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Design of a PI Control using Operator Theory
for the nonlinear de Saint-Venant equations:

Some numerical extension

Valérie Dos Santos Martins, Mickael Rodrigues

Abstract— This paper considers the control design
of a nonlinear distributed parameter system in in-
finite dimension, described by the hyperbolic Partial
Differential Equations (PDEs) of de Saint-Venant. The
nonlinear system dynamic is formulated by a Multi-
Models approach over a wide operating range, where
each local model is defined around a set of operating
regimes. A Proportional Integral (PI) feedback was
designed and performed through Bilinear Operator
Inequality (BOI) and Linear Operator Inequality
(LOI) techniques for infinite dimensional systems.
The authors propose in this paper to improve the
numerical part by introducing weight µi not only
equal to {0,1}, but µi ∈ [0, 1].

I. INTRODUCTION

Regulation of irrigation channels has received
an increasing interest over the last three decades.
Water losses in open channels are very large due
to inefficient management and control. A large
number of instruments of automation equipment
(e.g., automatized gates, level sensors, etc...) are
required in open channel networks in order to avoid
overflows and to satisfy the water demand [25]. In
order to deliver water, it is important to ensure that
the water level and the flow rate in open channels
remain at certain values. The difficulty of this reg-
ulation problem is that only the gates positions can
meet performance specifications. Such problems
can be solved by designing boundary control laws
in order to satisfy the control objectives: to maintain
water level or flow rate at given values.
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CNRS, UMR 5007, LAGEP, Villeurbanne, F-69622, France. e-
mail: name@lagep.univ-lyon1.fr.

The open surface channels couple transport phe-
nomena and delay phenomena, so they have com-
plex nonlinear dynamics. The dynamics of such
distributed parameter systems can be represented
by hyperbolic Partial Differential Equations (PDE):
the equations of de Saint-Venant, which depend
on time and space [24], [28]. Some studies take
into account the uncertainties and apply robust
control approaches [23], [22]. Studying the non-
linear dynamics directly is also possible as in [10],
[15], [22], [37]. The Riemann approach has also
been used to prove stability results for systems
of two conservation laws [19], and for systems of
larger dimensions in [21]. Recently, it has been also
coupled with LMI [2]. The Lyapunov techniques
have been used in [5], [9], [10].
In practice, industrial processes such as mining,
chemical or water treatment processes are com-
plex systems characterized by multiple operating
regimes. Multi-Models methods split the operating
range of a system into separate regions where local
models describe each region [27] for control and
Fault Diagnosis purposes [3], [17], [29]. Each local
model is defined as a Linear Time Invariant (LTI)
model for each operating point. The Multi-Models
philosophy is based on weighting functions which
ensure the transition between the different local
models. Some authors have studied gain scheduling
strategy for example in [20] or Linear Parameter
Varying (LPV) controllers [31].
The use of Multi-Models representation for the
study of the stability of a system described by
nonlinear PDE has been examined in [2], [12], [13].
The nonlinear PDE stability is studied by extending
the common approaches based on finite dimension
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to infinite dimension. The theoretical proof has
been given for the closed loop stability under a Pro-
portional and a Proportional Integral (PI) controller
with identical gains or with a general PI, using
Multi-Models and the Internal Model Boundary
Control (IMBC) structure [14]. A variable elimi-
nation technique, as for finite-dimensional systems
[4], [30], [33], has been used in order to solve a BOI
(well known as Bilinear Matrix Inequality (BMI)
in finite dimension) problem by the resolution of
two LOI (well known as Linear Matrix Inequalities
(LMI) in finite dimension). This paper proposes a
brief extension of [14] from a simulation part.
The first parts of the paper briefly recall the theo-
retical part developed in [14]: the equations of de
Saint-Venant, the control, the linearized models, the
LOI formalism, the design of the feedback gains by
LOI & BOI techniques which ensures the stability
of the system. The last section IV is the major
contribution of this paper. Comparisons are done
between the simulations with constant piecewise
weighting functions with values ∈ {0, 1} done
previously and non-piecewise weighting functions
with values ∈ [0, 1], and show the significant
improvement brought by the second case.

II. PROBLEM STATEMENT ABOUT CHANNEL
REGULATION

The control problem concerns the stabilization
of the water flow rate and/or the water height
around an equilibrium for a reach denoted by
(Ze(x), Qe(x)).

A. A model of a reach

The channel is supposed to have a sufficient
length L (from x = 0 to x = L) such that one
can consider that the lateral movement is uniform.
The water flow rate Q(x, t) and the height of the
water Z(x, t) are the state variables. The nonlinear
PDE of de Saint-Venant, which describes the flow
on the channel, are [8], [18]:{

∂tZ = −∂x
Q
b ,

∂tQ = −∂x(
Q2

bZ + 1
2gbZ

2) + gbZ(I − J),
(1)

y(t) = C[Z(x, t) Q(x, t)]T (2)
Z0(x) = Z(x, 0), Q0(x) = Q(x, 0) (3)

∀x ∈ Ω = (0, L), t > 0, C : (L2(0, L))2 → R. I
is the slope, b is the channel width, g is the gravity
constant. J is the friction slope from the formula
of Manning-Strickler and R is the hydraulic radius.
The considered boundary conditions ∀x ∈ Γ = ∂Ω
are two underflow gates. The controlled variable is
defined as follows:

Q(x, t) = U(t)Ψ(Z(x, t)) (4)

with Ψ(Z) = κ
√

2g(Zup − Zdo). Zup is the water
height upstream of the gate, Zdo is the water height
downstream of the gate, κ is the product of the
channel width and the water flow rate coefficient
of the gate. The gate opening U(t) is the control
at upstream (Uup) and at downstream (Udo). The
output variable is the downstream water level i.e.
Z(L).

