula

SΛε − SΛ0
= SΛε ∗ (Λε − Λ0)SΛ0

and the two observations

D(Λ
1/4
0 ) ⊂ D(Λε) ⊂ D(Λ0), ‖Λε − Λ0‖D(Λ3

0
)→X = O(ε),

we should deduce

‖SΛε − SΛ0
‖D(Λ2

0
)→X = O(ε).

We believe that these arguments can be made rigorous and then that the same analysis we have
performed here should make possible to improve the above estimate into

sup
t≥0

‖SΛε(t)− SΛ0
(t)‖B(X) e

−at = O(ε).
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Singular kernel and other confinement term. We also believe that a similar analysis can be handle
with more singular kernels that the ones considered here, the typical example should be k(z) =
(δ−1+δ1)/2 in dimension d = 1, and for confinement term different from the harmonic confinement
considered here, including other forces or discrete confinement term. In order to perform such an
analysis one could use some trick developed in [9] in order to handle the equal mitosis (which uses
one more iteration of the convolution product of the time indexed family of operators AεSBε).

Linearized and nonlinear equations. We also believe that a similar analysis can be adapted to
nonlinear equations. The typical example we have in mind is the Landau grazing collision limit of
the Boltzmann equation. One can then expect to get an exponential trend of solutions to its asso-
ciated Maxwellian equilibrium which is uniform with respect to the considered model (Boltzmann
equation with and without Grad’s cutoff and Landau equation).

Kinetic like models. A more challenging issue would be to extend the uniform asymptotic analysis
to the Langevin SDE or the kinetic Fokker-Planck equation by using some idea developed in [1]
which make possible to connect (from a spectral analysis point of view) the parabolic-parabolic
Keller-Segel equation to the parabolic-elliptic Keller-Segel equation. The next step should be to
apply the theory to the Navier-Stokes diffusion limit of the (in)elastic Boltzmann equation. These
more technical problems will be investigated in next works.

1.4. Outline of the paper. Let us describe the plan of the paper. In each section, we treat a
family of equations in a uniform framework, from a spectral analysis viewpoint with a semigroup
approach. In Section 2, we deal with the discrete and classical Fokker-Planck equations. Section 3 is
dedicated to the analysis of the fractional and classical Fokker-Planck equations. Finally, Section 4
is devoted to the study of the discrete and fractional Fokker-Planck equations.

1.5. Notations. For a (measurable) moment function m : Rd → R+, we define the norms

‖f‖Lp(m) := ‖f m‖Lp(Rd), ‖f‖p
Wk,p(m)

:=

k∑

i=0

‖∂if‖pLp(m), k ≥ 1,

and the associated weighted Lebesgue and Sobolev spaces Lp(m) andW k,p(m), we denoteHk(m) =
W k,2(m) for k ≥ 1. We also use the shorthand Lp

r and W 1,p
r for the Lebesgue and Sobolev spaces

Lp(m) and W 1,p(m) when m(x) = 〈x〉r , 〈x〉 := (1 + |x|2)1/2.
From now on, we fix a polynomial weight m(x) := 〈x〉q with q > 0, the range of admissible q

will be specified in each section.
Throughout this paper, we will use the same notation C for positive constants that may change

from line to line. Moreover, the notation A ≈ B shall mean that there exist two positive constants
C1, C2 such that C1A ≤ B ≤ C2A.

Acknowledgments. The research leading to this paper was (partially) funded by the French
“ANR blanche” project Stab: ANR-12-BS01-0019. The second author has been partially supported
by the fellowship l’Oréal-UNESCO For Women in Science.

2. From discrete to classical Fokker-Planck equation

In the sequel, we consider a kernel k ∈W 2,1(Rd) ∩ L1
2q+3 satisfying the centered condition

(2.1)

∫

Rd

k(x)




1
x

x⊗ x


 dx =




1
0
2Id


 ,

as well as the positivity condition: there exist κ, r > 0 such that

(2.2) k ≥ κ1B(0,r).
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Let us notice that assumptions made on k imply

(2.3) k̂2(ξ) ≤ C
1− k̂(ξ)

|ξ|2
, ∀ ξ ∈ Rd

for some constant C > 0.

We define kε(x) := 1/εdk(x/ε), x ∈ Rd for ε > 0, and we consider the discrete and classical
Fokker-Planck equations

(2.4)




∂tf =

1

ε2
(kε ∗x f − f) + divx(xf) =: Λεf, ε > 0

∂tf = ∆xf + divx(xf) =: Λ0f.

The main result of the section reads as follows.

Theorem 2.1. Assume q > d/2 + 5 and consider a kernel k ∈ W 2,1(Rd) ∩ L1
2q+3 which satisfies

(2.1) and (2.2).
(1) For any ε > 0, there exists a positive and unit mass normalized steady state Gε ∈ L1

q(R
d)

to the discrete Fokker-Planck equation (2.4).
(2) There exist an explicit constant a0 < 0 and a constant ε0 > 0 such that for any ε ∈ [0, ε0], the

semigroup SΛε(t) associated to the discrete Fokker-Planck equation (2.4) satisfies: for any f ∈ L1
q

and any a > a0,

‖SΛε(t)f −Gε〈f〉‖L1
q
≤ Ca e

at ‖f −Gε〈f〉‖L1
q
, ∀ t ≥ 0

for some explicit constant Ca ≥ 1. In particular, the spectrum Σ(Λε) of Λε satisfies the separation
property Σ(Λε) ∩∆a0

= {0} in L1
q.

The method of the proof consists in introducing a suitable splitting Λε = Aε+Bε, in establishing
some dissipativity and regularity properties on Bε and AεSBε and finally to apply the Krein-
Rutman theory revisisted in [9, 5] and the perturbation therory developed in [7, 11, 5].

2.1. Splitting of Λε. We recall that χ ∈ D(Rd) is centered and satisfies 1B(0,1) ≤ χ ≤ 1B(0,2),
we define χR by χR(x) := χ(x/R) for R > 0 and we denote χc

R := 1− χR.

We define the splitting of Λε for ε ≥ 0 as follows.

Splitting of Λε for ε > 0. We define

Aεf :=M χR (kε ∗ f)

and

Bεf :=

(
1

ε2
−M

)
(kε ∗ f − f) +M χc

R (kε ∗ f − f) + div(xf)−M χR f,

for some constants M , R to be chosen later. One can notice that Λε = Aε + Bε.

Splitting of Λ0. We define A0f :=M χRf and B0f := Λ0f −M χRf so that Λ0 = A0 + B0.

2.2. Convergences Aε → A0 and Bε → B0.

Lemma 2.2. Consider s ∈ N. The following convergences hold:

‖Aε −A0‖B(Hs+1(m),Hs(m)) −−−→
ε→0

0 and ‖Bε − B0‖B(Hs+3(m),Hs(m)) −−−→
ε→0

0.

Proof. Step 1. We first deal with Aε in the case s = 0:

‖Aεf −A0f‖L2(m) = ‖M χR (kε ∗ f − f)m‖L2 ≤ C ‖kε ∗ f − f‖L2 ≤ η(ε)‖f‖H1 , η(ε) −−−→
ε→0

0.

Concerning the first derivative, writing that

∂x(Aεf −A0f) =M (∂xχR) (kε ∗ f − f) +M χR (kε ∗ ∂xf − ∂xf)

and using that ∂xχR is uniformly bounded as well as χR, we obtain the result. We omit the details
of the proof for higher order derivatives.
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Step 2. In order to prove the second part of the result, we are going to prove that

‖Λε − Λ0‖B(Hs+3(m),Hs(m)) −−−→
ε→0

0.

First, let us remark that (Λε − Λ0)f = 1/ε2(kε ∗ f − f)−∆f . Using (2.1), we have

Λεf(x)− Λ0f(x) =
1

ε2

∫

Rd

kε(x− y)(f(y)− f(x)) dy −∆f(x).

We now write a Taylor development of f between x and y:

f(y)− f(x) = (y − x) · ∇f(x) +
1

2
D2f(x)(y − x, y − x)

+
1

2

∫ 1

0

(1− s)2D3f(x+ s(y − x))(y − x, y − x, y − x) ds,

the first involving the gradient of f will give no contribution using (2.1). Performing a change of
variables, we obtain:

Λεf(x)− Λ0f(x)

=

∫

Rd

k(z)

(
1

2
D2f(x)(z, z) +

ε

2

∫ 1

0

(1− s)2D3f(x+ sεz)(z, z, z) ds

)
dz −∆f(x).

Using that

(2.5) D2f(x)(z, z) =
n∑

i=1

z2i
∂2f(x)

∂x2i
+
∑

i6=j

zizj
∂2f(x)

∂xi∂xj

and (2.1), we deduce that the first term on the right-hand side of (2.5) will be canceled by ∆f(x)
and that the second one vanishes. It thus implies

Λεf(x)− Λ0f(x) =
ε

2

∫

Rd

k(z)

∫ 1

0

(1− s)2D3f(x+ sεz)(z, z, z) ds dz.

Consequently, using (2.1), Jensen inequality with the probability measure 1[0,1](s) ds and perform-
ing a change of variable, we get

‖Λε − Λ0‖L2(m)

≤ C ε

(∫

Rd

(∫

Rd

k(z)

∫ 1

0

(1 − s)2D3f(x+ sεz)(z, z, z) ds dz

)2

m2(x) dx

)1/2

≤ C ε

(∫

Rd

∫

Rd

k(z) |z|3
∫ 1

0

|D3f(x+ sεz)|2m2(x + sεz)m2(sεz) ds dz dx

)1/2

≤ C ε

(∫

Rd

|D3f(x)|2m2(x) dx

)1/2(∫

Rd

k(z) |z|3m2(z) dz

)1/2

≤ C ε ‖f‖H3(m) −−−→
ε→0

0,

where we have used k ∈ L1
2q+3 and this concludes the proof of the second part in the case s = 0.

Since the operator ∂x commutes with Λε−Λ0, there is no need here to write the proof for s > 0. �

2.3. Uniform boundedness of Aε.

Lemma 2.3. For any p ∈ [1,∞], s ≥ 0 and any weight function ν ≥ 1, the operator Aε is bounded
from W s,p into W s,p(ν) with a norm which does not depend on ε.

Proof. For any f ∈ Lp(ν), we have

‖Aεf‖Lp(ν) ≤ C ‖kε ∗ f‖Lp ≤ C ‖kε‖L1 ‖f‖Lp.

thanks to the Young inequality. We conclude that Aε is bounded from Lp into Lp(ν) by observing
that ‖kε‖L1 = ‖k‖L1 = 1. The proof for the case s > 0 is similar and it is thus skipped. �
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2.4. Uniform dissipativity properties of Bε.

Lemma 2.4. We suppose that q > d/2. For any a > d/2 − q, there exist ε0 > 0, M ≥ 0 and
R ≥ 0 such that for any ε ∈ [0, ε0], Bε − a is dissipative in L2(m).

Proof. We consider a > d/2 − q. We are going to estimate the integral
∫
Rd (Bεf) f m

2 for ε > 0
which can be split into several pieces:

∫

Rd

(Bεf) f m
2 =

(
1

ε2
−M

) ∫

Rd

(kε ∗ f − f) f m2 +

∫

Rd

M χc
R (kε ∗ f − f) f m2

+

∫

Rd

div(xf) f m2 −

∫

Rd

M χR f
2m2

=: T1 + T2 + T3 + T4.

We fix ε1 > 0 such that M ≤ 1/(2ε21) and consider ε ∈ (0, ε1].

We first deal with T1 performing a classical computation and using that
∫
Rd kε = 1:

T1 =

(
1

ε2
−M

)∫

Rd×Rd

kε(x− y) (f(y)− f(x)) f(x)m2(x) dy dx

= −
1

2

(
1

ε2
−M

)∫

Rd×Rd

(f(y)− f(x))
2
kε(x− y)m2(x) dy dx

+
1

2

(
1

ε2
−M

)∫

Rd×Rd

(
f2(y)− f2(x)

)
kε(x− y)m2(x) dy dx

≤
1

2

(
1

ε2
−M

)∫

Rd×Rd

(
m2(y)−m2(x)

)
kε(x− y) f2(x) dy dx

where we have performed a change of variables to get the last inequality. We then write a Taylor
development of m2 between x and y:

m2(y)−m2(x) = (y − x) · ∇m2(x) +
1

2
D2m2(x+ θ(y − x))(y − x, y − x)

for some θ ∈ (0, 1). The term involving the gradient ofm2 will give no contribution because of (2.1)
and using that

|D2m2(x + θ(y − x))(y − x, y − x)| ≤ C |x− y|2 〈x〉2q−2 〈x− y〉2q−2,

and that k ∈ L1
2q, we obtain

(2.6)

T1 ≤ C

(
1

ε2
−M

) ∫

Rd×Rd

kε(x− y) |x− y|2 〈x − y〉2q−2 dy f2(x)〈x〉2q−2 dx

≤ C

(
1

ε2
−M

)
ε2
∫

Rd

k(z) |z|2 〈z〉2q−2 dz

∫

Rd

f2(x) 〈x〉2q−2 dx

≤ C

∫

Rd

f2(x) 〈x〉2q−2 dx.

