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ANSWERS TO THE REVIEWERS COMMENTS 

Reviewer #1: 

The paper presents a method for the prediction of the remaining useful life for 

aluminum electrolytic capacitors working in variable operating condition, such 

as capacitors used in Fully Electrical Vehicles. It is interesting to readers, 

stimulates new ideas and it is valuable for practicing engineers. 

 

Following, I present my comments: 

•    In page 4, line 38, the authors say that the ratio between the ESR measured 

on the degraded capacitor and the one of a sound capacitor is independent of the 

measurement temperature. Please explain why? The justification and 

demonstration of the previous statement is fundamental to validate the proposed 

method (this is one of the novelties of the proposed method). 

The independence of the degradation indicator from the temperature is justified and demonstrated in 

the following paragraphs added to Section 3, page 12: 

For instance, let us consider a capacitor operating at the constant temperature T
ag
 and assume to measure, at 

time t, its ESR at two different temperatures ESRT1  and ESRT2  obtaining the values )( 1
ESR

t TESR  and 

)( 2
ESR

t TESR , respectively. The corresponding degradation indicator can be computed by considering that the 

ESR time evolution for a capacitor aging at constant temperature Tag  whose ESR is measured at a different 

temperature T
ESR

, is given by: 

                                           tTCESRESR
t

ag

eTESRTESR )(
0 )()( =                                        (Eq. 17) 

Thus, we obtain that the degradation indicator norm
tESR  is independent from the measurement temperature 

T
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•    In page 5 and 6 the author should define in more detail the concepts of the 

degradation state (x) and measurement (z). 

The concept of degradation state and measurement have been clarified in Section 2: 
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i) an indicator, x, of the equipment degradation state, i.e. a physical or abstracted parameter whose 

behavior is representative of the degradation evolution, is available. The equipment is considered 

failed when the degradation indicator x exceeds a threshold value xth. 
 

ii) We assume that the observation equation, which is a mathematical model describing the relation 

between the values, zt, of observable process parameters measured by sensors at time t and the 

indicator of the equipment degradation state at the same time, xt, is known and can be 

represented by: 

                                                       ( )ttt xhz σ,=                                                                         (Eq. 2) 

where h is a possibly non-linear function and σt  is a random noise representing the measurement 

error at time t. 
 

•    The experimental results presented in [36] must be summarized in the paper. 

The experimental result of  (Rigamonti et al., 2014)  have been summarized in Section 4: 

 

Figure 3. Experimental curve describing the variation of the initial ESR value ESR0(T
ESR

) at different measurement 

frequencies 

Figure 3 shows the obtained experimental laboratory results (Rigamonti et al., 2014). At a given temperature, 

the ESR tends to increase until a frequency of 20 kHz is reached, whereas further frequency increase does 

not remarkably modify the ESR measurements. In order to avoid using too high measurement frequency and, 

at the same time, to have a stable ESR measure, we have chosen to measure at the frequency of 20 kHz.  

With respect to the setting of the parameters α, β and γ  in Eq. (15) at the measurement frequency of 20 kHz, 

the exponential regression method has been used ((Cameron et al., 1997) and (Di Maio et al., 2012)). Table 1 

reports the identified values of the parameters and their corresponding 95% confidence interval.  
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Table 1. Estimates of parameter αααα, ββββ and γγγγ and corresponding confidence interval. 

 

Notice that the obtained parameter estimates are able to provide a very satisfactory fit of the experimental 

data, being the Root Mean Square Error (RMSE) between the obtained curve and the experimental data equal 

to 6.74·10-4 Ohm.   

 

•    The paper would be highly valued if authors test the proposed method in an 

environment conditions similar to those of a real prototype FEV. 

Further lab experiments are being performed within the European Project HEMIS in order to test 

the proposed prognostic method in environmental conditions similar to those of a real FEV. 

Section 4.2.2 describes the experimental tests:    

In order to further verify the proposed prognostic method in operating conditions similar to those that are 

encountered by electrolytic capacitors in FEV, a series of experimental tests are being performed at CEIT 

facilities within the FP7 European Project HEMIS (Electrical powertrain Health Monitoring for Increased 

Safety of FEVs). In particular, three climatic chambers kept at the constant temperatures of T
ag
=408 K, 

T
ag
=418 K and T

ag
=428 K are going to be used to degrade six capacitors. Three of them will degrade at 

constant temperature, each one in a different chamber, in order to verify the robustness of the prognostic 

method to different aging temperatures, whereas the remaining three will be randomly moved each 24 hours 

from one chamber to another, in order to verify the method performance at variable aging temperatures. 

Furthermore, the effect of the measurement temperature on the prognostic model will be investigated by 

repeating the ESR measurements at three different temperatures: TESR=278 K, TESR =288 K and TESR =298 K. 

Once the model will be verified with respect to accelerated degradation tests, other experiments will be 

performed on capacitors operating in real FEV powertrains using a properly developed sensor for ESR 

measurement.  

In this respect, notice that the FLUKE PM6306 RLC meter or other sensors used in lab tests are not suitable 

for being used on PHM system installed in FEV due to their high costs. Therefore, an on-board low cost 

circuit for the online measurement of the ESR has been developed within the FP7 European Project HEMIS. 

The circuit is shown in Figure 10, is based on a Hartley oscillator (Astigarraga et al., 2014) which exploits 

the resonance of an LC tank formed by L1, L2 and C1. 

 

Parameter Parameter Value 95% Confidence Interval 

Lower bound 

95% Confidence Interval 

Upper bound 

α 0.0817 Ω 0.0802 Ω 0.0829 Ω 

β 0.037 Ω 0.034 Ω 0.040 Ω 

γ 30.682 K 27.115 K 35.323 K 
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Figure 10. ESR online measurement circuit based on the Hartley oscillator 

The frequency and amplitude of the output wave highly depends on the values of the LC tank and on the 

influence of the parasitic elements. Ideally, if the components were lossless, the tank would always oscillate, 

but, given the presence of the parasitic elements, it is necessary to supply energy to the tank using an 

operational amplifier which compensates the losses of the parasitic elements. The current supplied is mainly 

controlled through the resistor R0, whereas the tank output voltage, Vout (see Figure 10) is inversely 

proportional to the losses; therefore, an increase of the ESR value corresponds to a decrease of Vout. This 

change can be easily detected using an analog to digital converter and a microcontroller (Astigarraga et al., 

2014).  

