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Abstract. Most logic-based approaches to knowledge and belief change

in artificial intelligence assume that when a new piece of information

comes up, it should be merely added to the current beliefs or knowledge

when this does not lead to inconsistency. This paper addresses situations

where this assumption does not hold. The focus is on the construction

of Boolean standard-logic knowledge and belief bases in this context. We

propose an approach to handle incoming beliefs that can require some

formulas reconstruction or a form of preemption to be performed.
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1 Introduction

These last two decades, a fertile domain of research in knowledge representa-
tion and reasoning has concerned the way knowledge and beliefs should change
in light of new information. Especially, so-called (logic-based) belief revision,
belief update [1,2,3,4,5] and knowledge fusion [6,7] have become Artificial In-
telligence research fields in their own rights [1,8,9,10,11,12]. Their main focus
is on situations where a new piece of information is logically contradicting the
pre-existing knowledge or beliefs. When no logical contradiction arises, these ap-
proaches assume that this new piece of information should be adopted as such,
without any specific treatment. However, this latter assumption does not hold
in frequent situations. Accordingly, in this paper we adapt the construction of
Boolean standard-logic belief and knowledge bases1, allowing them to encom-
pass situations of that kind in an adequate way. Let us give some motivating
examples.

⋆ This work has been supported in part by the Région Nord/Pas-de-Calais and the
EC through a FEDER grant.

1 From now on, we do not distinguish between the words belief and knowledge.



A first example is about the necessity to merge pieces of knowledge them-
selves. Assume that a standard-logic knowledge base ∆ is under development
and already contains R1 = If the switch is on and the lamp bulb is ok then the
light is on. Later on, we are given another rule or belief R2 = If the switch is on
and the switch is not broken then the light is on. R2 does not contradict R1 from
a logical point of view. If R2 is merely inserted within ∆ then we can deduce
Light is on from ∆ when the switch is broken, according to R1 and provided
that both The switch is on and The lamp bulb is ok are established. This is
clearly counter-intuitive. Actually, to match our intuitions, both rules should be
merged to form R3 = If the switch is on and the lamp bulb is ok and the switch
is not broken then the light is on, which must replace both rules R1 and R2.

If we had represented the rules in a converse manner like If the light is on then
the switch is on and the lamp bulb is ok, the above problem would have been
avoided; however, we would have lost the intended capacity to infer that the light
is on based on the observations that the switch is on and the lamp bulb is ok.
Hence, the selected way to represent rules. Actually, the problem addressed here
is not founded on a specific way to represent rules; the necessity to merge rules
can occur whenever rules do not a priori capture all their possible exceptions.
Although this basic example is straightforward, its treatment in the general case
is not direct. First, not all rules should be merged. In the example, R1 and R2

must be merged because each of them captures a kind of compulsory condition for
a shared conclusion to be derived. We should thus be able to distinguish between
compulsory and non-compulsory conditions for a rule to apply. Moreover, rules
are not necessarily explicit in ∆ but can be mere implicit deductive consequences
of ∆, only. Also, it must be investigated to which extent this issue might also
concern formulas that do not encode rules but simply share some variables.
Especially, when a syntax-independent logic-based representation of knowledge is
adopted, there is no way to distinguish between a rule and e.g. its representation
as a clause, i.e. as a disjunction of signed variables. Finally, what must be dropped
from ∆ after the merged formulas is inserted must also be defined carefully. We
address these questions in this paper.

The issue of preempting subsuming knowledge is a slightly related problem.
Assume now that ∆ contains only the rule R0 = If the switch is on then the light
is on. From a logical point of view, R1 is a mere logical deductive consequence of
R0 and is thus subsumed by R0. As such, from a logical point of view, R1 does
not bring any actual additional information to R0. Indeed, in the presence of
both rules R0 and R1, whenever the switch is on, the light is on (not depending
on whether the lamp bulb is ok or not). In order to enforce R1 over R0 and
thus require The lamp bulb is ok for the light to be on, we need the ability to
make some subsumed information (namely, R1) prevail over (or say, preempt)
the subsuming knowledge (R0). Remark that this issue of preempting subsuming
knowledge also occurs as a sub-part of the merging pieces of knowledge one:
when the merged formula has been inserted within ∆, things must be settled
so that the latter formula is not subsumed by any of the initial ones, which by
construction subsume it.