We now treat the second term T2:

T2 =

∫

Rd×Rd

M χc
R(x) kε(x− y) f(x) f(y)m2(x) dy dx−

∫

Rd

M χc
R(x) f

2(x)m2(x) dx

≤
1

2

∫

Rd×Rd

M χc
R(x) kε(x− y) f2(x)m2(x) dy dx

+
1

2

∫

Rd×Rd

M χc
R(x) kε(x − y) f2(y)m2(x) dy dx−

∫

Rd

M χc
R(x) f

2(x)m2(x) dx

=: T21 + T22 + T23.
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To estimate T21, we use again the fact that
∫
Rd kε = 1 to get

(2.7) T21 ≤
M

2

∫

Rd

χc
R f

2m2.

Then, to estimate T22, we first perform a change of variable:

T22 =
M

2

∫

Rd×Rd

k(z)χc
R(y + εz)m2(y + εz) dz f2(y) dy.

Using the mean value theorem, we deduce that there exists θ, θ′ ∈ (0, 1) such that

χc
R(y + εz) = χc

R(y) + ε z · ∇χc
R(y + θεz), m2(y + εz) = m2(y) + εz · ∇m2(y + θ′εz).

We then use the fact that |∇χc
R| ≤ CR in Rd. It implies that

T22 ≤
M

2

∫

Rd×Rd

k(z) (χc
R(y) + ε |z|CR)

(
m2(y) + ε|z| · |∇m2(y + θ′ εz)|

)
dz f2(y) dy.

Then, because of (2.1) and the fact that |∇m2(y + θ′εz)| ≤ C 〈y〉2q−1〈z〉2q−1, since k ∈ L1
2q+3, we

conclude that

(2.8) T22 ≤M CR κε

∫

Rd

f2m2 +
M

2

∫

Rd

χc
R f

2m2, κε −−−→
ε→0

0.

Putting together (2.7), (2.8) and the contribution of the term T23, it yields

(2.9) T2 ≤M CR κε

∫

Rd

f2m2, κε −−−→
ε→0

0.

As far as T3 is concerned, we just perform an integration by parts:

(2.10)

T3 =

∫

Rd

div(xf) f m2

= d

∫

Rd

f2m2 +

∫

Rd

x · ∇f f m2

= d

∫

Rd

f2m2 −
1

2

∫

Rd

f2 div(xm2)

=

∫

Rd

f2(x)m2(x)

(
d

2
−
q |x|2

〈x〉2

)
dx.

The estimates (2.6), (2.9) and (2.10) together give
∫

Rd

Bεf f m
2 ≤

∫

Rd

f2m2

(
C 〈x〉−2 +

d

2
−
q |x|2

〈x〉2
+M CR κε −M χR

)

=

∫

Rd

f2m2 (ψε
R −M χR) ,

where we have denoted

(2.11) ψε
R(x) := C 〈x〉−2 +

d

2
−
q |x|2

〈x〉2
+M CR κε −−−−−−−−→

|x|→∞, ε→0
d/2− q.

We can thus choose M ≥ 0, R ≥ 0 and ε0 ≤ ε1 such that

∀x ∈ Rd, ψε
R(x) ≤ a.

As a conclusion, for such a choice of constants, we obtain that for any ε ∈ (0, ε0],∫

Rd

(Bε − a) f f m2 ≤ 0

and we refer to [4, 6] for the proof in the case ε = 0. �

Lemma 2.5. For any a > −q, there exist ε0 > 0, M ≥ 0 and R ≥ 0 such that for any ε ∈ [0, ε0],
Bε − a is dissipative in L1(m).
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Proof. We estimate the integral
∫

Rd

Bεf (signf)m =

(
1

ε2
−M

) ∫

Rd

(kε ∗ f − f) (signf)m+

∫

Rd

M χc
R (kε ∗x f − f) (signf)m

+

∫

Rd

div(xf) (signf)m−

∫

Rd

M χR |f |m

=: T1 + T2 + T3 + T4.

We omit the details of the proof which is very similar to the one of Lemma 2.4. We have

T1 ≤ C

∫

Rd

|f |(x) 〈x〉q−2 dx, T2 ≤M CR κε

∫

Rd

|f |m and T3 = −

∫

Rd

|f |m
x · ∇m

m
.

This implies that
∫

Rd

Bεf (signf)m ≤

∫

Rd

|f |m

(
C 〈x〉−2 −

x · ∇m

m
+M CR κε −M χR

)

and we conclude as in the proof of Lemma 2.4. We refer to [4, 6] for the proof in the case ε = 0. �

Lemma 2.6. Let s ∈ N and q > d/2 + s. For any a > d/2− q + s, there exist ε0 > 0, M ≥ 0 and
R ≥ 0 such that for any ε ∈ [0, ε0], Bε − a is hypodissipative in Hs(m).

Proof. The case s = 0 is nothing but Lemma 2.4. We now deal with the case s = 1. We consider
ft a solution to

∂tft = Bεft.

From the previous lemma, we already know that

(2.12)
1

2

d

dt
‖ft‖

2
L2(m) ≤

∫

Rd

f2
t m

2 (ψε
R −MχR) .

We now want to compute the evolution of the derivative of ft:

∂t∂xft = B(∂xft) +M ∂x(χ
c
R) (kε ∗ ft − ft) + ∂xft,

which in turn implies that

1

2

d

dt
‖∂xft‖

2
L2(m) =

∫

Rd

(∂xft) ∂t(∂xft)m
2

=

∫

Rd

(∂xft)B(∂xft)m
2 +

∫

Rd

M ∂x(χ
c
R) (kε ∗ ft) (∂xft)m

2

−

∫

Rd

M ∂x(χ
c
R) ft (∂xft)m

2 +

∫

Rd

(∂xft)
2m2

=: T1 + T2 + T3 + T4.

Concerning T1, using the proof of Lemma 2.4, we obtain

(2.13) T1 ≤

∫

Rd

(∂xft)
2m2 (ψε

R −M χR) .

Then, to deal with T2, we first notice that using Jensen inequality and (2.1), we have

‖kε ∗ f‖
2
L2(m) =

∫

Rd

(∫

Rd

kε(x− y) f(y) dy

)2

m2(x) dx

≤

∫

Rd×Rd

kε(x− y)m2(x) dx f2(y) dy

=

∫

Rd×Rd

k(z)m2(y + εz) dz f2(y) dy

≤ C

∫

Rd

k(z)m2(z) dz

∫

Rd

f2m2.
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We thus obtain using that k ∈ L1
2q+3:

‖kε ∗ f‖L2(m) ≤ C ‖f‖L2(m).

The term T2 is then treated using Cauchy-Schwarz inequality, Young inequality and the fact that
|∂x(χ

c
R)| is bounded by a constant depending only on R:

(2.14)

T2 ≤M CR ‖kε ∗x ft‖L2(m)‖∂xft‖L2(m)

≤M CR ‖ft‖L2(m)‖∂xft‖L2(m)

≤M CRK(ζ)‖ft‖
2
L2(m) +M CR ζ‖∂xft‖

2
L2(m)

for any ζ > 0 as small as we want.
The term T3 is handled using an integration by parts and with the fact that |∂2x(χ

c
R)| is bounded

with a constant which only depends on R:

(2.15) T3 =
M

2

∫

Rd

∂2x(χ
c
R) f

2
t m

2 +
M

2

∫

Rd

∂x(χ
c
R) f

2
t ∂x(m

2) ≤M CR ‖ft‖
2
L2(m).

Finally, we have

(2.16) T4 = ‖∂xft‖
2
L2(m).

Combining estimates (2.13), (2.14), (2.15) and (2.16), we deduce

(2.17)

1

2

d

dt
‖∂xft‖

2
L2(m) ≤ CR,M,ζ

∫

Rd

f2
t m

2

+

∫

Rd

(∂xft)
2m2 (ψε

R +M CR ζ + 1−M χR) .

To conclude the proof in the case s = 1, we introduce the norm

|||f |||2H1(m) := ‖f‖2L2(m) + η ‖∂xf‖
2
L2(m), η > 0.

Combining (2.12) and (2.17), we get

1

2

d

dt
|||ft|||

2
H1(m) ≤

∫

Rd

f2
t m

2 (ψε
R + η CR,M,ζ −MχR)

+ η

∫

Rd

(∂xft)
2m2 (ψε

R +M CR ζ + 1−M χR) .

Using the same strategy as in the proof of Lemma 2.4, if a > d/2− q + 1, we can choose M , R
large enough and ζ, ε0, η small enough such that we have on Rd

ψε
R + η CR,M,ζ −MχR ≤ a and ψε

R +M CR ζ + 1−M χR ≤ a

for any ε ∈ (0, ε0], which implies that

1

2

d

dt
|||ft|||

2
H1(m) ≤ a |||ft|||

2
H1(m).

The higher order derivatives are treated with the same method introducing the norm

(2.18) |||f |||2Hs(m) :=
s∑

j=0

ηj ‖∂jxf‖
2
L2(m).

�
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2.5. Uniform regularization properties of AεSBε(t). We introduce the notation

(2.19) Iε(f) :=
1

2ε2

∫

Rd×Rd

(f(x)− f(y))2 kε(x − y) dx dy.

Lemma 2.7. There exists a constant K > 0 such that for any ε > 0, the following estimate holds:

(2.20) ‖kε ∗ f‖
2
Ḣ1 ≤ K Iε(f).

Proof. First, performing a change of variable, one can notice that

∀ ξ ∈ Rd, k̂ε(ξ) = k̂(ε ξ).

Using that
∫
Rd kε = 1, we have

Iε(f) =
1

2ε2

∫

Rd×Rd

f2(x) kε(x− y) dx dy +
1

2ε2

∫

Rd×Rd

f2(y) kε(x− y) dx dy

−
1

ε2

∫

Rd×Rd

f(x)f(y) kε(x− y) dx dy

=
1

ε2

(∫

Rd

f2 −

∫

Rd

(kε ∗ f) f

)
.

As a consequence, using Plancherel formula, we get

Iε(f) =
1

ε2

(∫

Rd

f̂2 −

∫

Rd

k̂ε f̂
2

)
=

∫

Rd

f̂2(ξ)
1 − k̂(εξ)

ε2
dξ.

Then, we again use Plancherel formula to obtain

‖kε ∗ f‖
2
Ḣ1 = ‖∂x(kε ∗ f)‖

2
L2 = ‖F(∂x(kε ∗ f))‖

2
L2

=

∫

Rd

|ξ|2 k̂(εξ)2 f̂2.

We conclude to (2.20) by using (2.3). �

We now introduce the following notation λ := 1/(2K) > 0. Before going into the proof of
regularization lemmas, we recall a result from [5] which is going to be useful.

Lemma 2.8. Consider two Banach spaces X, Y and a function u : R+ → B(X) + B(Y ). For
a0, b ∈ R, a0 < b, we assume that

(1) ue−at ∈ L1(0,∞;B(X) ∩ B(Y )) for any a > a0;
(2) ue−bt ∈ L1(0,∞;B(X,Y )).

Then, for any a > a0, there exists n ∈ N such that u(∗n)e−at ∈ L1(0,∞;B(X,Y )), with explicit
constant uniquely depending on the two assumed bounds (1) and (2).

Lemma 2.9. Consider s1 < s2 ∈ N and q > d/2 + s2. Let M , R and ε0 so that the conclusion of
Lemma 2.6 holds in both spaces Hs1(m) and Hs2(m). Then, for any a ∈ (max{d/2−q+s2,−λ}, 0),
there exists n ∈ N such that for any ε ∈ [0, ε0], we have the following estimate

∫ ∞

0

‖(AεSBε)
(∗n)(t)‖Hs1 (m)→Hs2 (m) e

−at dt ≤ Ca

for some constant Ca > 0.

Proof. We first give the proof for the case (s1, s2) = (0, 1). We consider a ∈ (max{d/2 − q +
1,−λ}, 0), b ∈ (max{d/2− q + 1,−λ}, a) and ft := SBε(t)f , i.e. that satisfies

∂tft = Bεft, f0 = f.



DISCRETE, FRACTIONAL & CLASSICAL FOKKER-PLANCK EQUATIONS 13

From the proof of Lemma 2.6, for any ε ∈ (0, ε0], we have

1

2

d

dt
‖ft‖

2
L2(m) ≤ −

1

2

(
1

ε2
−M

)∫

Rd×Rd

(f(y)− f(x))2 kε(x− y)m2(x) dy dx+ a ‖ft‖
2
L2(m)

≤ −
1

4ε2

∫

Rd×Rd

(f(y)− f(x))
2
kε(x− y) dy dx+ a ‖ft‖

2
L2(m)

≤ −
1

2
Iε(ft) + a ‖ft‖

2
L2(m)

where we have used that M ≤ 1/(2ε2) for any ε ∈ (0, ε0]. Using Lemma 2.7, we obtain

d

dt
‖ft‖

2
L2(m) ≤ −2λ‖kε ∗x ft‖

2
Ḣ1 + 2a ‖ft‖

2
L2(m)

≤ 2a ‖kε ∗x ft‖
2
Ḣ1 + 2a ‖ft‖

2
L2(m).

Multiplying this inequality by e−2at, it implies that

d

dt

(
‖ft‖

2
L2(m) e

−2at
)
≤ 2a ‖kε ∗x ft‖

2
Ḣ1 e

−2at

and thus, integrating in time

‖ft‖
2
L2(m) e

−2at − 2a

∫ t

0

‖kε ∗x fs‖
2
Ḣ1e

−2as ds ≤ ‖f‖2L2(m).