This sensor will allow to verify the effects of the inverter switching frequency and the applied voltage on the 

degradation of capacitors working in FEVs in order to assess the validity of the model in Eq. (12) and of the 

proposed prognostic algorithm. In this respect, notice that the switching frequency and voltage are expected 

to be almost constant during the operation of a given FEV inverter, although they can be different in different 

FEV, even if of the same type. 
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Reviewer #2: 

 

The authors present an interesting paper which investigates on the problem of 

predicting the RUL for electrolytic capacitor working in variable operating 

conditions, as well as the effects of the uncertainty of the degradation model 

associated to the process noise. The paper is well written and clearly organised. 

However, the content of this work needs some improvements and clear 

discussions to give a good insight on the contribution of the paper. 

• First: the process of degradation of electrolytic capacitor is closely depending 

on temperature and frequency. It would be interesting to adapt your method 

to predict with accuracy the RUL of the electrolytic capacitor for large 

frequency and temperature ranges.  

The following sentences have been added to the manuscript: 

 

Section 1, Page 3: 
Furthermore, electrolytic capacitors are known to be sensitive also to voltage and frequency variation. This 

latter affects the oxide dielectric: higher the frequency, faster the degradation caused by the energy losses 

due to the alignment of the dipoles (polarization) and the time for dipole orientation ((Gasperi, 2005) and  
(Lee et al., 2008)). 
 

Section 2, Page 5, line 11: 
The objective of the present work is to provide a method for the prediction of the RUL for a capacitor 

working in variable operating conditions, considering, in particular, the effects of the temperature 

experienced by a capacitor operating on a FEV. 
 

Section 2, page 10: 
This model does not take into account the effects of voltage and frequency on capacitor degradation (Parler, 

2003), which are expected to be marginal with respect to those of temperature ((Gasperi, 1996), (Lahyani et 

al., 1998) and (Abdennadher et al., 2010) ). The applicability of this hypothesis to capacitors working in 

FEVs will be object of future experimental investigations.  

 

Section 4.1.2, Page 17:  
the process noise, ωt, describing the intrinsic uncertainty of the physical degradation process and the effects 

of other variables such as the frequency which are not considered in Eq. (19). 

 

Section 4.2.2, Page 27: 
In this respect, notice that the switching frequency and voltage are expected to be almost constant during the 

operation of a given FEV inverter, although they can be different in different FEV, even if of the same type. 
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• Second: Could you clarify in both page 12, line 48 and page 21, line 13, if it is 

sufficient to conclude of the satisfactory performance of the method with only 

7 measurements of the capacitor ESR?  

 

With respect to page 12, a figure and a description of the results obtained has been added at page 

14, highlighting the uncertainty associated to the parameter and the very low error that is 

introduced by our experimental estimation: 

 

 

Figure 3. Experimental curve describing the variation of the initial ESR value ESR0(T
ESR

) at different measurement 

frequencies 

Figure 3 shows the obtained experimental laboratory results (Rigamonti et al., 2014). At a given temperature, 

the ESR tends to increase until a frequency of 20 kHz is reached, whereas further frequency increase does 

not remarkably modify the ESR measurements. In order to avoid using too high measurement frequency and, 

at the same time, to have a stable ESR measure, we have chosen to measure at the frequency of 20 kHz.  

With respect to the setting of the parameters α, β and γ  in Eq. (15) at the measurement frequency of 20 kHz, 

the exponential regression method has been used ((Cameron et al., 1997) and (Di Maio et al., 2012)). Table 1 

reports the identified values of the parameters and their corresponding 95% confidence interval.  

Table 1. Estimates of parameter αααα, ββββ and γγγγ parameter and corresponding confidence interval. 
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Parameter Parameter Value 95% Confidence Interval 

Lower bound 

95% Confidence Interval 

Upper bound 

α 0.0817 Ω 0.0802 Ω 0.0829 Ω 

β 0.037 Ω 0.034 Ω 0.040 Ω 

γ 30.682 K 27.115 K 35.324 K 
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Notice that the obtained parameter estimates are able to provide a very satisfactory fit of the experimental 

data, being the Root Mean Square Error (RMSE) between the obtained curve and the experimental data equal 

to 6.74·10
-4 
Ohm.   

 

 

With respect to page 21, Section 4.2.2 has been added to describe lab experiments which are 

being performed within the European Project HEMIS in order to obtain new data for further 

testing the prognostic method: 

 

Model verification in FEV environmental conditions 

In order to further verify the proposed prognostic method in operating conditions similar to those that are 

encountered by electrolytic capacitors in FEV, a series of experimental tests are being performed at CEIT 

facilities within the FP7 European Project HEMIS (Electrical powertrain Health Monitoring for Increased 

Safety of FEVs). In particular, three climatic chambers kept at the constant temperatures of Tag=408 K, 

Tag=418 K and Tag=428 K are going to be used to degrade six capacitors. Three of them will degrade at 

constant temperature, each one in a different chamber, in order to verify the robustness of the prognostic 

method to different aging temperatures, whereas the remaining three will be randomly moved each 24 hours 

from one chamber to another, in order to verify the method performance at variable aging temperatures. 

Furthermore, the effect of the measurement temperature on the prognostic model will be investigated by 

repeating the ESR measurements at three different temperatures: T
ESR

=278 K, T
ESR

 =288 K and T
ESR

 =298 K. 

 

 

• Throughout the paper, the authors failed to show to the reader how they 

proceeded to determine the ESR, could you show precisely the way to 

calculate the ESR which is an important parameter? 

 

Section 1, Pages 3-4: an explanation of the concept of ESR has been added: 

i.e., the sum of the resistance due to aluminum oxide, electrolyte, spacer, and electrodes. The ESR is 

directly related to the capacitor self-heating and therefore provides an indication of the capacitor 

degradation state (Lahyani et al., 1998).  
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Figure 1. Electrolytic capacitor structure and equivalent circuit model (Adapted from (Celaya et al., 2011))  

 

According to Figure 1 the capacitor is typically represented by an equivalent circuit model, where C is the 

capacitance, L is the series inductance due to the lead wires, the bonding and the winding, R is the 

equivalent series resistance due to the bonding and the foils, and r is the equivalent parallel resistance due 

to the dielectric. 

 

Section 3, Page 14: a brief explanation and a reference on the lab measurement device have been 

added: 

 

ESR has been measured at different temperatures on a new capacitor using a FLUKE PM6306 RLC 

meter, covering the frequency range from 10 kHz to 1 MHz over a temperature range of [285 K, 383 K] 

(Ye at al., 2003). In particular, given a measurement frequency, the values of the capacitor electrical 

parameters are obtained from the measured current and voltage phasors, through a proper mathematical 

manipulation (Fluke, 1996) . 

 

Section 4.2.2, Pages 26-27: the description of the developed on-board sensor has been added: 

Once the model will be verified with respect to accelerated degradation tests, other experiments will be 

performed on capacitors operating in real FEV powertrains using a properly developed sensor for ESR 

measurement.  