Let us stress that in the general case situations where subsumption links must
be annihilated are neither specific to rules, nor due to the selected form of impli-
cation connective and its use, nor due to causality issues. On the contrary they
can concern any logical formula. To illustrate that, assume that a new piece of
information office∨home∨bar comes up and must prevail over office∨home that
is already present [13]. From a logical point of view the new piece of informa-
tion is a deductive consequence of the former one and there is no inconsistency
involved. However, we need the subsumed information to replace or prevail over
the subsuming one.

In this context, our contribution in this paper builds on and extends some
previous works. First, an approach to characterize and solve the subsumption
issue has been introduced in [14]. Candidate rationality postulates for belief
change operators that allow beliefs to be preempted by subsumed ones have
been presented in [15]. The formal characterization of this specific handling
of subsumption has been extended to a general non-monotonic setting in [16]
and applied to the legal domain in [13]. Starting from this, the contribution of
this paper is at least twofold. First, we present a new formal solution to the
subsumption issue that avoids rules to be preempted when their preconditions
are not satisfied and that also accommodates the problem of merging pieces of
knowledge themselves (none of these issues was encompassed in any of the afore-
mentioned pieces of work). Then, the focus is on knowledge engineering issues.
More precisely, we study the insertion of knowledge from a pragmatic point of
view, taking the above issues into account, when a distinction is made between
explicit and implicit information in a knowledge base.

The logical setting in this paper is standard (clausal) Boolean logic. On the
one hand, it is the simplest possible framework for presenting and addressing the
above subsumption-related issues. On the other hand, recent dramatic progress
in Boolean search and reasoning has now revived Boolean logic as a realistic
and attractive framework for representing large knowledge bases and solving
numerous complex reasoning tasks in artificial intelligence [17].

The paper is organized as follows. In the next section, basic notions about
standard Boolean logic are recalled. The question of merging pieces of knowledge
and the subsumption issue are presented and solved in section 3. In section 4,
a concept of compulsory clauses is introduced. Section 5 focuses on an adapted
prime implicate representation. A concept of restrictive clauses is presented in
section 6. Main issues about the interaction of a new belief with a preexisting
base are addressed in section 7, together with some computational issues. The
paper ends with perspectives and promising paths for further research.

2 Logic-Based Framework

To concentrate on the aforementioned conceptual problems, we consider the
simple framework of standard (clausal) Boolean logic. Let L be a language of
formulas over a finite alphabet P of Boolean variables, also called atoms. Atoms
are noted a, b, c, . . . The ∧,∨,¬,⇒ and ⇔ symbols represent the standard con-
junctive, disjunctive, negation, material implication and equivalence connectives,



respectively. A literal is an atom or a negated atom. Formulas are built in the
usual way from atoms, connectives and parentheses; they are noted f, g, h, etc. A
formula is in conjunctive normal form (CNF) when expressed as a conjunction
of clauses, where a clause is a disjunction of literals. For convenience, clauses
can be represented by their set of involved literals. The empty clause represents
false. Also for convenience, the set of involved literals of a clause can be enriched
by the value false, while still representing the clause. Also for convenience, the
disjunction forming a clause can be safely enriched by a disjunct representing
false.

Interpretations are functions assigning either true or false to every atom. A
model of a set of formulas ∆ is an interpretation that satisfies every formula of
∆. ∆ is consistent (also said satisfiable) when its set of models is not empty.
∆ ⊢ f expresses that the formula f can be deduced from ∆, i.e., that it is true
in all models of ∆.

A knowledge base ∆ is a consistent finite set of (non-tautological) clauses
and the incoming belief f is a consistent non-tautological clause. We distinguish
between ∆, which represents the explicit clauses of the base, from the set of all
the deductive conclusions of ∆, noted Th(∆): ∆ ⊢ f iff f ∈ Th(∆).

A word of caution can be needed for readers who are familiar with rule-
based systems but not with logic. We exploit the sound and complete deductive
capabilities of Boolean logic. Especially, we do not only simply allow for mere
forward and backward chaining on ⇒ as in traditional rule-based systems. For
example, from the rule a ⇒ b and ¬b, we derive ¬a using contraposition. Also,
keep in mind that a rule of the form (a∧ b∧¬c) ⇒ (d∨ e) is logically equivalent
to ¬a ∨ ¬b ∨ c ∨ d ∨ e (which is also represented by {¬a,¬b, c, d, e}) and will be
treated as such.