In particular, we obtain

(2.21)

∫ t

0

‖kε ∗x fs‖
2
Ḣ1e

−2as ds ≤ −
1

2a
‖f‖2L2(m), ∀ t ≥ 0.

We now want to estimate
∫ t

0

‖AεSBε(s)f‖
2
H1(m) e

−2as ds =

∫ t

0

‖Aεfs‖
2
H1(m) e

−2as ds

=

∫ t

0

‖Aεfs‖
2
L2(m) e

−2as ds+

∫ t

0

‖∂x (Aεfs) ‖
2
L2(m) e

−2as ds

≤

∫ t

0

‖Aεfs‖
2
L2(m) e

−2as ds+

∫ t

0

‖M∂x(χR) kε ∗x fs‖
2
L2(m) e

−2as ds

+

∫ t

0

‖MχR ∂x(kε ∗x fs)‖
2
L2(m) e

−2as ds

=: I1 + I2 + I3.

Using dissipativity properties of Bε and boundedness of Aε, we get

I1 ≤

∫ t

0

e2bse−2as ds ‖f‖2L2(m) ≤ C ‖f‖2L2(m).

We deal with I2 using the fact that M∂x(χR) is compactly supported, Young inequality and
dissipativity properties of Bε:

I2 ≤ C

∫ t

0

‖kε ∗x fs‖
2
L2 ds ≤ C

∫ t

0

‖fs‖
2
L2ds ≤ C

∫ t

0

e2bs ds ‖f‖2L2(m) ≤ C ‖f‖2L2(m).

Finally, for I3, we use (2.21) to obtain

I3 ≤

∫ t

0

‖kε ∗x fs‖
2
Ḣ1 e

−2as ds ≤ C ‖f‖2L2(m).

Passing to the limit t→ ∞, we obtain
∫ ∞

0

‖AεSBε(s)f‖
2
H1(m) e

−2as ds ≤ C ‖f‖2L2(m).
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Consequently, using Cauchy-Schwarz inequality, we have

(2.22)

(∫ ∞

0

‖AεSBε(s)f‖H1(m) e
−as/2 ds

)2

=

(∫ ∞

0

‖AεSBε(s)f‖H1(m) e
−as eas/2 ds

)2

≤

∫ ∞

0

‖AεSBε(s)f‖
2
H1(m) e

−2as ds

∫ ∞

0

eas ds

≤ C ‖f‖2L2(m).

To conclude the proof in the case (s1, s2) = (0, 1), we use Lemma 2.8 with X = L1(m), Y = L2(m)
and u(t) = AεSBε(t). Lemmas 2.3 and 2.4-2.6 allow us to check that assumptions (1) is satisfied
and assumption (2) comes from (2.22).

Using the same strategy, we can easily obtain that
∫ ∞

0

‖AεSBε(s)f‖
2
H2(m) e

−2as ds ≤ C ‖f‖2H1(m).

We can thus deduce that
∫ ∞

0

‖(AεSBε)
(∗2)(t)f‖2H2(m) e

−2at dt

≤

∫ ∞

0

∫ t

0

‖AεSBε(t− s)AεSBε(s)f‖
2
H2(m) e

−2a(t−s) e−2as ds dt

≤

∫ ∞

0

∫ ∞

s

‖AεSBε(t− s)AεSBε(s)f‖
2
H2(m) e

−2a(t−s) dt e−2as ds

≤

∫ ∞

0

∫ ∞

0

‖AεSBε(t)AεSBε(s)f‖
2
H2(m) e

−2at dt e−2as ds

≤ C

∫ t

0

‖AεSBε(s)f‖
2
H1(m) e

−2as ds

≤ C ‖f‖2L2(m).

Reiterating the process, we can conclude the proof of the lemma. We refer to [4, 6] for the proof
in the case ε = 0.

�

Lemma 2.10. Consider q > d/2 and M , R, ε0 so that the conclusions of Lemmas 2.4 and 2.5
hold. Then, for any a ∈ (−q, 0), there exists n ∈ N such that the following estimate holds for any
ε ∈ [0, ε0]:

∀ t ≥ 0,

∫ ∞

0

‖(AεSBε)
(∗n)(t)‖B(L1(m),L2(m)) e

−at dt ≤ Ca,

for some constant Ca > 0.

Proof. We first introduce the formal dual operators of Aε and Bε:

A∗
εφ := kε ∗ (M χR φ), B∗

εφ :=
1

ε2
(kε ∗ φ− φ)− x · ∇φ− kε ∗ (M χRφ).

We use the same computation as the one used to deal with T1 is the proof of Lemma 2.4 and
Cauchy-Schwarz inequality:

∫

Rd

(B∗
εφ)φ ≤ −

1

2ε2

∫

Rd×Rd

kε(x− y) (φ(y)− φ(x))2 dy dx

+
1

2ε2

∫

Rd×Rd

(φ2(y)− φ2(x)) kε(x− y) dy dx

+
d

2

∫

Rd

φ2 + ‖kε ∗ (M χR φ)‖L2 ‖φ‖L2 .
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We then notice that the second term equals 0 and we use Young inequality and the fact that
‖kε‖L1 = 1 to get
∫

Rd

(B∗
εφ)φ ≤ −

1

2ε2

∫

Rd×Rd

kε(x − y) (φ(y)− φ(x))2 dy dx+
d

2

∫

Rd

φ2 +
1

2
‖M χR φ‖

2
L2 +

1

2
‖φ‖2L2

≤ − Iε(φ) + C

∫

Rd

φ2

where Iε is defined in (2.19). We also have the following inequality:

Iε(χR φ) ≤
1

ε2

∫

Rd×Rd

kε(x− y)φ2(x) (χR(y)− χR(x))
2 dy dx

+
1

ε2

∫

Rd×Rd

kε(x− y)χ2
R(y) (φ(y) − φ(x))2 dy dx

≤ C ‖∇χR‖∞

∫

Rd

φ2 + 2Iε(φ).

If we denote φt := SB∗
ε
(t)φ, we thus have

1

2

d

dt
‖φt‖

2
L2 ≤ −λ ‖kε ∗ (χR φt)‖

2
Ḣ1 + b ‖φt‖

2
L2, b > 0.

Multiplying this inequality by e−bt, we obtain

d

dt

(
‖φt‖

2
L2 e−bt

)
≤ −2λ ‖kε ∗ (χR φt)‖

2
Ḣ1 e

−bt, ∀ t ≥ 0,

and integrating in time, we get

(2.23) ‖φt‖
2
L2 e−bt + 2λ

∫ t

0

‖kε ∗ (χR φs)‖
2
Ḣ1 e

−bs ds ≤ ‖φ‖2L2(m), ∀ t ≥ 0.

We now estimate
∫ t

0

‖A∗
ε SB∗

ε
(s)φ‖2H1 e−2bs ds =

∫ t

0

‖A∗
ε φs‖

2
H1 e−2bs ds

=

∫ t

0

‖kε ∗ (M χR φs)‖
2
L2 e−2bs ds+

∫ t

0

‖kε ∗ (M χR φs)‖
2
Ḣ1 e

−2bs ds.

Using Young inequality and (2.23), we conclude that
∫ ∞

0

‖A∗
ε SB∗

ε
(t)φ‖2H1 e−2bs ds ≤ C ‖φ‖2L2.

As in the proof of Lemma 2.9, we can obtain that for any s ∈ N, there exists a constant C > 0
such that for any ε ∈ (0, ε0],

∫ ∞

0

‖(A∗
ε SB∗

ε
)(∗s)(t)‖2L2→Hs e−2bt dt ≤ C.

From this, we deduce that for any ε ∈ (0, ε0],
∫ ∞

0

‖(SBε Aε)
(∗s)(t)‖2H−s→L2 e−2bt dt ≤ C.

Taking ℓ > d/2 and using the continuous Sobolev embedding L1(Rd) ⊂ H−ℓ(Rd), we obtain
∫ ∞

0

‖(SBε Aε)
(∗ℓ)(t)‖2L1→L2 e−2bt dt ≤ C.

The integer ℓ is thus fixed such that ℓ > d/2. Then noticing that

(AεSBε)
(∗(ℓ+1)) = Aε (SBεAε)

(∗ℓ) ∗t SBε
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and using the fact that Aε is compactly supported combined with Lemma 2.5, we get
∫ ∞

0

‖(AεSBε)
(∗(ℓ+1))f‖2L2(m) e

−2bt dt

≤

∫ ∞

0

∫ t

0

‖(SBεAε)
(∗ℓ)(s)SBε(t− s)f‖2L2 e−2bt dt

≤

∫ ∞

0

∫ ∞

s

‖(SBεAε)
(∗ℓ)(s)‖2L1→L2 e−2bs ‖SBε(t− s)f‖2L1(m)e

−2b(t−s) dt ds

≤

∫ ∞

0

‖(SBεAε)
(∗ℓ)(s)‖2L1→L2 e−2bs ds

∫ ∞

0

e2(a−b)t dt ‖f‖2L1(m)

≤ C ‖f‖2L1(m).

Consequently, using Cauchy-Schwarz inequality, we have
(2.24)(∫ ∞

0

‖(AεSBε)
(∗(ℓ+1))f‖L2(m) e

−2bt dt

)2

≤

∫ ∞

0

‖(AεSBε)
(∗(ℓ+1))f‖2L2(m) e

−2bt dt

∫ ∞

0

e−2bt dt

≤ C ‖f‖2L1(m).

To conclude the proof, we use Lemma 2.8 withX = L1(m), Y = L2(m) and u(t) := (AεSBε)
(∗(ℓ+1))(t).

We are able to check that assumption (1) is satisfied thanks to Lemmas 2.3 and 2.4-2.5. Assump-
tion (2) is nothing but inequality (2.24). We refer to [4, 6] for the proof in the case ε = 0.

�

2.6. Spectral analysis.

Lemma 2.11. For any ε > 0, Λε satisfies Kato’s inequalities:

∀ f ∈ D(Λε), Λε (θ(f)) ≥ θ′(f) (Λεf), θ(s) = |s| or θ(s) = s+.

It follows that for any ε > 0, the semigroup associated to Λε is positive in the following sense that
if f ∈ L1(m) and f ≥ 0, then for any t ≥ 0, SΛε(t)f ≥ 0.

Proof. First, we have

signf(x) Λεf(x)

=
1

ε2

∫

Rd

kε(x− y) (f(y)− f(x)) dy signf(x) + d f(x) signf(x) + x · ∇f(x) signf(x)

≤
1

ε2

∫

Rd

kε(x− y) (|f |(y)− |f |(x)) dy + d |f |(x) + x · ∇|f |(x) = Λε|f |(x),

which ends the proof of the Kato inequality in the case θ(s) = |s|. Using that s+ = (s+ |s|)/2, we
obtain the result in the case θ(s) = s+.

We consider f ≤ 0 and denote f(t) := SΛε(t)f . We define β(s) = s+ = (|s|+s)/2. Using Kato’s
inequality, we have ∂tβ(ft) ≤ Λεβ(ft), and then

0 ≤

∫

Rd

β(ft) ≤

∫

Rd

β(f) = 0, ∀ t ≥ 0,

from which we deduce ft ≤ 0 for any t ≥ 0. �

The operator −Λε satisfies the following form of the strong maximum principle.

Lemma 2.12. Any nonnegative eigenfunction associated to the eigenvalue 0 is positive. In other
words, we have

f ∈ D(Λε), Λεf = 0, f ≥ 0, f 6= 0 implies f > 0.
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Proof. We define

Cf =
1

ε2
kε ∗ f, Df = x · ∇xf + λ f, λ := d−

1

ε2

and the semigroup
SD(t)g := g(etx) eλt

with generator D. Thanks to the Duhamel formula

SΛε(t) = SD(t) +

∫ t

0

SD(s) CSΛ(t− s) ds,

the eigenfunction f satisfies

f = SΛε(t)f = SD(t)f +

∫ t

0

SD(s) CSΛε(t− s)f ds

≥

∫ t

0

SD(s) Cf ds ∀ t > 0.

By assumption, there exists x0 ∈ Rd such that f 6≡ 0 on B(x0, r/2). As a consequence, denoting
ρ := ‖f‖L1(B(x0,r/2)) > 0, we have

Cf ≥
κ ρ

ε2
1B(x0,r/2),

and then

f ≥
κ ρ

ε2
sup
t>0

∫ t

0

eλs 1B(e−sx0,e−tr/2) ds ≥ κ11B(x0,r/4), κ1 > 0.

Using that lower bound, we obtain

Cf ≥ θd
κκi−1

ε2
1B(x0,uir), and then f ≥ κi1B(x0,vir),

with i = 2, u2 = 1, κ2 > 0, v2 = 3/4. Repeating once more the argument, we get the same lower
estimate with i = 3, u3 = 7/4, κ3 > 0 and v3 = 3/2. By an induction argument, we finally get
f > 0 on Rd. �

We are now able to prove Theorem 2.1.

Proof of part (1) in Theorem 2.1. Using Lemmas 2.3-2.6-2.5, 2.11, 2.12 and the fact that Λ∗
ε1 = 0,

we can apply Krein-Rutman theorem which implies that for any ε > 0, there exists a unique Gε > 0
such that ‖Gε‖L1 = 1, ΛεGε = 0 and Πεf = 〈f〉Gε where 〈f〉 =

∫
Rd f . It also implies that for any

ε > 0, there exists aε < 0 such that in X = L1(m) or X = Hs(m) for any s ∈ N, there holds

Σ(Λε) ∩∆aε = {0}

and

(2.25) ∀ t ≥ 0, ‖SΛε(t)f − 〈f〉Gε‖X ≤ eat‖f − 〈f〉Gε‖X , ∀ a > aε.