In this respect, notice that the FLUKE PM6306 RLC meter or other sensors used in lab tests are not suitable 

for being used on PHM system installed in FEV due to their high costs. Therefore, an on-board low cost 

circuit for the online measurement of the ESR has been developed within the FP7 European Project HEMIS. 

The circuit is shown in Figure 10, is based on a Hartley oscillator (Astigarraga et al., 2014) which exploits 

the resonance of an LC tank formed by L1, L2 and C1. 

 

 

Figure 10. ESR online measurement circuit based on the Hartley oscillator 
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The frequency and amplitude of the output wave highly depends on the values of the LC tank and on the 

influence of the parasitic elements. Ideally, if the components were lossless, the tank would always oscillate, 

but, given the presence of the parasitic elements, it is necessary to supply energy to the tank using an 

operational amplifier which compensates the losses of the parasitic elements. The current supplied is mainly 

controlled through the resistor R0, whereas the tank output voltage, Vout (see Figure 10) is inversely 

proportional to the losses; therefore, an increase of the ESR value corresponds to a decrease of Vout. This 

change can be easily detected using an analog to digital converter and a microcontroller (Astigarraga et al., 

2014).  

This sensor will allow to verify the effects of the inverter switching frequency and the applied voltage on the 

degradation of capacitors working in FEVs in order to assess the validity of the model in Eq. (12) and of the 

proposed prognostic algorithm. In this respect, notice that the switching frequency and voltage are expected 

to be almost constant during the operation of a given FEV inverter, although they can be different in different 

FEV, even if of the same type. 
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ABSTRACT 
Prognostic models should properly take into account the effects of operating conditions on the degradation 

process and on the signal measurements used for monitoring. In this work, we develop a Particle Filter-based (PF) 

prognostic model for the estimation of the Remaining Useful Life (RUL) of aluminum electrolytic capacitors used 

in electrical automotive drives, whose operation is characterized by continuously varying conditions. The 

capacitor degradation process, which remarkably depends from the temperature experienced by the component, is 

typically monitored by observing the capacitor Equivalent Series Resistance (ESR). However, the ESR 

measurement is influenced by the temperature at which the measurement is performed, which changes depending 

on the operating conditions. To address this problem, we introduce a novel degradation indicator independent 

from the measurement temperature. Such indicator can, then, be used for the prediction of the capacitor 

degradation and its RUL. For this, we develop a Particle Filter prognostic model, whose performance is verified 

on data collected in simulated and experimental degradation tests. 

Keywords: Fault diagnosis, Electrolytic capacitors, Monte Carlo methods, Bayes procedures, Reliability 

modeling  
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2 

 

1. INTRODUCTION 

Prognostics of failures in engineered equipment is based on the capability of predicting future degradation paths, 

so as to estimate the Remaining Useful Life (RUL) of the equipment and the potential risks associated to its 

failure ([1], [2] and [3]). On this basis, it is possible to define predictive maintenance strategies to set the best 

maintenance actions for allowing the optimal exploitation of the useful life of the monitored equipment, with 

benefits in terms of reduction of costs and improvement of safety.     

In practice, industrial equipment works in varying operating conditions. These variations can have remarkable 

effects on the degradation process and on the values of the signals measured to monitor it [4]. For example, 

structures operating in environments characterized by high temperatures usually show faster degradation than 

structures operating at low temperatures, whereas high temperatures may modify the measurement of electrical 

signals used to estimate the degradation of an electrical device. Thus, it is fundamental that prognostic methods 

properly take into account the effects of variations of operating conditions [5]. 

In this work, we consider model-based prognostic approaches, which use mathematical representations of the 

equipment degradation process to predict the equipment RUL. In model-based prognostics, it is possible to 

distinguish between two different situations: i) the effects of operating conditions on the degradation process and 

on the measured signals are known and represented in the mathematical models, ii) the effects are not fully known 

and a mathematical model of the operating conditions influence is not available. In the former situation i), 

traditional model-based prognostic approaches, such as those based on Bayesian Filters [6], can be directly used, 

whereas in the latter ii) properly tailored prognostic approaches are needed. 

In the present work, we consider the second situation, with specific reference to the problem of predicting the 

RUL of aluminum electrolytic capacitors installed in Fully Electric Vehicles (FEVs) [5]. The main task of this 

component, which is the most commonly used electrolytic capacitors in the electronics industry [7], is to filter the 

voltage provided to the inverter of the electric motor [8]. According to [9], electrolytic capacitors are very critical 

components, being responsible for almost 30% of the total number of failures in electrical systems and, thus, it is 
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of paramount importance to develop predictive maintenance approaches for them. The failure mechanisms of the 

aluminum electrolytic capacitors can be catastrophic or gradual. In case of catastrophic failures, the capacitor 

completely and abruptly loses its function due to short or open circuits, whereas gradual failures are characterized 

by a gradual functionality loss ([10], [11] and [12]). The main cause of this latter degradation mechanism, which 

is the most common in electrolytic capacitor, is the vaporization of electrolyte. This degradation process is 

strongly influenced by the capacitor operating conditions, such as voltage, current, frequency, and working 

temperature [13]. In capacitors installed in FEVs, these conditions tend to continuously change due to external 

factors such as season, geographical area, driving style. In particular, the temperature experienced by the 

capacitor, which depends on the applied loads and on the external temperature, has a remarkable influence on the 

evolution of the degradation process: higher the temperature, faster the vaporization process due to the increase of 

the self-heating effects [14][14]. Furthermore, electrolytic capacitors are known to be sensitive also to voltage and 

frequency variation. This latter affects the oxide dielectric: higher the frequency, faster the degradation caused by 

the energy losses due to the alignment of the dipoles (polarization) and the time for dipole orientation([15] and 

[16]). 

Aluminum electrolytic capacitor degradation has been investigated by several authors. A direct degradation 

indicator for capacitors operating at constant temperature and load is the Equivalent Series Resistance (ESR) 

([11], [17], [18] and [19]), i.e., the sum of the resistance due to aluminum oxide, electrolyte, spacer, and 

electrodes. The ESR is directly related to the capacitor self-heating and therefore provides an indication of the 

capacitor degradation state [14].  

Formatted:
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Figure 1. Electrolytic capacitor structure and equivalent circuit model (Adapted from [20] ) 

According to Figure 1 the capacitor is typically represented by an equivalent circuit model, where C is the 

capacitance, L is the series inductance due to the lead wires, the bonding and the winding, R is the equivalent 

series resistance due to the bonding and the foils, and r is the equivalent parallel resistance due to the dielectric. 