3 Preempting Subsuming Knowledge and Merging

Clauses

In the following, two central concepts are strict implicant and subsumption.

Definition 1. Let f and g be two formulas. f is a strict implicant of g iff f ⊢ g
but g *⊢ f . ∆ strictly subsumes (in short, subsumes) g iff ∆ ⊢ f for some strict
implicant f of g.

Interestingly, when f and g are clauses under their set-theoretic representation,
f is a (strict) implicant of g when f is a (strict) non-empty subset of g.
Moreover, when f is an implicant made of n − 1 literals from the n different
variables involved in g (i.e., when f is one longest sub-clause of g), f is said
to be a prime implicant of g. For example, ∆ = {office∨home} subsumes
office∨home∨bar and office∨home is a prime implicant of office∨home∨bar.

3.1. Preempting Subsuming Knowledge

All strict implicants g of f must be expelled after f has been introduced inside
∆ when f must prevail. Interestingly, as formulas of ∆ are under CNF format,



it is sufficient to expel the prime implicants of f . For example, when we ensure
that the prime implicant office∨home of office∨home∨bar is expelled, we are
guaranteed that the smaller implicants office and home are expelled, too. Indeed,
when any of these implicants remains, office∨home remains derivable, too.

Actually, the problem of making a formula prevail over all its strict implicants
in ∆ must sometimes be adapted by replacing ∆ by one of its subsets, say ∆′, in
Definition 1. Typically, ∆′ is selected as containing the permanent information
involving generic rules or other permanent knowledge, whereas the rest of ∆
contains facts that are temporary or related to a specific case or result from
the instantiation of the generic rules to a specific situation. When using such
∆′ only, we reason about generic rules independently of specific facts and the
process of transforming and expelling formulas considers the generic rules, only.
Note that facts subsume any rule that contains them as part of its conclusion.
For example, Light is on subsumes If the switch is on and the lamp bulb is ok
then light is on. By considering rules only, we do not consider facts that are
related to a specific situation and avoid expelling these facts although they
subsume rules. In the rest of the paper, for notational convenience, we assume
that any formula from ∆ can be expelled in the process of accommodating an
incoming belief.

3.2. About Merging Pieces of Knowledge themselves

Consider now the first example from the introduction, which requires some rules
to be merged. Assume ∆ contains the rules R1 and R2 in clausal form; namely,
¬switch-on∨¬bulb-ok∨light-on and ¬switch-on∨¬switch-ok∨light-on. R1 andR2

need be replaced by R3 = ¬switch-on∨¬bulb-ok∨¬switch-ok∨light-on. In this
example, the operation is straightforward but more complex situations are also
to handled.

First, assume R1 is the clausal representation of If A and condition-1 and
condition-2 then B whereas R2 is intended to represent If A and condition-3
then B. Thus, R3 = If A and condition-1 and condition-2 and condition-3 then
B is inserted in clausal form within ∆. Clearly, retracting R2 and R1 might
not been enough to make this new rule prevail. Indeed, ∆ might also entail for
example If A and condition-1 and condition-3 then B, which would subsume
R3. Thus, after having inserted the newly formed clause R3 in ∆, we must
make it prevail over all its strict implicants using the aforementioned process of
preempting subsuming knowledge.

Then, not every clause should be merged. Intuitively, we need to merge two
clauses when they are about a same subject and when at least one of them
translates a form of compulsory condition about this subject. In the last example,
we merged R1 and R2 because they (both) express compulsory conditions for
having B on the basis of A.

In the next sections, concepts of compulsory and restrictive clauses are pro-
posed. They will help us distinguish, capture and solve the various situations
about merging pieces of knowledge themselves and about making knowledge
prevail over the subsuming one.



4 Compulsory Clauses about f ′

In the following, ∆ is a consistent finite set of non-tautological clauses that has
accommodated an incoming non-contradictory and non-tautological clause f .
Unless explicitly indicated, when a clause is referred to, it is not tautological.

Definition 2. When f can be rewritten as f = g ∨ f ′ where g and f ′ are two
clauses with an empty intersection and where g is not the empty clause. f is said
to be about f ′. g is called the anti-condition for f ′ in f .