Proof of part (2) in Theorem 2.1. We now have to establish that estimate (2.25) can be obtained
uniformly in ε ∈ [0, ε0]. In order to do so, we use a perturbation argument in the same line as in
[7, 11] to prove that our operator Λε has a spectral gap in H3(m) which does not depend on ε.

First, we introduce the following spaces:

X1 := H6
1 (m) ⊂ X0 := H3(m) ⊂ X−1(m) := L2(m)

where m = 〈x〉q with q > d/2 + 5 so that the conclusion of Lemma 2.6 is satisfied in the three
spaces Xi, i = −1, 0, 1.

One can notice that we also have the following embedding

X1 ⊂ H5
1 (m) ⊂ D(Λε) = D(Bε) ⊂ D(Aε) ⊂ X0.

We now summarize the necessary results to apply a perturbative argument (obtained thanks to
Lemmas 2.2, 2.3, 2.4, 2.6 and 2.9 and from [4, 6]).

There exist a0 < 0 and ε0 > 0 such that for any ε ∈ [0, ε0]:
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(i) For any i = −1, 0, 1, Aε ∈ B(Xi) uniformly in ε.
(ii) For any a > a0 and ℓ ≥ 0, there exists Cℓ,a > 0 such that

∀ i = −1, 0, 1, ∀ t ≥ 0, ‖SBε ∗ (AεSBε)
(∗ℓ)(t)‖Xi→Xi ≤ Cℓ,a e

at.

(iii) For any a > a0, there exist n ≥ 1 and Cn,a > 0 such that

∀ i = −1, 0,

∫ ∞

0

‖(AεSBε)
(∗n)(t)‖Xi→Xi+1

e−at dt ≤ Cn,a.

(iv) There exists a function η(ε) −−−→
ε→0

0 such that

∀ i = −1, 0, ‖Aε −A0‖Xi→Xi ≤ η(ε) and ‖Bε − B0‖Xi→Xi−1
≤ η(ε).

(v) Σ(Λ0) ∩∆a0
= {0} in spaces Xi, i = −1, 0, 1, where 0 is a one dimensional eigenvalue.

Using a perturbative argument as in [11], from the facts (i)–(v), we can deduce the following
proposition:

Proposition 2.13. There exist a0 < 0 and ε0 > 0 such that for any ε ∈ [0, ε0], the following
properties hold in X0 = H3(m):

(1) Σ(Λε) ∩∆a0
= {0};

(2) for any f ∈ X0 and any a > a0,

‖SΛε(t)f −Gε〈f〉‖X0
≤ Ca e

at ‖f −Gε〈f〉‖X0
, ∀ t ≥ 0

for some explicit constant Ca > 0.

To end the proof of Theorem 2.1, we enlarge the space where the previous estimates hold. To do
that, we use an extension argument (see [4, 7]) and Lemmas 2.3, 2.5-2.6 and 2.9-2.10. Our “small
space” is H3(m) and our “large” space is L1(m).

3. From fractional to classical Fokker-Planck equation

In this part, we denote α := 2− ε ∈ (0, 2] and we deal with the equations

(3.26)

{
∂tf = −(−∆)α/2f + div(xf) = Λ2−αf =: Lαf, α ∈ (0, 2)

∂tf = ∆f + div(xf) = Λ0f =: L2f.

We here recall (see (1.2)) that for α ∈ (0, 2), the fractional Laplacian of Schwartz function is
defined using an integral formulation as follows:

(3.27) ∀ f ∈ S(Rd), (−∆)
α/2

f(x) := cα

∫

Rd

f(x)− f(y) + χ(x− y)(x− y) · ∇f(x)

|x− y|d+α
dy,

where χ ∈ D(Rd) and 1B(0,1) ≤ χ ≤ 1B(0,2). Moreover, cα is a constant depending on α satisfying

cα
2

∫

|z|≤i

z2i
|z|d+α

= 1, ∀ i = 1, . . . , d,

which implies that cα ≈ (2 − α). Also, notice that by duality, we can extend the definition of the
fractional Laplacian to the following class of functions:

{
f ∈ L1

loc(R
d),

∫

Rd

|f(x)| 〈x〉−d−α dx <∞

}
.

Consequently, one can define (−∆)α/2m when q < α.
We recall that the equation ∂tf = Lαf admits a unique equilibrium of mass 1 that we denote Gα

(see [3] for the case α < 2). Moreover, if α < 2, one can prove that Gα(x) ≈ 〈x〉−d−α (see [12])

and for α = 2, we have G2(x) = (2π)−d/2e−|x|2/2. The main result of this section reads:
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Theorem 3.14. Assume α0 ∈ (0, 2) and q < α0. There exists an explicit constant a0 < 0 such that
for any α ∈ [α0, 2], the semigroup SLα(t) associated to the fractional Fokker-Planck equation (3.26)
satisfies: for any f ∈ L1

q, any a > a0 and any α ∈ [α0, 2],

‖SLα(t)f −Gα〈f〉‖L1
q
≤ Cae

at‖f −Gα〈f〉‖L1
q

for some explicit constant Ca ≥ 1. In particular, the spectrum Σ(Lα) of Lα satisfies the separation
property Σ(Lα) ∩∆a0

= {a0} in L1
q for any α ∈ [α0, 2].

3.1. Exponential decay in L2(G
−1/2
α ). We recall a result from [3] which establishes an expo-

nential decay to equilibrium for the semigroup SLα(t).

Theorem 3.15. There exists a constant a0 < 0 such that for any α ∈ (0, 2),

(1) in L2(G
−1/2
α ), there holds Σ(Lα) ∩∆a0

= {0};
(2) we have the following estimate for any a > a0,

‖SLα(t)f −Gα〈f〉‖L2(G
−1/2
α )

≤ eat ‖f −Gα〈f〉‖L2(G
−1/2
α )

, ∀ t ≥ 0.

Proof. The proof is immediate going back to the proof of the exponential decay in the space

L2(G
−1/2
α ) from [3]. Indeed, we can notice that the rate of decrease is uniform in α. �

3.2. Splitting of Lα. We define Aα :=M χR and Bα := Lα−Aα for someM,R > 0 to be chosen
later.

3.3. Uniform boundedness of Aα.

Lemma 3.16. Consider s ∈ N and p ≥ 1. The operator is uniformly bounded in α from W s,p(ν)

to W s,p with ν = m or ν = G
−1/2
α .

Proof. The proof is immediate using thatM χR and all its derivatives are compactly supported. �

3.4. Uniform dissipativity properties of Bα.

Lemma 3.17. For any a > −q, there exist M > 0 and R > 0 such that for any α ∈ [α0, 2], Bα−a
is dissipative in L1(m).

Proof. We just have to adapt the proof Lemma 5.1 from [12] taking into account the constant cα.
Indeed, we have ∫

Rd

(Lαf) signf m ≤

∫

Rd

|f |m

(
Iα(m)

m
−
x · ∇m

m

)
.

We can then show that thanks to the rescaling constant cα, Iα(m)/m goes to 0 at infinity uniformly
in α ∈ [α0, 2). As a consequence, if a > −q, since (x · ∇m)/m goes to −q ate infinity, one may
choose M and R such that for any α ∈ [α0, 2),

Iα(m)

m
−
x · ∇m

m
−M χR ≤ a, on Rd,

which gives the result. �

Lemma 3.18. For any a > a0 where a0 is defined in Theorem 3.15, Bα − a is dissipative

in L2(G
−1/2
α ).

Proof. The proof also comes from [12, Lemma 5.1]. �
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3.5. Uniform regularization properties of AαSBα(t).

Lemma 3.19. There exist some constants b ∈ R and C > 0 such that for any α ∈ [α0, 2], the
following estimates hold:

∀ t ≥ 0, ‖SBα(t)‖B(L1,L2) ≤ C
ebt

td/2α0
.

As a consequence, we can prove that for any a > max(−q, a0) and any α ∈ [α0, 2],

(3.28) ∀ t ≥ 0, ‖(Aα SBα)
(∗n)(t)‖

B(L1(m),L2(G
−1/2
α ))

≤ C eat.

Proof. We do not write the proof for the case α = 2 and refer to [4, 6].
Step 1. The key argument to prove this regularization property of SBα(t) is the Nash inequality.
For α ∈ [α0, 2), from the proof of [12, Lemma 5.3], we obtain that there exist b ≥ 0 and C > 0
such that for any α ∈ [α0, 2),

∀ t ≥ 0, ‖SBα(t)f‖L2 ≤ C
ebt

td/(2α0)
‖f‖L1.

Step 2. Then, using that Aα is compactly supported, we can write

‖AαSBα(t)f‖L2(m) ≤ C ‖SBα(t)f‖L2 ≤ C
ebt

td/(2α0)
‖f‖L1.

Using the same method as in [4], we can first deduce that there exists ℓ0 ∈ N, γ ∈ [0, 1) and K ∈ R

such that for any α ∈ [α0, 2],

‖(AαSBα)
(∗ℓ0)(t)f‖

L2(G
−1/2
α )

≤ C
ebt

tγ
‖f‖L1(m).

We can then conclude that (3.28) holds using [4, Lemma 2.17] combined with Lemmas 3.17 and 3.16.
�

3.6. Spectral analysis. Before going into the proof of Theorem 3.14, let us notice that we can
make explicit the projection Πα onto the null space N (Lα) through the following formula: Παf =
〈f〉Gα. Moreover, since the mass is preserved by the equation ∂tf = Lαf , we can deduce that
Πα(SLα(t)f) = Παf for any t ≥ 0.

Proof of Theorem 3.14. We can apply [4, Theorem 2.13] for each α ∈ [α0, 2] because combining
Theorem 3.15 with Lemmas 3.16, 3.17, 3.18 and 3.19, we can check the assumptions of the theorem
are satisfied. �

4. From discrete to fractional Fokker-Planck equation

Let us fix α ∈ (0, 2). We consider the equations

(4.29)

{
∂tf = kε ∗ f − ‖kε‖L1f + divx(xf) =: Λεf, ε > 0

∂tf = −(−∆)α/2f + divx(xf) =: Λ0f

where

kε(x) := 1ε≤|x|≤1/ε k0(x) + 1|x|<ε k0(ε), k0(x) := |x|−d−α.

Notice that

(4.30) ∀x ∈ Rd \ {0}, kε(x) ր k0(x) as ε→ 0.

We here recall that for α ∈ (0, 2), the fractional Laplacian on Schwartz functions is defined
through the formula (3.27). Since α is fixed in this part, we can get rid of the constant cα and
consider that it equals 1. The main theorem of this section reads:
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Theorem 4.20. Assume 0 < q < α/2.
(1) For any ε > 0, there exists a positive and unit mass normalized steady state Gε ∈ L1

q(R
d)

to the discrete fractional Fokker-Planck equation (4.29).
(2) There exist an explicit constant a0 < 0 and a constant ε0 > 0 such that for any ε ∈ [0, ε0], the

semigroup SΛε(t) associated to the discrete and fractional Fokker-Planck equations (4.29) satisfies:
for any f ∈ L1

q and any a > a0,

‖SΛε(t)f −Gε〈f〉‖L1
q
≤ Ca e

at ‖f −Gε〈f〉‖L1
q

∀ t ≥ 0,

for some explicit constant Ca ≥ 1. In particular, the spectrum Σ(Λε) of Λε satisfies the separation
property Σ(Λε) ∩∆a0

= {0} in L1
q.

The method of the proof is similar to the one of Section 2. We introduce a suitable splitting
Λε = Aε + Bε, establish some dissipativity and regularity properties on Bε and AεSBε and apply
the Krein-Rutman theory revisisted in [9, 5]. However, let us emphasize that we introduce a new
splitting for the fractional operator (a different one from Section 3 and from [12]) and we also
develop a new perturbative argument in the same line as [7, 11, 5] but with some less restrictive
assumptions on the operatorsAε and Bε, recquiring that they are fulfilled only on the limit operator
(i.e. for ε = 0).

4.1. Splittings of Λε. For any 0 < β < β′, as previously, we denote χβ(x) := χ(x/β), χc
β :=

1 − χβ; we also define χβ,β′ := χβ′ − χβ and introduce the function ξβ defined on Rd × Rd by

ξβ(x, y) := χβ(x) + χβ(y) − χβ(x)χβ(y) and ξcβ := 1 − ξβ . We denote I0(f) := −(−∆)α/2f and

Iε(f) := kε ∗ f − ‖kε‖L1f for ε > 0. We split these operators into several parts: for any ε ≥ 0,

(4.31)

Iε(f)(x) =

∫

Rd

kε(x− y)χη(x− y) (f(y)− f(x)− χ(x− y)(y − x) · ∇f(x)) dy

+

∫

Rd

kε(x− y)χc
η(x− y) (f(y)− f(x)) dy

=

∫

Rd

kε(x− y)χη(x− y) (f(y)− f(x)− χ(x− y)(y − x) · ∇f(x)) dy

+

∫

Rd

kε(x− y)χc
L(x− y) (f(y)− f(x)) dy

+

∫

Rd

kε(x− y)χη,L(x− y) (f(y)− f(x)) ξcR(x, y) dy

−

∫

Rd

kε(x− y)χη,L(x− y) ξR(x, y) dy f(x)

+

∫

Rd

kε(x− y)χη,L(x− y) ξR(x, y)f(y) dy

=: B1
εf + B2

εf + B3
εf + B4

εf +Aεf.

where the constants η ∈ [ε, 1], R > 0 and 0 < L ≤ 1/ε will be chosen later. One can notice that
given the facts that η ≥ ε and L ≤ 1/ε, we have for any ε > 0, Aε = A0 =: A. Finally, we denote
for any ε ≥ 0,

B5
εf = div(xf) and Bεf = B1

εf + B2
εf + B3

εf + B4
εf + B5

εf.