A capacitor is considered failed, i.e. not able to properly accomplish to its functions, when its ESR exceeds the 

double of its initial value [21]. In [17], the main degradation mechanisms of a capacitor were analyzed and its 

equivalent circuit model developed. In [11], a degradation model based on the physics of the wear-out mechanism 

was presented. In [22], a method based on the use of genetic algorithm for the identification of the parameters of 

the degradation model was discussed. In [13], a method for studying the degradation effects of electrolytic 

capacitors subjected to loading under extreme operating conditions was proposed. Furthermore, some approaches 

for monitoring capacitor degradation and for predicting its RUL were proposed. In [23], a method for real-time 

monitoring and RUL prediction for electrolytic capacitor used in uninterruptible power supplies (UPSs) was 

developed.  
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However, the temperature at which the ESR measurement is performed has a remarkable influence on the ESR 

measurement (higher the temperature, lower the ESR), whereas the above models consider capacitors aging at 

constant temperature and do not quantify the uncertainty on their predictions. A Bayesian approach for the 

prediction of the capacitor RUL probability distribution has been proposed in [8], where a prognostic 

methodology based on the application of a Kalman Filter (KF) for tracking the capacitor health state, forecasting 

the capacitance evolution and predicting the capacitor RUL was presented. This approach does not consider the 

possibility of variable operating and environmental conditions and, as underlined by the authors themselves, it is 

not able to cope with the abrupt change of the capacitor functional behavior arising near the end of the component 

life, thus providing inaccurate RUL predictions [8].  

The objective of the present work is to provide a method for the prediction of the RUL for a capacitor working in 

variable operating conditions, considering, in particular, the effects of the temperature experienced by a capacitor 

operating on a FEV. The method should also be able to estimate the uncertainty affecting the RUL prediction. 

The two main novelties of the proposed prognostic method are: 

1) the definition of a novel degradation indicator for capacitors operating at variable temperatures; 

2) the implementation and application to electrolytic capacitors of a particle filtering approach for RUL 

uncertainty estimation. 

The proposed degradation indicator is the ratio between the ESR measured on the degraded capacitor and the ESR 

value expected on a new capacitor at the same operational temperature. This index provides an indication of the 

capacitor degradation level and, since it is independent from the measurement temperature, it can be used for 

capacitors working in variable operating conditions. Its definition has required performing a series of laboratory 

experiments for investigating the relationship between ESR, temperature and measurement frequency in a new 

capacitor. 

The physics-based model of the ESR evolution proposed in [23] has been applied to the new degradation indicator 

and used within a sequential Bayesian approach for the estimation of component degradation. The Bayesian 
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approach has been employed to account for the uncertainty affecting: i) the ESR and temperature measurement 

processes, ii) the possible inaccuracy of the degradation model, iii) the stochasticity of the degradation process. 

Since a classical Kalman Filter approach cannot be applied to this problem due to the presence of non-additive 

noise terms, we resort to a PF approach [24]. Once the component degradation state probability distribution has 

been estimated by the PF method, Monte Carlo (MC) simulation has been used for the prediction of the future 

component degradation path and its RUL [25]. The MC simulation allows to properly take into account the 

uncertainty on the present degradation state estimation and the uncertainty on the future evolution of the operating 

conditions. 

The performance of the proposed prognostic method has been verified with respect to 1) numerical simulations of 

the capacitor degradation process and 2) degradation data collected in laboratory accelerated life tests. 

The remaining part of the paper is organized as follows: in Section 2, the particle filtering approach for the RUL 

estimation is presented; Section 3 describes the proposed capacitor degradation model; in Section 4, the 

experimental test setup for the parameters estimation and the application of the developed method to both 

simulated and experimental data is discussed; finally, in Section 5 some conclusions and remarks are drawn.   

2. PARTICLE FILTER-BASED PROGNOSTICS 

We consider a situation in which an indicator, x, of the equipment degradation state, i.e. a physical or abstracted 

parameter whose behavior is representative of the degradation evolution, is available. The equipment is 

considered failed when the degradation indicator x exceeds a threshold value xth.  

Furthermore, we assume that a physics-based model of the degradation process is known and can be formulated in 

the form of a first-order Markov Process: 

 ( )11, −−= ttt xgx γ  (Eq. 1) 
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where ( )γ,xg is a recursive, possibly non-linear, transition function, tx  is the indicator of the equipment 

degradation state at time t and γt is the process noise used to capture the degradation process stochasticity and the 

inaccuracy of the model.  

We assume that the observation equation, which is a mathematical model describing the relation between the 

values, zt, of observable process parameters measured by sensors at time t and the indicator of the equipment 

degradation state at the same time, xt, is known and can be represented by: 

                                                       ( )ttt xhz σ,=                                                                           (Eq. 2) 

where h is a possibly non-linear function and σt  is a random noise representing the measurement error at time t. 

The PF-based approach to prognostics relies on the following three steps (Figure 2): 

1. a filtering step for the estimation of the equipment degradation state at the present time, which is based on the 

use of Eqs. (1) and (2) and the measurements, z1:t, performed until the present time  

2. a prediction step for the estimation of the future degradation evolution using the posterior probability density 

function (pdf) of the degradation state (output of step 1) and the degradation model (Eq. 1)) 

3. the prediction of the equipment RUL considering the future degradation state prediction (output of step 2) and 

the failure threshold, i.e., the value of the degradation indicator above which the equipment is considered 

failed.  

 

Figure 2. Sketch of the PF approach to fault prognostics 
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With respect to step 1), a natural framework for estimating the component degradation state and its RUL is 

offered by Bayesian filters ([6], [24], [26], [27] and [28]). They allow to properly treat the process and 

measurement uncertainties and to update the degradation state and RUL estimates each time a new degradation 

indicator measurement becomes available. The procedure is based on the repetition of a prediction and updating 

stage each time a measurement becomes available. In the prediction stage, 1 1: 1( | )t tp x z− −  is known, and, by using 

Eq. (1), the prediction distribution of the degradation at the next time can be obtained from: 

 ( ) ( ) ( ) 111:111:1 −−−−− ∫= ttttttt dxxxpzxpzxp   (Eq. 3) 

When the new measurement tz  arrives, one can update and calculate the posterior pdf 1:( | )t tp x z  using the 

Bayesian rule: 

 
1: 1

1:

1: 1

( ) ( )
( )

( ) ( )

t t t t

t t

t t t t t

p x z p z x
p x z

p x z p z x dx

−

−

=
∫

  (Eq. 4) 

Usually, except for the situation of linear Gaussian state space models (Kalman filter) and hidden finite-state 

space Markov chains (Wohnam filter), it is not possible to evaluate analytically the pdf in Eq. (4), since this 

requires the calculation of complex high-dimensional integrals. Particle Filter (PF) provides a numerical solution 

of the degradation state probability, which can be applied in the case of non-linear degradation models and non-