When the anti-condition g for f ′ in f is false, f entails f ′: hence the “anti” prefix.
However, by convenience, we will write “condition” instead of “anti-conclusion”.
Please, note that the definition entails that f is not about itself: f is about false
and about any of its strict subsets. In our framework, the incoming clause f
can be asserted together with the additional information that f is specifically
intended to be about one specific given f ′, or without any information about
such a possible intent. In the first, case this does not prevent the above definition
from concluding that f is also about other f ′ when f is not just a literal. As
motivated earlier, f = g∨f ′ might have been asserted together with some clause-
labeling information expressing that f need be compulsory about f ′ in the final
∆.

A first family of such situations occurs when f is not allowed to be subsumed,
i.e. when no strict sub-clause of f is allowed to belong to Th(∆). In the moti-
vating example, office∨home∨bar was such a subsumption-free clause in ∆. To
express this, our proposed convention is to select f ′ = false (and thus g = f)
and provide some labeling indication that f must be compulsory about f ′ in ∆.

In the example encoding rules, we might express that f = g ∨ f ′ = ¬switch-
on∨¬switch-ok∨light-on, which encodes the rule If the switch is on and the
switch is ok then the light is on, is about f ′ = light-on. We might additionally
express that f translates compulsory conditions about f ′ and that the following
requirements must be met.

Requirements (for f = g ∨ f ′ about f ′ to be compulsory for f ′ in ∆)

1. f ∈ ∆. We require any compulsory clause to be explicit, i.e. to belong to ∆.

2. f ′ *∈ Th(∆). Otherwise, f could be interpreted as being a mere deductive
consequence of f ′. Remember that we have assumed that ∆ is intended to
contain the generic rules and clauses; more generally, we have assumed that
any formula in ∆ can be expelled to make f must prevail over the knowledge
subsuming f . Moreover, when f ′ = false, f ′ ∈ Th(∆) would contradict the
prerequisite that ∆ is consistent.
From these two first requirements, we conclude that ¬g *∈ Th(∆).

3. When f ′ *= false, we have ¬f ′ *∈ Th(∆). Otherwise, f ′ could never be derived
because the prerequisite that ∆ is consistent must be satisfied. If f ′ were
always blocked from derivation then there could not exist at the same time
any additional condition g that would authorize such a derivation.



4. When f ′ = false, ∄h = g′ ∨ f ′ about f ′ in Th(∆) such that h is a strict
subset of f , like office∨bar in the motivating example.

5. For any h = g′ ∨ f ′ about f ′ where h ∈ Th(∆), we have g ⊆ g′ unless
f ′ = false or g′ ∈ Th(∆). This requirement does not exclude from Th(∆)
all clauses containing a strict subpart of g. For example, if we are able to
derive that in-Dalian-KSEM is true, a standard-logic reasoner is justified to
also conclude e.g. h = in-Dalian-KSEM ∨ light-on, or h = in-Dalian-KSEM
∨¬switch-on ∨ light-on. These last inferences can be made independently of
the actual truth value of light-on and despite any possible compulsory clause
about light-on.

6. A compulsory clause about f ′ is also implicitly expressing conditions about
any f ′′ where ∅ ⊂ f ′′ ⊂ f ′. More precisely, when a clause f = g ∨ f ′ is
compulsory about f ′, h = g ∨ f ′′ is compulsory about f ′′ for any f ′′ such
that ∅ ⊂ f ′′ ⊂ f ′, provided that h belongs to Th(∆). For example, when
¬vacation ∨ go-to-beach ∨ go-to-mountain is compulsory about go-to-beach
∨ go-to-montain, we have that h = ¬vacation ∨ go-to-beach is compulsory
for go-to-beach, provided that h ∈ Th(∆).

Hence, the formal definition.

Definition 3. When f = g ∨ f ′ is about f ′. f is compulsory about f ′ in ∆ iff

1. f ∈ ∆, and
2. f ′ *∈ Th(∆) and, when f ′ *= false, ¬f ′ *∈ Th(∆), and
3. when f ′ = false, no strict implicant of f belongs to Th(∆), and
4. ∀ (g′ ∨ f ′) ∈ Th(∆), g ⊆ g′ unless g′ ∈ Th(∆) or f ′ = false.