4.2. Convergence Bε → B0.

Lemma 4.21. Consider p ∈ (1,∞) and q ∈ (0, α/p). The following convergence holds:

‖Bε − B0‖B(W s+2,p(m),W s,p(m)) ≤ η1(ε) −−−→
ε→0

0, s = −2, 0.
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Proof. Let us notice that Bε − B0 = Λε − Λ0.
Step 1. We first deal with the case s = 0 and we introduce the notation k0,ε := k0 − kε. We then
compute

‖Λεf − Λ0f‖
p
Lp(m) =

∫

Rd

∣∣∣∣
∫

Rd

k0,ε(z) (f(x+ z)− f(x)− χ(z)z · ∇f(x)) dz

∣∣∣∣
p

mp(x) dx

≤ C

∫

Rd

∣∣∣∣∣

∫

|z|≤1

k0,ε(z) (f(x+ z)− f(x)− χ(z)z · ∇f(x)) dz

∣∣∣∣∣

p

mp(x) dx

+ C

∫

Rd

∣∣∣∣∣

∫

|z|≥1

k0,ε(z) (f(x+ z)− f(x)− χ(z)z · ∇f(x)) dz

∣∣∣∣∣

p

mp(x) dx

=: T1 + T2.

To deal with T1, we perform a Taylor expansion of f :

f(x+ z) = f(x) + z · ∇f(x) +

∫ 1

0

(1− s)D2f(x+ sz)(z, z) ds.

Since χ(z) = 1 if |z| ≤ 1, we thus obtain

T1 ≤ C

∫

Rd

(∫

|z|≤1

k0,ε(z) |z|
2

∫ 1

0

(1− s) |D2f(x+ sz)| ds dz

)p

mp(x) dx.

Then, from Holder inequality applied with the measure µε(dz) := 1|z|≤1 k0,ε(z) |z|
2 dz, we have

T1 ≤ C

(∫

Rd

µε(dz)

)p/p′ ∫

Rd×Rd

(∫ 1

0

(1− s) |D2f(x+ sz)| ds

)p

µε(dz)m
p(x) dx

≤ C

(∫

Rd

µε(dz)

)p/p′ ∫

Rd×Rd

(∫ 1

0

|D2f(x+ sz)| ds

)p

µε(dz)m
p(x) dx

where p′ = p/(p−1) is the Holder conjugate of p. Using now Jensen inequality with the probability
measure 1[0,1](s) ds, we get

T1 ≤ C

(∫

Rd

µε(dz)

)p/p′ ∫

Rd×Rd

∫ 1

0

|D2f(x+ sz)|p ds µε(dz)m
p(x) dx

≤ C

(∫

Rd

µε(dz)

)p/p′ ∫

Rd×Rd

∫ 1

0

|D2f(x+ sz)|pmp(x+ sz)mp(sz) ds µε(dz) dx

≤ C

(∫

Rd

µε(dz)

)p/p′ ∫

Rd×Rd

∫ 1

0

|D2f(x)|pmp(x) ds µε(dz) dx

where we have used that for |z| ≤ 1 and s ∈ [0, 1], mp(sz) ≤ C and have performed a change of
variable. We then deduce that

T1 ≤ C

(∫

Rd

µε(dz)

)p ∫

Rd

|D2f(x)|pmp(x) dx

with ∫

Rd

µε(dz) =

∫

|z|≤1

k0,ε(z) |z|
2 dz −−−→

ε→0
0

by dominated convergence since for any ε ≥ 0,

|k0,ε(z)| |z|
2
1|z|≤1 ≤ 2 k0(z) |z|

2
1|z|≤1 ∈ L1(Rd).

To treat T2, we first notice that the term involving ∇f(x) gives no contribution so that

T2 ≤ C

∫

Rd

∣∣∣∣∣

∫

|z|≥1

k0,ε(z) (f(x+ z)− f(x)) dz

∣∣∣∣∣

p

mp(x) dx.
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Then, using again Holder inequality with the measure 1|z|≥1 k0,ε(z) dz, we get doing similar com-
putations as for T1

T2 ≤ C

(∫

|z|≥1

k0,ε(z) dz

)p/p′ ∫

Rd

∫

|z|≥1

|k0,ε(z)| (|f |
p(x+ z) + |f |p(x)) dz mp(x) dx

≤ C

(∫

|z|≥1

k0,ε(z) dz

)p/p′ (∫

Rd

∫

|z|≥1

|k0,ε(z)| |f |
p(x + z)mp(x+ z)mp(z) dz dx

+

∫

|z|≥1

k0,ε(z) dz

∫

Rd

|f |p(x)mp(x) dx

)

≤ C

(∫

|z|≥1

k0,ε(z)m
p(z) dz

)p ∫

Rd

|f |p(x)mp(x) dx,

with ∫

|z|≥1

k0,ε(z)m
p(z) dz −−−→

ε→0
0

by dominated convergence since for any ε ≥ 0,

k0,ε(z)m
p(z)1|z|≥1 ≤ 2 k0(z)m

p(z)1|z|≥1 ∈ L1(Rd).

As a consequence, we obtain

‖(Λε − Λ0)(f)‖Lp(m) ≤ η(ε)‖f‖W 2,p(m), η(ε) −−−→
ε→0

0.

Step 2. We now consider the case s = −2, and we recall that by definition

‖Λεf − Λ0f‖W−2,p(m) = sup
‖φ‖

W2,p′≤1

∫

Rd

f (Λε − Λ0)
∗(φm) = sup

‖φ‖
W2,p′≤1

∫

Rd

f (Λε − Λ0)(φm)

where p′ = p/(p − 1) and because (Λε − Λ0)
∗ = Λε − Λ0 (where Λ∗ stands for the formal dual

operator of Λ). We then estimate the integral in the right hand side of the previous equality:
∫

Rd

f (Λε − Λ0)(φm) =

∫

Rd

(Λε − Λ0)(φm)

m
f m ≤ ‖(Λε − Λ0)(φm)/m‖Lp′ ‖f‖Lp(m).

Moreover,

(4.32)

(Λε − Λ0)(φm)(x) = (Iε − I0)(φm)(x)

= (Iε − I0)(φ)(x)m(x) +

∫

Rd

k0,ε(z)φ(x + z) (m(x+ z)−m(x) −∇m(x) · zχ(z)) dz

+

∫

Rd

k0,ε(z)χ(z) z · ∇m(x) (φ(x + z)− φ(x)) dz.

We deduce that

‖(Λε − Λ0)(φm)/m‖Lp′ ≤ ‖(Iε − I0)(φ)‖Lp′

+

(∫

Rd

1

mp′(x)

∣∣∣∣
∫

Rd

k0,ε(z)φ(x+ z) (m(x+ z)−m(x)−∇m(x) · zχ(z)) dz

∣∣∣∣
p′

dx

)1/p′

+

(∫

Rd

1

mp′(x)

∣∣∣∣
∫

Rd

k0,ε(z)χ(z) z · ∇m(x) (φ(x + z)− φ(x)) dz

∣∣∣∣
p′

dx

)1/p′

=: J1 + J2 + J3.

To deal with J1, we use the step 1 of the proof which gives us

‖(Iε − I0)(φ)‖Lp′ ≤ η(ε)‖φ‖W 2,p′ , η(ε) −−−→
ε→0

0.
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The term J2 is split into two parts:

Jp′

2 ≤ C

∫

Rd

1

mp′(x)

∣∣∣∣∣

∫

|z|≤1

k0,ε(z)φ(x + z) (m(x+ z)−m(x) −∇m(x) · zχ(z)| dz

∣∣∣∣∣

p′

dx

+ C

∫

Rd

1

mp′(x)

∣∣∣∣∣

∫

|z|≥1

k0,ε(z)φ(x+ z) (m(x+ z)−m(x)−∇m(x) · zχ(z)) dz

∣∣∣∣∣

p′

dx

=: J21 + J22.

We first notice that for |z| ≤ 1,

m(x+ z)−m(x) −∇m(x) · zχ(z) = m(x+ z)−m(x)−∇m(x) · z =
1

2
D2m(x+ θz)(z, z)

for some θ ∈ (0, 1), which implies that

J21 ≤ C

∫

Rd

1

mp′(x)

(∫

|z|≤1

k0,ε(z) |z|
2 |D2m(x+ θz)| |φ|(x + z) dz

)p′

dx.

Since 0 < q < 2, |D2m| ≤ C and 1/mp′

≤ C in Rd, we thus deduce using Holder inequality and a
change of variable,

J21 ≤ C

∫

Rd

(∫

|z|≤1

k0,ε(z) |z|
2 |φ|(x + z) dz

)p′

dx

≤ C

(∫

|z|≤1

k0,ε(z) |z|
2 dz

)p′

‖φ‖p
′

Lp′ with

∫

|z|≤1

k0,ε(z) |z|
2 dz −−−→

ε→0
0.

Concerning J22, we use that |zχ(z)| ≤ C for any |z| ≥ 1 and that |∇m| ≤ Cm in Rd, we obtain

J22 ≤ C

∫

Rd

1

mp′(x)

(∫

|z|≥1

k0,ε(z) |φ|(x+ z) (m(x+ z) +m(x) + |∇m(x)|) dz

)p′

dx

≤ C

∫

Rd

1

mp′(x)

(∫

|z|≥1

k0,ε(z) |φ|(x+ z) (m(x)m(z) +m(x)) dz

)p′

dx

≤ C

∫

Rd

1

mp′(x)

(∫

|z|≥1

k0,ε(z) |φ|(x+ z)m(x)m(z) dz

)p′

dx

≤ C

∫

Rd

(∫

|z|≥1

k0,ε(z) |φ|(x+ z)m(z) dz

)p′

dx,

which implies, using Holder inequality and a change of variable,

J22 ≤ C

(∫

|z|≥1

k0,ε(z)m
p(z) dz

)p′

‖φ‖p
′

Lp′ with

∫

|z|≥1

k0,ε(z)m
p(z) dz −−−→

ε→0
0.

Finally, we handle J3 performing a Taylor expansion of φ:

φ(x+ z)− φ(x) =

∫ 1

0

(1− s)∇φ(x + sz) · z ds
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which implies, using that |∇m|p
′

/mp′

∈ L∞(Rd), Holder inequality and a change of variable,

J3 ≤



∫

Rd

|∇m|p
′

(x)

mp′(x)

(∫

|z|≤2

k0,ε(z) |z|
2

∫ 1

0

|∇φ|(x + sz) ds dz

)p′

dx




1/p′

≤ C

∫

|z|≤2

k0,ε(z) |z|
2 dz ‖∇φ‖Lp′ with

∫

|z|≤2

k0,ε(z) |z|
2 dz −−−→

ε→0
0.

As a consequence, we obtain that

‖(Λε − Λ0)(φm)/m‖Lp′ ≤ η(ε)‖φ‖W 2,p′ , η(ε) −−−→
ε→0

0,

which concludes the proof. �

4.3. Regularization properties of Aε.

Lemma 4.22. For any p ∈ (1,∞), (s, t) = (−2, 0) or (0, 2), the operator Aε = A0 = A defined
in (4.31) by

Af =

∫

Rd

k0(x− y)χη,L(x− y) ξR(x, y)f(y) dy

is bounded from W s,p to W t,p(ν) for any weight function ν.

Proof. First, one can notice that

(4.33)

ξR(x, y)χη,L(x− y) ≤ (χR(x) + χR(y)) χη,L(x− y)

≤
(
1|x|≤2R + 1|y|≤2R

)
1η≤|x−y|≤2L

≤ 21η≤|x−y|≤2L 1|x|≤2(R+L) 1|y|≤2(R+L),

the proof is hence immediate in the case s = t = 0 using Young inequality:

‖Af‖Lp(ν) ≤ C ‖Af‖Lp ≤ ‖k0 1η≤|·|≤2L‖L1 ‖f‖Lp.

We now deal with the case (s, t) = (0, 2). First, we have for ℓ = 1, 2

∂ℓx(Af)(x) =
∑

i+j+k=ℓ

∫

Rd

∂ix(k0(x − y)) ∂jx(χη,L(x− y)) ∂kx(ξR(x, y)) f(y) dy,

and for any (i, j, k) such that i+ j + k = ℓ,

|∂ix(k0(x− y)) ∂jx(χη,L(x− y)) ∂kx(ξR(x, y))| ≤ C |∂ix(k0(x − y))|1η≤|x−y|≤2L 1|x|≤2(R+L).