B. A regulation model
The fluvial case, i.e. the subcritical case [24],

is considered. Let ξ(t) = (z(t) q(t))T be the
linearized state variable, then the model around the
equilibrium state (Ze(x) Qe(x))

T is:

∂tξ(x, t) = Aξ(x, t)

= A1(x)∂xξ(x, t) +A2(x)ξ(x, t),(5)
Fbξ(t) = Bbu(t) and ξ(0, t) = ξ0(t), (6)

where A1 and A2 are matrices of the space vari-
able x. The linearized boundary conditions (6) are
equivalent to:

q(0, t) = Uup,e∂zΨ(Ze(0, t))z(0, t)

+uup(t)Ψ(Ze(0, t)), (7)
q(L, t) = Udo,e∂zΨ(Ze(L, t))z(L, t)

+udo(t)Ψ(Ze(L, t)), (8)

where Uup,e and Udo,e are the upstream and down-
stream gate openings respectively at the equilibrium
and uup(t), udo(t) are the variations of these gate
openings to be controlled.
The initial control problem is to find the variations
of uup(t) at extremity x = 0 and udo(t) at extrem-
ity x = L of the reach such that the downstream
water level, Z(L, t) (measured variable) tracks a
reference signal r(t). [14]
The control scheme is based on the Internal Model
Boundary Control (IMBC) [11].
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III. MULTI-MODELS APPROACH

A. A Multi-Models representation of de Saint-
Venant’s Equation

The Multi-Models representation [30], [13] of de
Saint-Venant’s PDE around N operating points is
defined by the following equations:

∂tξ(x, t) =

N∑
i=1

µi(ζ(t))Ai(x)ξ(x, t)

with Ai(x) = A1,i(x)∂x +A2,i(x), (9)
ξ0(x) = ξ(x, 0),

where Ai(x) is the operator which corresponds to
the ith equilibrium state. The function ζ(t) depends
on some decision variables directly linked with the
measurable state variables and eventually to the
input. The weighting functions µi(ζ(t)) activate the
control law in function of the output of the process
ZL. They belong to a convex set such that

N∑
i

µi(ζ(t)) = 1 and µi(ζ(t)) ≥ 0.

In previous works, the weight were chosen for the
simulations as follows, one was equal to 1 the oth-
ers equal to 0. We propose to apply our theoretical
approach to the simulations for the general case,
i.e. µi ̸= {0, 1} but functions with values in [0, 1].

B. Closed-loop structure for a proportional inte-
gral feedback

In this part, the closed loop structure is studied
under a proportional integral feedback [14].

Let Ki and Kp be the integral and proportional
gains respectively. It follows that [11]:

u(t) = Ki

∫ L

0

[r(τ)− y(τ)]dτ +Kp[r(t)− y(t)]

where r(t) is the physical water level wanted. With
K̃int = D Ki, K̃pr = D Kp, the expression of

the closed-loop system can be expressed as follows:

∂tφ(x, t) =
N∑
i=1

[
(Ai(x) + K̃intC + K̃prCAi(x))φ(x, t)

+K̃int

(
CDu(t) + CEq(x, t)− r(t))

]
×µi(ζ(t)) =

N∑
i=1

Mi(x, t). (10)

The stability conditions are ensured by using a
quadratic Lyapunov function [31] guaranteeing the
convergence of the water height to the reference
r(t) over the widest operating range.

C. Stability

Let us consider:

V (φ(x, t), t) = ⟨φ(x, t), Pφ(x, t)⟩, (11)

where ⟨., .⟩ is the considered inner product. The
Multi-Models representation of the linearized de
Saint-Venant equations defined by equation (10)
is asymptotically stable if there exists an operator
P > 0, such that [14]:

⟨φ̇, Pφ⟩+ ⟨φ,P φ̇⟩ < −⟨φ,φ⟩. (12)

Then, by taking into account (10)-(12), one has to
prove the following inequality:

⟨Mi, Pφ⟩+ ⟨φ,PMi⟩ < 0, (13)

where Mi is defined in (10).
Both propositions developed in [14] are applied

to prove the stability. The coefficients β and σ of
the proposition 1 in [14] are negative in both cases
simulated, so the condition ∥X∥ ≤ −2σ is always
satisfied whatever X = βId.

The contribution of this extended paper is in the
following part: the weight functions are taken as
functions, and the improvements are significant.