Example. Let f = a ∨ b ∨ c1 ∨ c2 be compulsory about c1 ∨ c2 in ∆. According
to 3.1, f ∈ ∆. According to 3.2, c1 ∨ c2 *∈ Th(∆) and thus c1 *∈ Th(∆) and
c2 *∈ Th(∆). Also, ¬c1 ∧ ¬c2 *∈ Th(∆). As a consequence of both 3.1 and 3.2,
¬g = ¬a ∧ ¬b *∈ Th(∆). According to 3.4, f = a ∨ d ∨ c1 ∨ c2 ∈ Th(∆) requires
that d ∈ Th(∆).

Property 1. When f = g ∨ f ′ is compulsory about f ′ in ∆, g ∨ f ′′ is compulsory
about f ′′ for any f ′′ s.t. ∅ ⊂ f ′′ ⊂ f ′.

Indeed: first note that f ′′ *= false. Then, assume ∃ g′∨f ′′ ∈ Th(∆): g *⊆ g′ unless
g′ ∈ Th(∆). Since g′∨f ′′ ⊢ g′∨f ′, all this would contradict ∀ (g′∨f ′) ∈ Th(∆),
we have (g ⊆ g′) unless g′ ∈ Th(∆) or f ′ = false.

Clearly, this property can be of practical computational importance since
none of the conditions in Definition 3 needs to be checked to decide whether
g ∨ f ′′ is compulsory about f ′′ when we know that g ∨ f ′′ is compulsory about
f ′’ and that g ∨ f ′′ ∈ Th(∆).

Example (Cont’d). Assume also that a ∨ b ∨ c1 ∈ Th(∆). Then, a ∨ b ∨ c1 ∈ ∆
and this clause is compulsory about c1.

Property 2. When a clause f = g∨f ′ is compulsory about f ′ in ∆, we have that



1. all the aforementioned Requirements (for f = g∨f ′ about f ′ to be compulsory
for f ′ in ∆) are satisfied,

2. when f ′ *= false, there is no other compulsory clause about f ′ in ∆,
3. ¬g *∈ Th(∆),
4. when f is compulsory about f ′ in ∆, f is also compulsory about f ′ for any
∆′ ⊆ ∆ such that f ∈ ∆.

The last three properties are also of a practical computational importance. For
example, the last one allows us to retract information from ∆ without altering
the compulsory status of a clause f when f remains derivable.

A labeling is used to mark clauses in order to recognize compulsory clauses in
∆ that were actually intended to be so. We do not label formulas in Th(∆) \∆
since all compulsory clauses belong to ∆.

Definition 4. Let f = g ∨ f ′ ∈ ∆. f is either explicitly labeled “required-
compulsory ” (in short, RC) or implicitly labeled “not-required-compulsory” (in
short, NRC) about f ′ in ∆. By default, f is implicitly labeled NRC about f ′ in
∆. Only clauses that are compulsory about f ′ can be labeled RC about f ′.

For convenience, when the context does not make it ambiguous, we say that f
is RC (resp. NRC), implicitly referring to ∆, f ′ and to the condition g for f ′ in
f .

By default, a clause in ∆ is thus (implicitly) marked NRC about any of its
sub-clauses, including the empty one, as we expect RC clauses to be outnum-
bered by NRC ones. Let us stress again that all compulsory clauses about f ′ are
not necessarily labeled RC about f ′: they are markedNRC when the agent/user
did not require them to be compulsory.

Condition 4 in Definition 3 does not provide any hint about which g′ should
be checked in that condition. To circumvent the latter issue, we turn to a prime
implicate representation of ∆.

5 Prime Implicate Representation

Definition 5. A prime implicate of a finite set ∆ of formulas is any clause h
that satisfies both conditions below

(1) h ∈ Th(∆)
(2) h′ ⇔ h ∈ Th(∆) for every clause h′ s.t. ∆ ⊢ h′ and h′ ⊢ h

∆PI denotes the set of all prime implicates in ∆.
Accordingly, h is a prime implicate of ∆ iff h is a minimal (w.r.t. ⊆) non-

tautological clause amongst the set formed of the clauses l such that ∆ ⊢ l.
Prime implicates have already been investigated in belief revision and change

mainly because they provide a compact and syntax-independent yet complete
representation of a belief base (see e.g. [18] and [19]) and because interesting
computational tasks (like satisfiability checking and entailment) are tractable in
this framework [20]. In the worst case, computing the set of prime implicates



of ∆ containing a clause l (a task that we will often refer to) is however not
in polynomial total time unless P=NP (it is in polynomial total time when for
example the clause is positive and∆ is Horn) [21]. Although the compactness and
some of the computational features of a prime implicates representation happen
to be welcome properties, the motivation for focusing on prime implicates is here
different and stems from their intrinsic epistemological nature, as shown by the
following properties.