As a consequence, for ℓ = 0, 1, 2,

‖∂ℓx(Af)‖Lp(ν) ≤
2∑

i=0

‖∂ixk0 1η≤|·|≤2L‖L1 ‖f‖Lp,

which concludes the proof in the case (s, t) = (0, 2).
Finally, we argue by duality to prove the last part corresponding to the case (s, t) = (−2, 0), we

use the previous case:

‖Af‖Lp(ν) ≤ C ‖Af‖Lp = C sup
‖φ‖

Lp′≤1

∫

Rd

(Af)φ

= C sup
‖φ‖

Lp′≤1

∫

Rd

(Aφ) f

≤ C sup
‖φ‖

Lp′≤1

‖f‖W−2,p ‖Aφ‖W 2,p′

≤ C sup
‖φ‖

Lp′≤1

‖f‖W−2,p ‖φ‖Lp′ ≤ C ‖f‖W−2,p .

�
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4.4. Dissipativity properties of Bε and B0.

Lemma 4.23. Consider p ∈ [1, 2] and q ∈ (0, α/p). For any a > d(1−1/p)− q, there exist ε1 > 0,
η > 0, L > 0 and R > 0 such that for any ε ∈ [0, ε1], Bε − a is dissipative in Lp(m).

Proof. We consider a > d(1 − 1/p)− q and we estimate the integral
∫
Rd

(
Bi
εf
)
(signf) |f |p−1mp,

for i = 1, . . . , 5.
We first deal with B1

ε in both cases ε > 0 and ε = 0 simultaneously noticing that for any ε ≥ 0,

B1
εf(x) =

∫

Rd

kε(x− y)χη(x− y) (f(y)− f(x)− (y − x) · ∇f(x)) dy.

Then, using that Φ : s 7→ |s|p/p is convex, we have

(4.34)

(f(y)− f(x)) sign(f(x)) |f |p−1(x)

= ((f(y)− f(x))Φ′(f(x)) + Φ(f(x)) − Φ(f(y))) + (Φ(f(y))− Φ(f(x)))

≤
1

p
(|f |p(y)− |f |p(x)).

Consequently,
∫

Rd

(
B1
εf
)
(signf) |f |p−1mp

≤
1

p

∫

Rd×Rd

(|f |p(y)− |f |p(x) − (y − x) · ∇|f |p(x)) kε(x− y)χη(x− y) dy mp(x) dx

=
1

p

∫

Rd×Rd

(mp(y)−mp(x)− (y − x) · ∇mp(x)) kε(x− y)χη(x− y) dy |f |p(x) dx.

We estimate the last term for any ε ≥ 0 thanks to a Taylor expansion:

mp(y)−mp(x) − (y − x) · ∇mp(x) =
1

2
D2mp(x+ θ(y − x))(y − x, y − x)

for some θ ∈ (0, 1). Using that pq < α < 2, we deduce that
∫

Rd

(mp(y)−mp(x)− (y − x) · ∇mp(x)) kε(x− y)χη(x− y) dy

≤ C

∫

|z|≤2η

|z|2 k0(z) dz

and thus∫

Rd

(
B1
εf
)
(signf) |f |p−1mp ≤ κη

∫

R

|f |pmp with κη ≈

∫

|z|≤2η

k0(z) |z|
2 dz −−−→

η→0
0.

Concerning B2
ε , we also treat the case ε > 0 and ε = 0 in a same time using (4.34):

∫

Rd

(
B2
εf
)
(signf) |f |p−1mp ≤

1

p

∫

Rd×Rd

kε(x− y) (|f |p(y)− |f |p(x)) χc
L(x− y)mp(x) dy dx

=
1

p

∫

Rd×Rd

kε(x− y) (mp(y)−mp(x)) χc
L(x− y) |f |p(x) dy dx.

We now use the fact that the function s 7→ spq/2 is pq/2-Holder continuous since pq/2 < α/2 ≤ 1
to obtain

(4.35)

|mp(x) −mp(y)| ≤ C ||x| − |y||pq/2 (|x|+ |y|)pq/2

≤ C |x− y|pq/2 min
(
(|x|+ |x− y|+ |x|)pq/2 , (|y|+ |x− y|+ |y|)pq/2

)

≤ C
(
min

(
|x− y|pq/2|x|pq/2, |x− y|pq/2|y|pq/2

)
+ |x− y|pq

)

≤ C 〈x− y〉pq min
(
〈x〉pq/2, 〈y〉pq/2

)
.
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We deduce that∫

Rd

(
B2
εf
)
(signf) |f |p−1mp ≤ C

∫

|z|≥L

k0(z)m
p(z) dz

∫

Rd

|f |p(x) 〈x〉pq/2 dx

≤ κL

∫

Rd

|f |pmp, with κL ≈

∫

|z|≥L

k0(z)m
p(z) dz −−−−−→

L→+∞
0.

We now handle the third term B3
ε first using inequality (4.34):

∫

Rd

(
B3
εf
)
(signf) |f |p−1mp

≤
1

p

∫

Rd×Rd

kε(x− y)χη,L(x− y) ξcR(x, y) (|f |
p(y)− |f |p(x))mp(x) dy dx

=
1

p

∫

Rd×Rd

kε(z)χη,L(z) ξ
c
R(y + z, y) |f |p(y) (mp(y + z)−mp(y)) dy dz.

We then use the Taylor-Lagrange formula which gives us the existence of θ ∈ (0, 1) such that

mp(y + z) = mp(y) + z · ∇mp(y + θz).

Notice that there exists a constant CL > 0 depending on L such that |∇mp(y + θz)| ≤ CL 〈y〉pq−1

for any y ∈ Rd, |z| ≤ 2L. We hence obtain
∫

Rd

(
B3
εf
)
(signf) |f |p−1mp ≤ CL

∫

Rd×Rd

kε(z) |z|χη,L(z) ξ
c
R(y + z, y) |f |p(y) 〈y〉pq−1 dy dz

≤ CL

∫

Rd×Rd

kε(z) |z|χη,L(z)χ
c
R(y) |f |

p(y)
mp(y)

〈y〉
dy dz

≤ CL

∫

η≤|z|≤2L

k0(z) |z| dz

∫

|y|≥2R

|f |p(y)
mp(y)

〈y〉
dy.

which leads to ∫

Rd

(
B3
εf
)
(signf) |f |p−1mp ≤ Cη,L

∫

Rd

|f |p(y)
mp(y)

R
dy.

As a consequence, we obtain∫

Rd

(
B3
εf
)
(signf) |f |p−1mp ≤ κR Cη,L

∫

Rd

|f |m with κR ≈
1

R
−−−−−→
R→+∞

0.

We just estimate the term involving B4
ε using that ξR(x, y) ≥ χR(x), we get

∫

Rd

(
B4
εf
)
(signf) |f |p−1mp ≤ −

∫

2η≤|z|≤L

kε(z) dz

∫

|x|≤R

|f |pmp.

Finally, using integration by parts, we have
∫

Rd

(
B5
εf
)
(signf) |f |p−1mp =

∫

Rd

|f |p(x)mp(x)

(
d

(
1−

1

p

)
−
x · ∇mp(x)

pmp(x)

)
dx

≤

∫

Rd

|f |(x)m(x)

(
d

(
1−

1

p

)
−
x · ∇mp(x)

pmp(x)

)
1|x|≥R dx.

If we gather all the previous estimates and we denote

ψε
η,L,R(x) := κη + κL + κR Cη,L −

∫

2η≤|z|≤L

kε(z) dz 1|x|≤R −

(
d

(
1−

1

p

)
−
x · ∇mp(x)

pmp(x)

)
1|x|≥R,

we obtain ∫

Rd

(Bεf) (signf) |f |
p−1mp ≤

∫

Rd

ψε
η,L,R(x) |f |

p(x)mp(x) dx.

We notice that Aε
η,L :=

∫
2η≤|z|≤L

kε(z) dz → ∞ as ε→ 0 and η → 0. We can thus choose ε1, η, L,

and R such that for any ε ∈ [0, ε1],

κη + κL + κR Cη,L −Aε
η,L ≤ a.
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Then, using that −(x · ∇mp(x))/(pmp(x)) goes to −q at infinity and that a > d(1− 1/p)− q, up
to change the value of R, we have

|x| ≥ 2R⇒ κη + κL + κR CL −

(
d

(
1−

1

p

)
−
x · ∇mp(x)

pmp(x)

)
≤ a.

As a conclusion, for any x ∈ Rd, we have ψε
η,L,R(x) ≤ a, which yields the result. �

Lemma 4.24. Consider q ∈ (0, α/2). There exists b ∈ R such that for any s ∈ N, B0 − b is
hypodissipative in Hs(m).

Proof. Step 1. We first treat the case s = 0. We write that B0 = Λ0 − A0 and compute∫
Rd(B0f) f m

2:
∫

Rd

(B0f) f m
2 =

∫

Rd

(Λ0f) f m
2 −

∫

Rd

(A0f) f m
2

=

∫

Rd

I0(f) f m
2 +

∫

Rd

div(xf) f m2 −

∫

Rd

(A0f) f m
2 =: T1 + T2 + T3.

Concerning T1, we have

T1 =

∫

Rd×Rd

k0(x− y) (f(y)− f(x)− χ(x − y) (y − x) · ∇f(x))f(x)m2(x) dy dx

= −
1

2

∫

Rd×Rd

k0(x− y) (f(y)− f(x))2 dy m2(x) dx

+
1

2

∫

Rd×Rd

k0(x− y) (f2(y)− f2(x)− χ(x− y) (y − x) · ∇f2(x))m2(x) dy dx

= −
1

2

∫

Rd×Rd

k0(x− y) (f(y)− f(x))2 dy m2(x) dx +
1

2

∫

Rd

I0(f
2)m2

= −
1

2

∫

Rd×Rd

k0(x− y) (f(y)− f(x))2 dy m2(x) dx +
1

2

∫

Rd

f2 I0(m
2).

Since one can prove that I0(m
2)/m2 goes to 0 at infinity (cf Lemma 5.1 from [12]) and is thus

bounded in Rd, we can deduce that there exists C ∈ R such that

T1 ≤ −
1

2

∫

Rd×Rd

k0(x− y) (f(y)− f(x))2 dym2(x) dx+ C

∫

Rd

f2m2.

We can notice that

−
1

2

∫

Rd×Rd

k0(x− y) (f(y)− f(x))2 dym2(x) dx

≤ −
1

4

∫

Rd×Rd

k0(x− y) ((fm)(y)− (fm)(x))2 dy dx

+
1

2

∫

Rd×Rd

k0(x− y) (m(y)−m(x))2 dx f2(y) dy.

Moreover, there exists θ ∈ (0, 1) such that
∫

|x−y|≤1

k0(x − y) (m(y)−m(x))2 dx f2(y) dy

≤

∫

|x−y|≤1

k0(x− y) |x− y|2 |∇m(x+ θ(y − x))|2 dx f2(y) dy

≤ C

∫

|z|≤1

k0(z) |z|
2 dz

∫

Rd

f2m2

≤ C

∫

Rd

f2m2
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and ∫

|x−y|≥1

k0(x− y) (m(y)−m(x))2 dx f2(y) dy

≤ C

∫

|x−y|≥1

k0(x − y) (m2(y) +m2(y)m2(x− y)) dx f2(y) dy

≤ C

∫

|z|≥1

k0(z)m
p(z) dz

∫

Rd

f2m2

≤ C

∫

Rd

f2m2.

We here recall that the homogeneous Sobolev space Ḣs for s a real number is the set of tempered
distributions u such that û belongs to L1

loc and

‖u‖2
Ḣs :=

∫

Rd

|ξ|2s |û(ξ)|2 dξ <∞.

Moreover, if s ∈ (0, 1), one can prove that there exists a constant c0 > 0 such that

‖u‖2
Ḣs = c−1

0

∫

Rd×Rd

(u(x) − u(y))2

|x− y|d+2s
dx dy

from which we deduce the following important identity:

(4.36) c0 ‖u‖
2
Ḣα/2 =

∫

Rd×Rd

(u(x)− u(y))2 k0(x− y) dx dy ∀α ∈ (0, 2).

As a consequence, up to change the value of C, we have

T1 ≤ −
c0
4
‖f m‖2

Ḣα/2 + C

∫

Rd

f2m2.

Then, we compute

T2 =

∫

Rd

f2m2

(
d

2
−
x · ∇m2

2m2

)
≤
d

2

∫

Rd

f2m2.

Concerning T3, we use Lemma 4.22 and Cauchy-Schwarz inequality:

T3 ≤ ‖A0f‖L2(m) ‖f‖L2(m) ≤ C ‖f‖2L2(m).

As a consequence, gathering the three previous inequalities, we have∫

Rd

(B0f) f m
2 ≤ −

c0
4
‖f m‖2

Ḣα/2 + b0

∫

Rd

f2m2, b0 ∈ R.

Step 2. We now consider b > b0 and we prove that for any s ∈ N, B0 − b is hypodissipative in
Hs(m). For s ∈ N∗, we recall the definition of the triple norm introduce in (2.18):

|||f |||2Hs(m) =
s∑

j=0

ηj ‖∂jxf‖
2
L2(m), η > 0

which is equivalent to the classical Hs(m) norm. We use again that B0 = Λ0 − A0 and we only
deal with the case s = 1, the higher order derivatives being treated in the same way. First, we
have

∂x(B0f) = Λ0(∂xf) + ∂xf − ∂x(A0f).