Gaussian non-additive noises. The PF solution is based on the Monte Carlo sampling of a large number of 

samples (called particles) from a proposal pdf ( )1:t tq x z . Then, the estimated posterior pdf ( )tt zxp :1  is 

approximated by: 

 ( ) ( )∑
=

−≈
N

i

t

i

t

i

ttt xxwzxp
1

:1 δ   (Eq. 5) 

where  ( 1, 2,..., )
i

tx i N=  are the particles sampled from the proposal importance function distribution ( )1:t tq x z , 

δ is the Dirac delta function and 
i

tw  is the weight associated to the particle 
i

tx  given by: 
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( ) ( )

)(
'

:1:0

:0:0:1

t

i

t

i

t

i

tti

t
zxq

xpxzp
w =           (Eq. 6) 

One of the most adopted choices is to consider the proposal importance function pdf ( )1:t tq x z  as the transition 

function, namely ( ) ( )1:1 −= tttt xxpzxq . In this way, using Eq. (7), the particle weights 
i

tw  at time t are provided 

by: 

 ( )1

1

;  
i

i i i i t
t t t t t N

i

t

i

w
w w p z x w

w
−

=

′
′ ′= =

′∑
  (Eq. 7) 

where ( )i

t tp z x  is called the likelihood of measurement tz  given the particle 
i

tx , which can be derived from the 

observation function in Eq. (2). The reader interested in a detailed description of the PF method for the estimation 

of the degradation state can refer to [24], [29], [30], [31] and [32].  

With respect to step 2), once the posterior pdf of the equipment degradation state has been estimated, it is possible 

to predict the future evolution of the equipment degradation trajectory by computing [33]: 

 ( ) ( ) ( )∏∫ ∫ ∏
−+

=

+

+=
−+ =

1

:1

1

1:1 ...
lt

tj

jtt

lt

tj

jjtlt dxzxpxxpzxp   (Eq. 8) 

where ( )tlt zxp :1+  is the predicted pdf of degradation state at time t+l. In order to facilitate this computation, 

according to [33], we numerically estimate the pdf of the degradation state at time t+l, ( )tlt zxp :1+  by:  

 ( ) ( )∑
=

+++ −≈
N

i

i

ltlt

i

ttlt xxwzxp
1

:1 δ          (Eq. 9) 

where the particle state 1

i

tx +  is obtained by iteratively applying Eq. (1) to the state 
i

tx  at the previous time t.  

 

Finally the estimate of the RUL pdf in step 3 is performed by [33], [34], [35], [36], [37] and [38]: 

Page 19 of 43 IEEE-TPEL

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

10 

 

 ( ) ( )∑
=

−≈<
N

i

i

t

i

tthit RULRULwxxzRULp
1

:1 , δ       (Eq. 10)  

where 
i

tRUL  is the RUL associated to the i-th particle at the present time t given by: 

          ( ) ( ) ( ){ }thTthT

i

t

i

t xxgxxgtTRUL i
t

i
t

≥<−−=
−−

γγ ,,,1
11

                             (Eq. 11) 

and the failure times 
i

tT  can be found by iteratively applying Eq. (1) to simulate the particles evolution. 

3. CAPACITOR DEGRADATION MODEL 

In this Section, we present the physics-based degradation model (Eq. 1) and the corresponding measurement 

equation (Eq. 2) for aluminum electrolytic capacitors working in variable operating conditions. The main 

degradation mechanism is caused by chemical reactions occurring inside the component, which induce the 

vaporization of the contained electrolyte. According to [11] and [17], ESR is a degradation indicator for 

capacitors operating in stationary operating conditions. From a physical point of view, the ESR can be considered 

as the sum of the inherent electrical resistances of the materials composing the capacitor.  

The ESR time evolution for a capacitor aging at constant temperature T
ag

  is given by [23]: 

                                           
tTCagag

t

ag

eTESRTESR )(
0 )()( =                                        (Eq. 12) 

where ESR0(T
ag

) represents the initial ESR value of a capacitor at temperature T
ag

, t the age of the capacitor and 

C(T
ag

) a coefficient which defines the degradation rate of the capacitor and is influenced by the aging temperature. 

This model does not take into account the effects of voltage and frequency on capacitor degradation [39], which 

are expected to be marginal with respect to those of temperature ([11], [14] and [23]). The applicability of this 

hypothesis to capacitors working in FEVs will be object of future experimental investigations.  

Resorting to the Arrhenius law, the temperature coefficient C(T
ag

) is given by: 
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








⋅
−

⋅⋅

=

ag

nom

ag

noma
nom

ag

TT

TT

k

E
Life

TC

exp

2ln
)(                                     (Eq. 13) 

where Ea is the activation energy characteristic of the electrolyte, k is the Boltzmann constant and Lifenom 

represents the nominal life of the capacitor aged at the constant nominal temperature (Tnom). A detailed description 

of the semi-empirical procedure adopted for the definition of the macro-level physical model of Eqs. (12) and (13) 

can be found in [22]. By applying Eq. (12), one can obtain the RUL of a capacitor operating at the constant 

temperature T
ag

, for which, at the present time t, at temperature T
ag

,  )(
ag

t TESR  is measured [23]: 

















=−=

)(

)(
ln

)(

1
ag

t

ag

th

agfailt
TESR

TESR

TC
ttRUL            (Eq. 14) 

where ESRth indicates the ESR value at which the capacitor is considered failed, usually considered as the double 

of its initial value ESR0 [21]. 

It is worth noting that Eq. (12) cannot be applied to a capacitor operating at variable temperatures. In particular, 

the measured ESR value depends on the temperature at which the measurement is performed, i.e., if we measure 

the ESR of the same capacitor at different temperatures, T
ESR

, we obtain different ESR values.  

In the case of a new capacitor, the dependence of the ESR from the measurement temperature has been 

investigated by [23], who proposed the following model: 

                 γβα

ESRT

ESR eTESR
−

+=)(0
                                           (Eq. 15) 

where α, β and γ  are parameters characteristics of the capacitor. Notice, however, that Eq. (15) does not apply to 

degraded capacitors and an analogous equation for degraded capacitors is not available. Thus, given the 

unavailability of a relationship between the measured ESR and the expected ESR at a reference temperature for a 

degraded capacitor, which would allow monitoring the degradation evolution, ESR “per se” is not a suitable 

degradation indicator for capacitors working at variable temperatures.  

Page 21 of 43 IEEE-TPEL

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

12 

 

In order to overtake this problem, we take as a degradation indicator independent from the temperature at which 

ESR is measured, the ratio between the ESR measured at temperature T
ESR

 and its expected initial value at the 

same temperature T
ESR

: 

        
)(

)(

0

ESR

ESR

tnorm

t TESR

TESR
ESR =                        (Eq. 16) 

where ESR0(T
ESR

) is obtained by using Eq. (15).  