The first two properties are straightforward and well-known. The third one
shows how this prime implicate representation will help us in dealing with com-
pulsory clauses.

Property 3. Let f be a consistent non-tautological clause.

1. f ∈ Th(∆) iff f ∈ Th(∆PI).
2. f is not subsumed in ∆ iff f ∈ ∆PI .
3. f = g ∨ f ′ is the only clause about f ′ in ∆PI iff f is compulsory in ∆.

It would be tempting to adopt ∆PI as the actual representation for ∆. However,
∆ can contain formulas that are not prime implicates of ∆ and that thus do
not belong to ∆PI but in Th(∆PI) \ ∆PI . Accordingly, we assume that ∆ is
a superset of ∆PI and that ∆ = ∆PI ∪ ∆nonPI , where ∆nonPI contains the
explicit clauses that are not prime implicates of ∆. As a consequence, Th(∆) =
Th(∆PI) = Th(∆PI ∪∆nonPI).

6 Restrictive Clauses about f ′

Being compulsory about f ′ is sometimes a too strong requirement. It must some-
times be softened as follows: any strict implicant of f = g ∨ f ′ containing f ′ is
not allowed to belong to Th(∆) while, at the same time, other clauses about
f ′ are allowed to exist in Th(∆). For example, we might require that If first-
class-passenger and valid-boarding-pass then fast-lane does not coexist with any
shorter rule containing fast-lane in ∆ whereas If VIP then fast-lane is allowed
to exist in Th(∆). The first clause is called restrictive about f ′ (where f ′ =
fast-lane) in ∆.

Definition 6. When f = g ∨ f ′ is about f ′, f is restrictive about f ′ in ∆ iff

1. f ∈ ∆, and
2. f ′ *∈ Th(∆) and, when f ′ *= false, ¬f ′ *∈ Th(∆), and
3. no strict implicant of f containing f ′ belongs to Th(∆).

Useful properties of restrictive clauses are as follows.

Property 4.

1. Any compulsory clause about f ′ in ∆ is restrictive about f ′ in ∆.
2. When ∆ contains a restrictive clause about f ′ that is not compulsory about
f ′ and when f ′ *= false, there is no compulsory clause about f ′ in ∆.



3. Assume a clause f = g∨f ′ is restrictive about f ′ in∆. Let f ′′ s.t. ∅ ⊂ f ′′ ⊂ f ′

and g ∨ f ′′ ∈ Th(∆), we have that g ∨ f ′′ is restrictive about f ′′ in ∆.
4. f = g ∨ f ′ is restrictive about f ′ in ∆ iff f ∈ ∆PI .

Since permissive clauses are expected to outnumber restrictive ones, and since
not all restrictive clauses are required to be so by the agent or user, the following
labeling convention is followed.

Definition 7. Let f be a clause about f ′ in ∆. f is marked either “required-
restrictive” (in short RR) about f ′ in ∆, or implicitly “not-required-restrictive”
(in short NRR) about f ′ in ∆. By default, clauses labeled NRC about f ′ are
marked NRR about f ′. Clauses marked RC about f ′ are marked RR about f ′.

For convenience, NRR clauses about f ′ are also called permissive clauses. Note
that restrictive clauses are thus permissive when they are not intended to be
required restrictive by the user or the agent.

7 Handling an Incoming Belief

As in most belief change approaches, we adopt a form of preference for more
recent information and apply a principe of minimal change. A total ordering
of RC or RR clauses (based on the time-stamp expressing when the labeling
occurred) is assumed available to direct the selection of clauses to be expelled
or that must have their labeling changed, when such a choice among several
candidates occurs. The treatment is also intended to be well-suited for iteration,
when a succession of incoming beliefs occurs and when ∆ is built incrementally,
at least in the sense that ∆ = ∆PI ∪ ∆nonPI is assumed to comply with the
{RC,NRC,RR,NRR} labeling before and after an incoming belief shows up.
Due to space limitation, we only sketch the main steps of the approach when the
incoming belief is a clause f = g ∨ f ′ that is intended to be compulsory about
one given f ′. This is the most complex situation and it allows us to illustrate
principles that also apply to other cases.