Then, we can notice that

A0f(x) =

∫

Rd

k0(z)χη,L(z) ξR(x, x + z) f(x+ z) dz

so that
∂x(A0f)(x) = A0(∂xf)(x) + Ã0f(x), with ‖Ã0f‖L2(m) ≤ C ‖f‖L2,

where the last inequality is obtained thanks to inequality (4.33) as in the proof of Lemma 4.22.
We deduce that

∂x(B0f) = B0(∂xf) + ∂xf − Ã0f.
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Then, doing the same computations as in the case s = 0, we obtain
∫

Rd

∂x(B0f) (∂xf)m
2 =

∫

Rd

B0(∂xf) (∂xf)m
2 +

∫

Rd

(∂xf)
2m2 −

∫

Rd

Ã0f (∂xf)m
2

=: J1 + J2 + J3.

with

J1 ≤ −
c0
4
‖(∂xf)m‖2

Ḣα/2 + b0

∫

Rd

(∂xf)
2m2

≤ −
c0
8
‖f m‖2

Ḣ1+α/2 +
c0
4
‖f ∂xm‖2

Ḣα/2 + b0

∫

Rd

(∂xf)
2m2

≤ −
c0
8
‖f m‖2

Ḣ1+α/2 + C
(
‖f‖2L2(m) + ‖f m‖2

Ḣ1

)
,

and also

J2 ≤
1

2

(
‖f‖2L2(m) + ‖f m‖2

Ḣ1

)

and finally using Cauchy-Schwarz inequality, we have

J3 ≤ ‖Ã0f‖L2(m) ‖∂xf‖L2(m) ≤ C
(
‖f‖2L2(m) + ‖f m‖2

Ḣ1

)
.

As a consequence, we have
∫

Rd

∂x(B0f) (∂xf)m
2 ≤ −

c0
8
‖f m‖2

Ḣ1+α/2 + b1

(
‖f‖2L2(m) + ‖f m‖2

Ḣ1

)
, b1 ∈ R.

We now introduce ft solution of

∂tft = B0ft, f0 = f

and we compute

1

2

d

dt
|||ft|||

2
H1(m) =

∫

Rd

(B0ft) ftm
2 + η

∫

Rd

∂x(B0ft) (∂xft)m
2

≤ −
c0
4
‖ftm‖2

Ḣα/2 − η
c0
8
‖ftm‖2

Ḣ1+α/2

+ ‖ft‖
2
L2(m)(b0 + η b1) + η b1 ‖ftm‖2

Ḣ1 .

We now use the following interpolation inequality:

‖h‖Ḣ1 ≤ ‖h‖
α/2

Ḣα/2
‖h‖

1−α/2

Ḣ1+α/2
,

which implies

(4.37) ‖h‖2
Ḣ1 ≤ K(ζ) ‖h‖2

Ḣα/2 + ζ ‖h‖2
Ḣ1+α/2, ζ > 0.

We obtain

1

2

d

dt
|||ft|||

2
H1(m)

≤
(
−
c0
4

+ η b1K(ζ)
)
‖ftm‖2

Ḣα/2 + η
(
−
c0
8

+ ζ b1

)
‖ftm‖2

Ḣ1+α/2 + ‖ft‖
2
L2(m)(b0 + η b1).

Choosing ζ small enough so that −c0/8 + ζ b1 < 0 and then η small enough so that −c0/4 +
η b1K(ζ) < 0 and b0 + η b1 < b, we obtain

1

2

d

dt
|||ft|||

2
H1(m) ≤ b |||ft|||

2
H1(m)

which concludes the proof in the case s = 1. �

We now introduce the “renormalized” operator B0,m defined by

(4.38) B0,m(h) = mB0(m
−1h).

Corollary 4.25. Consider q such that 2q < α. There exists b ∈ R such that for any s ∈ N,
B0,m − b is hypodissipative in Hs.
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Proof. The proof comes from Lemma 4.24 and is immediate noticing that the norms defined on
Hs(m) by

‖f‖21 =
s∑

j=0

‖∂jxf‖
2
L2(m) and ‖f‖22 := ‖f m‖2Hs

are equivalent. �

Lemma 4.26. Consider q such that 2q < α. There exists b ∈ R such that for any s ∈ N, B0,m − b
is hypodissipative in H−s, (or equivalently, B0 − b is hypodissipative in H−s(m)).

Proof. We introduce the dual operator of B0,m defined by:

B∗
0,mφ = ω I0(mφ)− x · ∇φ−

x · ∇m

m
φ− ωA0(mφ)

where ω := m−1. We now want to prove that B∗
0,m is hypodissipative in Hs.

Step 1. We consider first the case s = 0 and we estimate
∫
Rd(B

∗
0,mφ)φ:∫

Rd

(B∗
0,mφ)φ =

∫

Rd

I0(mφ)ω φ−

∫

Rd

x · (∇φ)φ −

∫

Rd

x · ∇m

m
φ2 −

∫

Rd

ωA0(mφ)φ

=: T1 + · · ·+ T4.

We have

T2 =
d

2

∫

Rd

φ2 and T3 ≤ 0.

Next, using (4.33), we have ‖A0(mφ)‖L2 ≤ C ‖A0(|φ|)‖L2 and thus

T4 ≤ C
(
‖A0(|φ|)‖

2 + ‖φ‖2L2

)
≤ C ‖φ‖2L2

from Lemma 4.22. Let us now estimate T1.
Case α < 1. We can write that

T1 =

∫

Rd×Rd

k0(x − y) ((mφ)(y)− (mφ)(x))ω(x)φ(x) dy dx

=

∫

Rd×Rd

k0(x − y) (φ(y)− φ(x))φ(x) dy dx

+

∫

|x−y|≤1

k0(x − y) (m(y)−m(x))ω(x)φ(y)φ(x) dy dx

+

∫

|x−y|≥1

k0(x − y) (m(y)−m(x))ω(x)φ(y)φ(x) dy dx

=: T11 + T12 + T13.

Let us point out here that from (4.36), we have

T11 =

∫

Rd

I0(φ)φ

= −
1

2

∫

Rd×Rd

k0(x− y) (φ(y)− φ(x))2 dy dx+
1

2

∫

Rd

I0(φ
2)

= −
c0
2
‖φ‖2

Ḣα/2 .

Then, using a Taylor expansion, there exists θ ∈ (0, 1) such that

(4.39)

T12 =

∫

|x−y|≤1

k0(x − y) (m(y)−m(x))ω(x)φ(y)φ(x) dy dx

=

∫

|x−y|≤1

k0(x − y)∇m(x+ θ(y − x)) · (y − x)ω(x)φ(y)φ(x) dy dx

≤ C

∫

|x−y|≤1

k0(x − y) |x− y| |∇m(x+ θ(y − x))|ω(x) (φ2(y) + φ2(x)) dy dx.
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Using then that for any x, y ∈ Rd, |x − y| ≤ 1, we have |∇m(x + θ(y − x))|ω(x) ≤ C and that
α < 1, we deduce that

T12 ≤ C

∫

Rd

φ2.

Concerning T13, we have from (4.35)

|m(y)−m(x)| ≤ C 〈x− y〉q min
(
〈x〉q/2, 〈y〉q/2

)
,

from which we deduce that we also have

T13 ≤ C

∫

Rd

φ2.

We thus obtain

T1 ≤ −
c0
2
‖φ‖2

Ḣα/2 + C

∫

Rd

φ2.

Case α ∈ [1, 2). We have:

T1 =

∫

Rd×Rd

k0(x− y) ((mφ)(y) − (mφ)(x) −∇(mφ)(x) · (y − x)χ(x − y))ω(x)φ(x) dy dx

=

∫

Rd×Rd

k0(x− y) (φ(y) − φ(x) −∇φ(x) · (y − x)χ(x− y))φ(x) dy dx

+

∫

Rd×Rd

k0(x− y) [(m(y)−m(x))φ(y) −∇m(x) · (y − x)χ(x− y)]ω(x)φ(x) dy dx

=

∫

Rd

I0(φ)φ

+

∫

|x−y|≤1

k0(x− y) (m(y)−m(x)− (y − x) · ∇m(x)χ(x − y))ω(x)φ(y)φ(x) dy dx

+

∫

|x−y|≥1

k0(x− y) (m(y)−m(x)− (y − x) · ∇m(x)χ(x − y))ω(x)φ(y)φ(x) dy dx

+

∫

Rd×Rd

k0(x− y) (φ(y) − φ(x))φ(x)ω(x)∇m(x) · (y − x)χ(y − x) dy dx

=: T11 + T12 + T13 + T14.

We still have

T11 = −
c0
2
‖φ‖2

Ḣα/2 .

Arguing similarly as for T12 in (4.39) i.e. using a Taylor expansion (at order 2 instead of 1), we
obtain

T12 ≤ C

∫

Rd

φ2.

Next, we split T13 into two parts:

T13 ≤ C

∫

|x−y|≥1

k0(x − y) |m(y)−m(x)|ω(x)(φ2(x) + φ2(y)) dx dy

+ C

∫

1≤|x−y|≤2

k0(x− y) |x− y| |∇m(x)|ω(x) (φ2(x) + φ2(y)) dx dy

≤ C

∫

|x−y|≥1

k0(x − y) 〈x− y〉q 〈x〉−q/2 (φ2(x) + φ2(y)) dx dy

+ C

∫

1≤|x−y|≤2

k0(x − y) (φ2(x) + φ2(y)) dx dy

where we have used (4.35), we thus obtain:

T13 ≤ C

∫

Rd

φ2.
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Concerning T14, we use Young inequality which implies that for any ζ > 0,

T14 ≤ ζ

∫

Rd×Rd

k0(x − y) (φ(y)− φ(x))2 dy dx

+K(ζ)

∫

Rd×Rd

k0(x− y)φ2(x)
|∇m(x)|2

m2(x)
|y − x|2 χ2(x− y) dy dx

≤ ζ c0 ‖φ‖
2
Ḣα/2 +K(ζ)

∫

|z|≤2

k(z) |z|2 dz

∫

Rd

φ2.

Consequently, taking ζ > 0 small enough, we have

T1 ≤ −
c0
4
‖φ‖2

Ḣα/2 + C

∫

Rd

φ2.

We hence conclude that
∫

Rd

(B∗
0,mφ)φ ≤ −

c0
4
‖φ‖2

Ḣα/2 + b0

∫

Rd

φ2, b0 ∈ R.

Step 2. We now consider b > b0 and we prove that for any s ∈ N, B∗
0,m − b is hypodissipative

in Hs. As in (2.18), for s ∈ N∗, we introduce the norm

|||φ|||2Hs :=

s∑

j=0

ηj ‖∂jxφ‖
2
L2 , η > 0

which is equivalent to the classical Hs norm. We only deal with the case s = 1, the higher order
derivatives are treated in the same way. First, using the identity (4.32) (with k0 instead of k0,ε),
we notice that

B∗
0,mφ = I0(φ) + ω C1

m(φ) + ω C2
m(φ)− x · ∇φ−

x · ∇m

m
φ− ωA0(mφ)

where

C1
m(φ)(x) =

∫

Rd

k0(x− y)φ(y) (m(y)−m(x) − (y − x) · ∇m(x)χ(x − y)) dy

=

∫

Rd

k0(z)φ(x+ z) (m(x+ z)−m(x)− z · ∇m(x)χ(z)) dz

and

C2
m(φ)(x) =

∫

Rd

k0(x− y) (φ(y)− φ(x))∇m(x) · (y − x)χ(x− y) dy

=

∫

Rd

k0(z) (φ(x + z)− φ(x))∇m(x) · z χ(z) dz.

Before going into the computation of ∂x(B∗
0,mφ), we also notice that

∂x (ωA0(mφ)) = ωA0(m∂xφ) + Â0,m(φ)

where Â0,m satisfies

‖Â0,m(φ)‖L2 ≤ C ‖φ‖L2

thanks to (4.33). Consequently, we have

∂x(B
∗
0,mφ) = B∗

0,m(∂xφ) + ω C1
∂xm(φ) + ω C2

∂xm(φ) + ∂xω C1
m(φ) + ∂xω C2

m(φ)

− ∂xφ− ∂x

(
x · ∇m

m

)
φ− Â0,m(φ)
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and ∫

Rd

∂x(B
∗
0,mφ) ∂xφ =

∫

Rd

B∗
0,m(∂xφ) (∂xφ) +

∫

Rd

ω C1
∂xm(φ) (∂xφ) +

∫

Rd

ω C2
∂xm(φ) (∂xφ)

+

∫

Rd

∂xω C1
m(φ) (∂xφ) +

∫

Rd

∂xω C2
m(φ) (∂xφ) −

∫

Rd

(∂xφ)
2

−

∫

Rd

∂x

(
x · ∇m

m

)
φ (∂xφ) −

∫

Rd

Â0,m(φ) (∂xφ)

=: J1 + · · ·+ J8.

We have from the step 1 of the proof

J1 ≤ −
c0
4
‖φ‖2

Ḣ1+α/2 + b0

∫

Rd

(∂xφ)
2.

Moreover, we easily obtain that

J6 + J7 + J8 ≤ C

(∫

Rd

φ2 +

∫

Rd

(∂xφ)
2

)
.

The term J2 is first separated into two parts:

J2 =
∫

|x−y|≤1

k0(x− y)φ(y) ((∂xm)(y)− (∂xm)(x)− (y − x) · ∇(∂xm)(x)χ(x − y))ω(x) ∂xφ(x) dy dx

+

∫

|x−y|≥1

k0(x− y)φ(y)((∂xm)(y)− (∂xm)(x)− (y − x) · ∇(∂xm)(x)χ(x − y))ω(x)∂xφ(x) dy dx

=: J21 + J22.