For instance, let us consider a capacitor operating at the constant temperature T
ag

 and assume to measure, at time t, 

its ESR at two different temperatures ESRT1  and ESRT2 obtaining the values )( 1
ESR

t TESR  and )( 2
ESR

t TESR , 

respectively. The corresponding degradation indicator can be computed by considering that the ESR time 

evolution for a capacitor aging at constant temperature T
ag

  whose ESR is measured at a different temperature 

T
ESR

, is given by: 

                                           tTCESRESR
t

ag

eTESRTESR )(
0 )()( =                                        (Eq. 17) 

Thus, we obtain that the degradation indicator norm
tESR  is independent from the measurement temperature T

ESR
 : 

                     tTC

ESR

tTCESR

ESR

ESR
tESRnorm

t

ag

ag

e
TESR

eTESR

TESR

TESR
TESR )(

10

)(
10

10

1
1

)(

)(

)(

)(
)( ===            (Eq.18a) 

                     tTC

ESR

tTCESR

ESR

ESR
tESRnorm

t

ag

ag

e
TESR

eTESR

TESR

TESR
TESR )(

20

)(
20

20

2
2

)(

)(

)(

)(
)( ===           (Eq. 18b) 

In practice, the proposed degradation indicator allows overcoming the lack of knowledge on the relationship 

between the temperature and the measured ESR for a degraded capacitor, by considering the relative variation of 

the ESR with respect to that of a new capacitor at the same temperature. 

Hence, the degradation process can be represented as a first order Markov Process between discrete time steps t 

and t-1: 

1

)(

1
1

−− += −
t

TCnorm
t

norm
t

ag
teESRESR ω                                        (Eq. 19) 
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where 
ag

tT 1−  represents the aging temperature at time t-1 and ωt-1 models the process noise.  

Notice that Eq. (19), which represents the degradation model (Eq. 1) in a sequential Bayesian approach, is 

independent from the measurement temperature T
ESR

, but it depends from the temperature 
ag

tT 1−  experienced by the 

capacitor during its operation between time t-1 and t. Since the ESR measurement is performed during vehicle 

startup when the capacitor is in thermic equilibrium with the external temperature, whereas the capacitor aging 

occurs during motor operation when the capacitor temperature is higher, we will indicate the two capacitor 

temperatures with the two different symbols T
ESR

 and 
agT . 

The equation linking the measurement of the degradation indicator, ( )ESR

ttt TESRz = , and the degradation 

indicator, 
norm

tESR , is: 

              

( )

t

T

norm

tt

ESR
t

eESRz ηβα γ +












+⋅=

−
−

15.273

                     (Eq. 20) 

where 
ESR

tT  represents the measurement temperature at time t and ηt  represents the measurement noise. 

Notice that both temperatures, T
ag

 and ESR
T ,  are quantities affected by a measurement error εT: 

     T

ag

real

ag

meas TT ε+=                                    (Eq. 21) 

     T

ESR

real

ESR

meas TT ε+=                                    (Eq. 22) 

Under the non-additivity and non-gaussianity of the noise terms, εT, in Eqs. (19) and (20), a particle filter-based 

approach is applied for the estimate of the component degradation state at the present time. Then, the prediction of 

the future evolution of the degradation state is performed by Monte Carlo simulation, iteratively applying Eq. (19), 

where the noise on the aging temperature is properly sampled from the underlying distributions. 

Page 23 of 43 IEEE-TPEL

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

14 

 

4. CASE STUDIES 

In this Section, the proposed prognostic approach has been verified considering numerical simulations of the 

degradation process (Section 4.1) and experimental data collected during an accelerated degradation test (Section 

4.2). 

In both cases, we consider a capacitor of the ALS30 series in pristine conditions produced by KEMET. In order to 

properly set parameters α, β and γ in Eq. (15) for this type of capacitor, experimental laboratory tests have been 

performed. In particular, ESR has been measured at different temperatures on a new capacitor using a FLUKE 

PM6306 RLC meter, covering the frequency range from 10 kHz to 1 MHz over a temperature range of [285 K, 

383 K][40]. In particular, given a measurement frequency, the values of the capacitor electrical parameters are 

obtained from the measured current and voltage phasors, through a proper mathematical manipulation [41].  

The degradation of the capacitors has been developed in a Votsch Industrietechnik climatic chamber. 

The experimental test procedure has been based on the following three steps: 

• setting of the desired temperature in the climatic chamber;  

• once stationary conditions are reached in the climatic chamber, the temperature is maintained for 20 minutes 

in order to allow the internal layers of the capacitor to heat up and reach the thermodynamic equilibrium with 

the chamber; 

• the ESR is measured at different frequencies, between 10 kHz and 1 MHz. 

This procedure has been repeated at 7 different temperatures in the range [285 K, 383 K], which is expected to be 

experienced by the capacitor during operation in a FEV. 
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Figure 3. Experimental curve describing the variation of the initial ESR value ESR0(T
ESR

) at different measurement 

frequencies 

Figure 3 shows the obtained experimental laboratory results [42]. At a given temperature, the ESR tends to 

increase until a frequency of 20 kHz is reached, whereas further frequency increase does not remarkably modify 

the ESR measurements. In order to avoid using too high measurement frequency and, at the same time, to have a 

stable ESR measure, we have chosen to measure at the frequency of 20 kHz.  

With respect to the setting of the parameters α, β and γ  in Eq. (15) at the measurement frequency of 20 kHz, the 

exponential regression method has been used ([43] and [44]). Table 1 reports the identified values of the 

parameters and their corresponding 95% confidence interval.  

Table 1. Estimates of parameter αααα, ββββ and γγγγ  and corresponding confidence interval. 
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10 kHz

15 kHz

20 kHz

200 kHz

1 MHz

Parameter Parameter Value 95% Confidence Interval 

Lower bound 

95% Confidence Interval 

Upper bound 

α 0.0817 Ω 0.0802 Ω 0.0829 Ω 

β 0.037 Ω 0.034 Ω 0.040 Ω 

γ 30.682 K 27.115 K 35.323 K 
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Notice that the obtained parameter estimates are able to provide a very satisfactory fit of the experimental data, 

being the Root Mean Square Error (RMSE) between the obtained curve and the experimental data equal to 

6.74·10
-4 

Ohm.   

4.1. Tests with simulated data 

The proposed prognostic method has been firstly applied to simulated data. The simulation of realistic capacitor 

degradation paths has required to simulate the operating conditions, i.e. the temperature profiles experienced by 

the FEV capacitor (Section 4.1.1), the degradation process (Section 4.1.2) and the measurement temperatures 

which influence the measured ESR values (Section 4.1.3). 