IV. SIMULATION RESULTS

Two benchmarks are used for the simulations:
the micro-channel (benchmark) of Valence (France)
and the channel of Gignac (France). The simula-
tions are based on a Chang and Cooper scheme
[10], [13].
For both applications, the weighting function
µi(ζ(t)) is no more equal to 1 or 0. It is a function
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such that µi(ζ(t)) ∈ [0, 1] and
∑

i µi = 1. The
parameter ζ(t) is a function of the output of the
system which is the decision variable.

A. The micro-channel of Valence

The following set of parameters of this channel
is considered: L = 8 m is the length of the
channel, b = 0.1 m is the width of the channel,
N = 40 is the number of the discretizated points,
ZL is the water height to regulate such that
0.06 m < Z < 0.19 m.

The equilibrium profiles have been chosen such
that the calculated control law from the local mod-
els can be efficient over all the operating range of
the water height [11][14].

B. The channel of Gignac

We also study a channel which is located in
Gignac (France). The following set of parameters
of this channel is considered: L = 2272 m is the
length of the channel, b = 3 m is the width of the
channel, N = 40 is the number of the discretizated
points, ZL is the water height to regulate such that
1.7 m < Z < 2.5 m.

C. Simulation results

The improvements here are achieved by the in-
troduction of weighting functions µi taken different
from {0, 1}.

From a theoretical point of view, the results were
developed for any functions µi with the regularity
needed, but numerically it was implemented only
with constant functions.

First simulations are done with the Valence chan-
nel data. It can be seen in figures (1)-(2) that
around time instants t = 250, 1000s and 2180s, the
new weighting functions µi ∈ [0, 1] (depicted on
Fig (3)) outperform previous results obtained with
functions µi ∈ {0, 1}, [14]. Indeed, the downstream
water level tracks the reference better and avoids
some overshoot. It can be noticed that the gate
openings, Figure (4), get very similar dynamics in
spite of different weighting functions µi: however,
just around time instant t = 900s and t = 2000s,
the gate openings are little bit different which
corresponds to the transition between the weighting

functions. In [14] the weighting functions were
considered only as a switch between models and
the system model id not remain correct during this
switching. New weighting functions µi ∈ [0, 1] pro-
vide a real interpolation between the local models,
to improve the dynamics of the nonlinear system at
every time instant.
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Fig. 1. Valence channel simulation; Comparison of the
downstream water level

The channel of Gignac is a real channel located
in the south of France. In Fig (5), it can be seen
that the use of weighting functions µi ∈ [0, 1]
(Fig (7)) allow to avoid some overtaking at time
instant t = 1200s and t = 2800s that correspond
also to the transition of models. Again, the old
weighting functions were only a switch that have
been replaced in this paper by a real interpolation
between the local models to better track the
reference water level. Moreover, in Fig. (6), it can
be seen that the use of new weighting functions
allow to avoid major damping for the upstream
water flow around the same time instant t = 1200s
and t = 2800s. The downstream water flow is
also improved although the improvement is less
important. The gates opening in Figure (8) at the
time instant t = 1200s and t = 2800s, are more
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Fig. 2. Valence channel simulation; Comparison of the
downstream water level
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Fig. 3. Valence channel simulation; µi functions
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linear without big variations.
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Fig. 5. Gignac channel simulation; Comparison of the down-
stream water level

The last figure (9) presents another type of
reference tracking for the downstream water
level. It can be seen that by the use of the new
weighting functions, all the overtaking have
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Fig. 7. Gignac channel simulation; µi functions
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Fig. 8. Gignac channel simulation; gates opening

totally disappeared. Indeed, at time instants
t = 800s, 4000s, 5800s, 8600s, which correspond
to the transitions between local models, the new
weighting functions contribute to get more smooth
water level and better reference tracking. It can
be highlighted that the transitions in (10) cover
between 500s to 1500s i.e. the Multi-Models
strategy takes all its sense by the fact that the use
of a single model during these transitions are not
judicious. The weighting of local models during
these transitions allow to get better performance
from a practical point of view by avoiding
overshoot and bad behavior of opening gates as
presented in Figure (11). We can see that around
t = 800s and t = 8600s, the improvement is
significant.

V. CONCLUSION

First attempts of a Multi-Models approach on
irrigation channels control, through an IMBC struc-
ture, have been realized some years ago [11].
Good experimental results were obtained which
showed promising results but a theoretical basis
was lacking. The first theoretical results in order to
design the feedback gain through LMI have been
realized in the case of an Integral controller in
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Fig. 9. Gignac channel simulation; Comparison of the down-
stream water level
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Fig. 10. Gignac channel simulation; µi functions
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[13]. Preliminary results of a PI controller in a
particular case (Ki = Kp) have been published
in [12] for infinite dimensional systems and with
Ki ̸= Kp in [30] for finite dimensional systems.
In the last paper, the authors take into account the
more general case of PI controller with Ki ̸= Kp

for infinite dimensional systems. They synthesize
the new PI controller feedback gains by solving
a BOI problem. But the weighting functions were
equals to 1 or 0. Here this brief paper improves
the previous paper [14] by taking non-piecewise
constant ( µi(ζ(t)) ∈ [0, 1]). The last step should
be to valid our approach through experimentations.
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