The term J21 is treated as T12 is the step 1 of the proof. Concerning J22, as for T13, we divide it
into two parts:

J22 ≤

∫

|x−y|≥1

k0(x− y) |(∂xm)(y)− (∂xm)(x)|ω(x)(φ2(y) + (∂xφ)
2(x)) dx dy

+

∫

1≤|x−y|≤2

k0(x− y) |x− y| |∇(∂xm)(x)|ω(x) (φ2(y) + (∂xφ)
2(y)) dx dy

≤ C

∫

|x−y|≥1

k0(x− y) (φ2(y) + (∂xφ)
2(x)) dx dy

+ C

∫

1≤|x−y|≤2

k0(x− y) (φ2(y) + (∂xφ)
2(y)) dx dy,

where the second inequality comes from the fact that

|(∂xm)(y)− (∂xm)(x)|ω(x) ≤ C and |∇(∂xm)(x)|ω(x) ≤ C ∀x, y ∈ Rd

because q < α/2 < 1. We hence deduce that

J2 ≤ C

(∫

Rd

φ2 +

∫

Rd

(∂xφ)
2

)
.

Concerning J3, we perform a Taylor expansion of φ and use that |∇(∂xm)|ω ∈ L∞(Rd):

(4.40)

J3 =

∫

Rd×Rd

k0(x− y)

∫ 1

0

(1 − t)∇φ(y + t(x− y)) · (y − x) dt

∇(∂xm)(x) · (y − x)χ(x − y)ω(x) ∂xφ(x) dy dx

≤ C

∫

|x−y|≤2

k0(x− y) |x− y|2
∫ 1

0

|∇φ(x + t(y − x))| dt |∂xφ(x)| dy dx

≤ C

∫

|z|≤2

k0(z) |z|
2

∫ 1

0

|∇φ(x + tz)|2 dt dz dx+

∫

|z|≤2

k0(z) |z|
2 |∂xφ(x)|

2 dz dx
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where we have used Jensen inequality with the probability measure 1[0,1](t) dt and Young inequality.
We use a change of variable for the first term of the RHS of (4.40), it implies that

J3 ≤ C ‖φ‖2
Ḣ1 .

We deal with J4 splitting it into two parts (|x−y| ≤ 1 and |x−y| ≥ 1) and using the same method
as for T12 and T13 in the step 1 of the proof, we obtain

J4 ≤ C

(∫

Rd

φ2 +

∫

Rd

(∂xφ)
2

)
.

To deal with J5, we proceed exactly as for J3 and obtain

J5 ≤ C ‖φ‖2
Ḣ1 .

Summarizing the previous inequalities and using (4.37), we obtain that for any ζ > 0,
∫

Rd

∂x(B
∗
0,mφ) ∂xφ ≤ −

c0
4
‖φ‖2

Ḣ1+α/2 + b1
(
‖φ‖2L2 + ‖φ‖2

Ḣ1

)

≤ −
c0
4
‖φ‖2

Ḣ1+α/2 + b1
(
‖φ‖2L2 +K(ζ)‖φ‖2

Ḣα/2 + ζ‖φ‖2
Ḣ1+α/2

)
, b1 ∈ R.

This implies that if φt is the solution of

∂tφt = B∗
0,mφt, φ0 = φ

then

1

2

d

dt
|||φt|||

2
H1 ≤

(
−
c0
4

+ η b1K(ζ)
)
‖φt‖

2
Ḣα/2 + η

(
−
c0
4

+ ζ b1

)
‖φt‖

2
Ḣ1+α/2 + (b0 + η b1)‖φt‖

2
L2 .

Taking ζ and η small enough, we deduce that

1

2

d

dt
|||φt|||

2
H1 ≤ b |||φt|||

2
H1 ,

this concludes the proof in the case s = 1. �

We now fix 0 < q < α/2. From Lemma 4.23 applied with p = 1, there exists a < 0 such that
Bε − a is dissipative in L1(m) for any ε ∈ [0, ε1] (or equivalently, Bε,m − a is dissipative in L1

where Bε,m is defined as B0,m in (4.38)). From Lemma 4.23 applied with p = 2, Corollary 4.25
and Lemma 4.26, there exists b ∈ R such that Bε − b is dissipative in L2(m) for any ε ∈ [0, ε1]
(or equivalently, Bε,m − b is dissipative in L2), B0,m − b is hypodissipative in Hs and H−s for any
s ∈ N∗.

We choose θ ∈ (0, 1) such that aθ := aθ + b(1 − θ) < 0 and 2/(1 − θ) ∈ N. We introduce
pθ := 2/(1 + θ) and we denote

X1 :=W 2,pθ(m) ⊂ X0 := Lpθ (m) ⊂ X−1 :=W−2,pθ (m).

Lemma 4.27. The operator B0−aθ is hypodissipative in Xi, i = −1, 0, 1 and the operator Bε−aθ
is dissipative in X0 for any ε ∈ (0, ε1].

Proof. We prove that B0,m − aθ is hypodissipative in W−2,pθ , Lpθ and W 2,pθ by interpolation.
To conclude for X0, we just have to interpolate the results coming from Lemma 4.23 with p = 1
and Lemma 4.24 with s = 0 and use the fact that

[
L1, L2

]
θ
= Lpθ with 1/pθ = θ + (1 − θ)/2 i.e.

pθ = 2/(1 + θ). Then, for X1 and X−1, we first choose s0 large enough so that s0(1 − θ) = 2.
We then have

[
L1, Hs0

]
θ
=W 2,pθ ,

[
L1, H−s0

]
θ
=W−2,pθ and we conclude thanks to Lemma 4.23

with p = 1 and Lemma 4.24 with s = s0.
We prove that Bε − aθ is dissipative in X0 exactly in the same way as we proved that B0 − aθ

is dissipative in X0. �
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4.5. Spectral analysis. We here divide the proof of Theorem 4.20 into two parts, using Krein
Rutman theory for the first part and using both perturbative and enlargement arguments for the
second part.

Proof of part (1) of Theorem 4.20. First, we notice that as in Section 2 (Lemmas 2.11 and 2.12),
we can prove that the operator Λε satisfies Kato’s inequalities, SΛε is a positive semigroup and
−Λε satisfies a strong maximum principle. Using Krein-Rutman theory, this gives the first part of
Theorem 4.20 i.e. that there exists a unique Gε > 0 such that ‖Gε‖L1 = 1, ΛεGε = 0. Moreover,
it also implies that Πεf = 〈f〉Gε.

Proof of part (2) of Theorem 4.20. We first develop a perturbative argument which is detailed in
what follows, improving a bit similar results presented in [6, 11]. We then ends the proof using an
enlargement argument.

Lemma 4.28. For any z ∈ Ω := ∆aθ
\{0} we define the family of operators

Kε(z) := −(Λε − Λ0)RΛ0
(z) (ARBε(z)).

There exists a function η2(ε) −−−→
ε→0

0 such that

(4.41) ‖Kε(z)‖B(X0) ≤ η2(ε) ∀ z ∈ Ωε := ∆a\B̄ε, Bε := B(0, η2(ε)).

Moreover, there exists ε2 ∈ (0, ε1) such that for any ε ∈ (0, ε2) the operators I +Kε(z) and Λε − z
are invertible for any z ∈ Ωε and

∀ z ∈ Ωε, RΛε(z) = Uε(z) (I +Kε(z))
−1

with

Uε := RBε −RΛ0
(ARBε).

As an immediate consequence, there holds

Σ(Λε) ∩∆aθ
⊂ B̄ε.

Proof. We know that the operators ARBε(z) : X0 → X1 (from Lemmas 4.22 and 4.27) and
RΛ0

(z) : X1 → X1 (previous works from [4, 6]) are bounded for any z ∈ Ω and that the operators
Λε − Λ0 : X1 → X0 are small as ε → 0 uniformly in z ∈ Ω (Lemma 4.21). Because 0 is a simple
eigenvalue, we have

‖RΛ0
(z)‖B(X1) ≤ C |z|−1 ∀ z ∈ Ω.

for some C > 0. We introduce the constant Caθ
> 0 (coming from Lemmas 4.22 and 4.27) such

that

‖ASBε(t)‖B(X0,X1) ≤ Caθ
eaθt.

Defining η2(ε) := (C Caθ
η1(ε))

1/2, we deduce that for any z ∈ Ωε,

(4.42) ‖Kε(z)‖B(X0) ≤ η1(ε)
C

η2(ε)
Caθ

= η2(ε).

We choose ε2 > 0 such that η2(ε) < 1 for any ε ∈ (0, ε2), we thus obtain that ‖Kε(z)‖ < 1 for any
ε ∈ (0, ε2) and z ∈ Ωε, which implies that I +Kε(z) is invertible.

We compute

(Λε − z)Uε = (Bε − z +A)RBε − (Λε − Λ0 + Λ0 − z)RΛ0
ARBε

= Id+Kε.

For z ∈ Ωε, ε ∈ (0, ε2), we denote Jε(z) := Uε(z) (I +Kε(z))
−1, so that

(Λε − z)Jε(z) = Id,

which implies that Λε − z has a right-inverse Jε(z).

Since Λε − z is invertible for ℜe z large enough and Jε(z) is uniformly locally bounded in Ωε,
we deduce that Λε − z is invertible in Ωε, and its inverse is its right-inverse Jε(z). �
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Lemma 4.29. Let us denote

Πε :=
i

2π

∫

Γε

RΛε(z) dz, Γε := {z ∈ C : |z| = η2(ε)}

the spectral projector onto eigenspaces associated to eigenvalues contained in B̄ε. There exists η3(ε)
such that

‖Πε −Π0‖B(X0) ≤ η3(ε) −−−→
ε→0

0.

Proof. First, we have

Πε =
i

2π

∫

Γε

{RBε(z)−RΛ0
(z)(ARBε(z))} (I +Kε(z))

−1 dz

=
i

2π

∫

Γε

RBε(z)
{
I −Kε(z)(I +Kε(z))

−1
}
dz

−
i

2π

∫

Γε

RΛ0
(z)(ARBε(z))

{
I −Kε(z)(I +Kε(z))

−1
}
dz

=
1

2iπ

∫

Γε

RBε(z)Kε(z)(I +Kε(z))
−1 dz

−
i

2π

∫

Γε

RΛ0
(z)(ARBε(z))

{
I −Kε(z)(I +Kε(z))

−1
}
dz

and similarly,

Π0 =
i

2π

∫

Γε

RΛ0
(z) dz

=
i

2π

∫

Γε

{RB0
(z)−RΛ0

(z) (ARB0
(z))} dz

=
1

2iπ

∫

Γε

RΛ0
(z) (ARB0

(z)) dz.

Consequently,

Π0 −Πε =
1

2iπ

∫

Γε

RΛ0
(z) {ARB0

(z)−ARBε(z)} dz

−
1

2iπ

∫

Γε

{RBε(z)−RΛ0
(z)ARBε(z)}Kε(z)(I +Kε(z))

−1 dz

=: T1 + T2.

Concerning T1, we use the identity

ARB0
(z)−ARBε(z) = ARB0

(z)(Bε − B0)RBε(z)

with Lemmas 4.21, 4.22 and 4.27 which imply that

RBε(z) ∈ B(X0), ‖Bε − B0‖X0→X−1
≤ η1(ε) −−−→

ε→0
0, ARB0

(z) ∈ B(X−1, X0).

To treat T2, we use estimate (4.41) on Kε(z) and the facts that RBε(z) ∈ B(X0) and that we also
have RΛ0

(z)ARBε(z) ∈ B(X0). It concludes the proof. �

Proposition 4.30. There exists ε0 ∈ (0, ε2) such that for any ε ∈ (0, ε0), the following properties
hold in X0:

(1) Σ(Λε) ∩∆aθ
= {0};

(2) for any f ∈ X0 and any a > aθ,

‖SΛε(t)f −Gε〈f〉‖X0
≤ Ca e

at ‖f −Gε〈f〉‖X0
, ∀ t ≥ 0

for some explicit constant Ca ≥ 1.
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Proof. We know that if P and Q are two projectors such that ‖P −Q‖B(X0) < 1, then their ranges
are isomorphic. Lemma 4.29 thus implies that there exists ε0 ∈ (0, ε1) such that for any ε ∈ (0, ε0),

dimR(Πε) = dimR(Π0) = 1.

We also know that 0 is an eigenvalue for Λε (cf. part (1) of Theorem 4.20). This concludes the
proof of the first part of the proposition.

To get the estimate on the semigroup, we use a spectral mapping theorem coming from [9,
Theorem 2.1]. The hypothesis of the theorem are satisfied because Bε − a is hypodissipative in X0

(and thus in D(Λε|X0
) = D(Bε|X0

)) and A ∈ B(X0,W
2,pθ

1 (m)) (and thus A ∈ B(X0, D(Λε|X0
)).
�

To conclude the proof of part (2) of Theorem 4.20, we use the previous Proposition 4.30 combined
with an enlargement argument (see [4, 6]): our “small space” is E = Lpθ(m) and our “large”
space is E = L1(m). We then use Lemmas 4.22 and 4.23-4.27 and the fact that we clearly have
A ∈ B(E , E).
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