4.1.1. Simulation of the temperature profile 

Since real data describing the temperature experienced by a capacitor in a FEV are currently not available, 

possible temperature profiles have been simulated by taking into account the suggestions of experts of the motor 

behavior. The simulations are based on the following assumptions: 

• the FEV is operating 3000 hours in a year (250 hours each month); 

• the temperature experienced by the FEV capacitor has been simulated by adding 70 K to the external 

temperature in order to reproduce the effect of motor operation. For each day of the year, the external 

temperature has been sampled from a Gaussian distribution with mean and standard deviation equal to the 

historical mean and standard deviation of the month in Milan, Italy.  

Figure 4 shows an example of simulated temperature evolution during a capacitor life. 
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Figure 4. Numerical simulation of the temperature, T
ag

, experienced by the capacitor during its life 

4.1.2. Simulation of the capacitor degradation process 

The numerical simulation of a possible capacitor degradation trajectory has been performed assuming an initial 

ESR
norm

 value equal to 100% and iteratively applying Eq. (19) with a time step equal to 1 hour. The temperature 

values, T
ag

, are those presented in Section 4.1.1; the process noise, ωt, describing the intrinsic uncertainty of the 

physical degradation process and the effects of other variables such as the frequency which are not considered in 

Eq. (19), has been sampled from a normal distribution with zero mean and standard deviation equal to 0.2%. For 

the computation of the coefficient C(T
ag

), we have considered that the ALS30 Series electrolytic capacitor has a 

nominal life, Lifenom, of 20000 hours at the nominal aging temperature, 
ag

nomT , of 358 K [45]. The failure time of 

the capacitor is defined at the time at which ESRnorm of the capacitor reaches the failure threshold of 200% [21]. 

Figure 5 shows a simulated evolution of the ESRnorm value. 
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Figure 5. Numerical simulation of the ESR
norm

 evolution 

 

4.1.3. Simulation of the ESR measurement 

With respect to the measurements, the measured ESR values, )( ESR

tt TESRz = , have been obtained by applying 

Eq. (20) to the numerically simulated degradation indicator values ESR
norm

 and considering the measurement 

noise, ηt, as a normal random variable with zero mean and standard deviation equal to 0.002 Ω.  

This latter term also describe the uncertainty associated to the setting of the parameters α, β and γ  in Eq. (20).   

Since in real FEV applications, the ESR will be measured only at the start-up of the vehicle, the capacitor 

temperature at the measurement time depends only on the external temperature. Thus, the measurement 

temperature T
ESR

 has been simulated by adding to the external temperature profile described in Section 4.1.1 

(equal to T
ag

 - 70 K), a random value, εT, sampled from a normal distribution with zero mean and standard 

deviation equal to 3 K, in order to reproduce the measurement error and the daily temperature variability. In this 

work T
ESR

 and ESR measurements are assumed to be measured every 100 hours, starting from t=100 h to t=19000 

h, whereas T
ag

 is assumed to be measured every hour.  
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Figure 6 shows the simulated values of the 190 ESR (left) and temperature (right) measurements corresponding to 

the degradation trajectory of Figure 5. Notice the significant difference between the evolution behavior of the 

proposed degradation indicator ESR
norm

 (Figure 5) and the corresponding ESR value (Figure 6, left). 

     

Figure 6. Numerical simulations of the measured ESR, ESRt(T
ESR

) (left) and of the ESR measurement temperature, T
ESR

 

(right) 

4.1.4. Results 

The prognostic method described in Section 3 has been applied to the simulated capacitor life of Section 4.1.3 

described by the 190 ESR and temperature measurements of Figure 6. In order to obtain a good compromise 

between accuracy and computational time, 1000 particles have been used for the PF simulation. The prognostic 

method provides a prediction of the RUL in the form of a probability density function (pdf) whose 10
th
 and 90

th
 

percentiles, and the expected values are shown in Figure 7. 

Notice that, as expected, the range of variability of the predicted RUL is decreasing with time: the 80% prediction 

interval size, between the estimated 10
th
 and 90

th
 percentiles, is progressively reducing from the first measurement 

(t=100 h) to the last measurement (t=19000 h). This reduction of the RUL uncertainty is due to: i) the acquired 

knowledge of the degradation provided by the ESR measurements, which allows updating the degradation 

probability distribution; ii) the reduction of the time horizon span, which makes the RUL prediction task less 

affected by the process uncertainty. 
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Figure 7. RUL prediction and corresponding 10 and 90% percentiles 

 

The prognostic method has also been applied to other 100 capacitor degradation trajectories, all simulated by 

applying the procedure illustrated in Sections 4.1.1 - 4.1.3. The performance of the PF-algorithm has been verified 

with respect to five metrics: precision, accuracy, steadiness, coverage and risk level ([46]and [47]). 

The Precision Index (PI) computes the relative width of the prediction interval, which is defined by: 

t

tt
t

RUL

IRULIRUL
PI

)_inf()_sup( −
=                  (Eq. 23) 

where sup(RUL_It) and inf(RUL_It) are the upper and lower bounds of the 80% RUL prediction interval and RULt 

is the true RUL at time t. Small values of PIt indicate more precise predictions. 

The Accuracy Index (AI) is defined as the relative error of the RUL prediction: 
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t

tt

t
RUL

RULRUL
AI

−
=                  (Eq. 24) 

where tRUL is the RUL expected value at time t. Small values of AIt indicate more accurate predictions. 

The Steadiness Index (SI) measures the volatility of the expected value of the failure time prediction  T   when 

new measurements become available. It is defined by: 

)var( :)( tttt TSI ∆−=                                (Eq. 25) 

where ∆t is the length of a sliding time window: in this paper, we take ∆t =100. Small values of SIt indicate more 

stable predictions. 

The Risk Index (RI) is the probability of obtaining a RUL estimate smaller than the true RUL: 

                 ( ) ∫
∞−

=≤=
tRUL

ftt dRULRULpRULRULPRI )(
                                    

 (Eq. 26)  

where pf (RUL) is the estimate of the RUL pdf. Large RIt values indicate conservative RUL predictions, which are 

associated to lower risk from maintenance decisions. 