Two main approaches can be distinguished based on the understanding of the
precise role of f in that respect: f can be intended to either replace any formula
about f ′ in ∆′ (actually, as we have seen, all prime implicates containing f ′ in
∆′

PI
), or weaken those clauses by enforcing g within their condition about f ′.

Consider the second situation as a case study.
Several situations can occur, depending on the current {RC,NRC,RR,NRR}

labeling of clauses in ∆′. Interestingly, we take advantage of the aforementioned
properties of the prime implicate representation and of compulsory/restrictive
clauses. For example, we know that when a clause is compulsory about f ′, it
is unique in that respect and belongs to ∆PI . When a clause is retracted from
∆, the remaining compulsory/restrictive clauses do not change their status (and
thus the corresponding labeling of clauses does not change). When a clause g∨f ′

is compulsory/restrictive about f ′ then a same status is derived for any g ∨ f ′′

where ∅ ⊂ f ′′ ⊂ f ′ when g ∨ f ′′ ∈ Th(∆).



However, let us stress on the following points. ∆PI can need some updating
operations when an incoming clause must belong to it. When an incoming clause
is to be RC or NRC, other RC or RR clauses might need to be expelled. When
they can co-exist together, their status can however need to be downgraded into
RR or NRR with respect to the concerned sub-clause. In the following, we do
not mention how ∆nonPI is handled, because this does not involve any technical
difficulty or complexity.

The specific focus is on when f = g ∨ f ′ about f ′ (when f ′ *= false) is
intended to be compulsory about f ′ with respect to a pre-existing ∆′, in order
to deliver a final base, noted ∆. Consider the case where there exists a clause
h = k ∨ f ′ that is compulsory about f ′ in ∆. There is thus no other restrictive
clause about f ′ in ∆.
First, ∆ is initialized to ∆′. h is the unique clause about f ′ in ∆PI . m = g∨k∨f ′

must become compulsory about f ′ in ∆. When m = h this means that m
is already compulsory about f ′ in ∆: the procedure ends. Otherwise, h is
retracted from ∆PI . Clauses about f ′′ where ∅ ⊂ f ′′ ⊂ f are retracted from
∆PI , too. ∆PI is updated with the constraint that m ∈ ∆PI . Let N = {n
s.t. n = g ∨ k ∨ f ′′ where ∅ ⊂ f ′′ ⊂ f ′ and n ∈ Th(∆PI)}. Mark all elements
of N by RC about f ′′. As a clause has been introduced within Th(∆PI),
it might happen that RC and RR clauses about some sub-clauses are no
longer compulsory (restrictive) but only restrictive (permissive) about those
sub-clauses. Accordingly, all RC and RR clauses must be checked again,
according to the aforementioned total order translating a preference for more
recent information. When a clause cannot be compulsory, it is checked whether
it can be downgraded to RR and, in the negative case, it becomes merely
permissive about the concerned sub-clause. Also, clauses that remain in ∆
but cannot be any longer RR become permissive about the concerned sub-clause.

8 Conclusion and Perspectives

Most research efforts about knowledge and belief change have taken the con-
sistent case for granted. On the contrary, we claim that taking into account a
new piece of information that does not contradict the preexisting knowledge is
not always a straightforward issue; it might actually involve complex reason-
ing paradigms. This paper intends to be a contribution to the study of these
paradigms by focusing on situations where the novel information can need to
prevail over the existing knowledge. In the future, we plan to extend this work
to the first-order case and to non-monotonic logics. In this last respect, a first
result is that the approach in the paper directly applies to fragments of non-
monotonic logics that include forms of negation as failure, provided that ∆ does
not entail any literal. In this case, negation as failure can be replaced by stan-
dard negation to analyze in an adequate manner the interactions between generic
rules, independently of any specific concrete case or data.
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15. Besnard, P., Grégoire, É., Ramon, S.: Preemption operators. In: Proc. of
ECAI 2012, pp. 893–894 (2012)
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