The Coverage Index (COV) is a binary index which considers whether the true RUL lies within the 80% RUL 

prediction interval: 

               
( ))_sup()_inf( tttt IRULRULIRULCOV ≤≤=

                 
(Eq. 27)

 

where sup(RUL_It) and inf(RUL_It) are the upper and lower bounds of the 80% RUL prediction interval and RULt  

is the real RUL at time t. The average value of 
tCOV  over the component life provides information on the ability 

of the prognostic method to represent the uncertainty on the prediction. Coverage values close to 0.8 indicate a 

good representation of the uncertainty [48]. 
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Table 2 reports the average of the five performance metrics over 100 test trajectories. One can observe an average 

accuracy index around 35% and a high volatility of the predictions. Notice that the average accuracy on the 

estimation of the degradation state, ESR
norm

, equal to 0.0085 is more satisfactory, indicating that the inaccuracy is 

mainly due to the stochasticity in the future evolution of the degradation trajectory, which renders the degradation 

process intrinsically difficult to predict. Furthermore, since the coverage is close to 80%, one can observe that the 

true RUL tends to be within the 80% prediction interval. From these observations, we can conclude that the 

method is able to properly represent the uncertainty on the degradation process and can be used for maintenance 

decisions, albeit a relative error around 35%. 

Table 2. Average value of the Performance Indexes AI, PI, SI, RI, COV over 100 “real” trajectories. 

 RUL Prediction ESR
norm
 Estimation 

Precision Index 1.10 0.028 

Accuracy Index 0.35 0.0085 

Steadiness Index 303.02  

Risk Index 0.47 0.51 

Coverage Index 0.82  

 

Since in real applications the standard deviation of the process noise affecting the degradation process is typically 

unknown and in some cases it cannot be estimated considering the few real data available, we have investigated 

the performance of the PF method considering different values of the noise standard deviation. In particular, we 

have performed two additional runs of the PF algorithm, assuming σ(ωt)=0.1, and σ(ωt)=0.3, respectively. Table 

3 lists the average of the five performance metrics over 100 test trajectories. 
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Table 3. Average value of the Performance Indexes AI, PI, SI, RI, COV over 100 “real” trajectories. 

 

PF Process Noise Standard Deviation 

σσσσ(ωωωωt)=0.1 σσσσ(ωωωωt)=0.2 σσσσ(ωωωωt)=0.3 

Precision Index 0.56 1.10 1.63 

Accuracy Index 0.34 0.35 0.37 

Steadiness Index 187.96 303.02 402.35 

Risk Index 0.43 0.47 0.51 

Coverage Index 0.48 0.82 0.96 

The effect of using a non-optimal setting of the process noise in the PF method is mainly on the precision and 

volatility of the prediction, and on the coverage of the prediction interval, whereas the other metrics such as the 

accuracy and the risk index are not significantly influenced. As expected, the higher the process noise used by the 

PF-based prognostic method, the larger the prediction interval and the higher the coverage. Thus, when we have 

to set the process noise in a PF-based prognostic method, we have to carefully evaluate the trade-off between 

using a small process noise variance, that results in small prediction intervals but too low coverage values, and a 

large process noise variance, that results in satisfactory coverage values but too large prediction intervals. 

In practice, in those cases in which enough experimental data for estimating the process noise are not available, 

we can adopt a trial-and-error procedure. One can develop different PF-prognostic methods, characterized by 

different process noise standard deviation values and evaluate the coverage of the degradation state prediction on 

the available experimental data. A process noise standard deviation leading to a coverage close to the desired 80% 

should be preferred. 

4.2. Tests with experimental data 

The accelerated degradation process has been performed at CEIT facilities in San Sebastian, Spain. The ALS30 

series capacitor has been degraded in a Votsch Industrietechnik climatic chamber kept at the constant temperature 

of 418 K (T
ag

). During this accelerated degradation test, the capacitor has been periodically taken out of the 
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climatic chamber, cooled at room temperature (298 K, T
ESR

) and the ESR measured at the frequency of 20kHz. 

Given the slowness of the degradation process and the time constraints on the duration of the tests, it has been 

possible to collect only 7 measurements of the capacitor ESR, with the last available measurement being equal to 

130% of the initial ESR value. Thus, in order to evaluate the prediction performance of the developed algorithm, 

we have set the ESR failure threshold equal to ESR
norm 

= 130%. The obtained ESR measurements are shown in 

Figure 8. 

 

Figure 8. Measured value ESRt(T
ESR

) 

4.2.1.  Results  

We have applied the PF-based prognostic method described in Section 3 to these real degradation data 

considering 1000 particles and three different settings of the process noise standard deviation: 0.1, 0.2 and 0.3. 

The same parameters of the measurement error distributions used to test the numerical simulations in Section 4.1 

have been used. 

0 500 1000 1500
0.1

0.105

0.11

0.115

0.12

0.125

0.13
Available ESR measurements

Time (h)

E
S
R
 (
O
h
m
)

Page 34 of 43IEEE-TPEL

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

25 

 

 

Figure 9. RUL prediction and corresponding 10
th
 and 90

th
 percentiles. The left Figure refers to a process noise standard 

deviation of 0.1, the Figure in the middle to 0.2, the right Figure to 0.3 

Figure 9 shows the obtained RUL predictions and the corresponding 10
th
 and 90

th
 percentiles. Notice that in all the 

three cases, the RUL expected value tends to become closer to the true RUL value as new ESR measurements 

becomes available. It is also interesting to notice that, due to the decrease of the ESR measurement between time 

822 h and time 1038 h, the RUL predicted at time 1038 h results larger than that predicted at time 822 h, in the 

cases in which process noise standard deviations of 0.2 and 0.3 are used, whereas a process noise standard 

deviation equal to 0.1 is less influenced by the lower ESR measurement. 

Table 4 reports the five metrics previously considered to evaluate the prognostic performance of the method. The 

best performance is obtained by considering a process noise standard deviation equal to 0.2, whereas using a 

standard deviation process noise equal to 0.1 we obtain a too low coverage value that indicates that the method is 

not properly taking into account the uncertainty, since the true RUL values turn out to fall outside the prediction 

intervals in many cases. On the other side, when a process noise standard deviation equal to 0.3 is considered, the 

uncertainty of the prediction is overestimated, leading to a coverage of 100% but with very large prediction 

intervals (the precision index is 42% larger than that obtained using a process noise standard deviation equal to 

0.2). It is also interesting to observe that the process noise standard deviation does not have significant effects on 

the accuracy of the prognosis (Table 4, second line), but only on the representation of the prediction uncertainty. 
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Table 4. Average value of the Performance Indexes AI, PI, SI, RI, COV over the 6 available real ESR measurements 

 

PF Process Noise Standard Deviation 

σσσσ(ωωωωt)=0.1 σσσσ(ωωωωt)=0.2 σσσσ(ωωωωt)=0.3 

Precision Index 0.34 0.66 0.94 

Accuracy Index 0.20 0.22 0.23 

Steadiness Index 44.67 76.99 100.27 

Risk Index 0.89 0.76 0.71 

Coverage Index 0.17 0.83 1 

 

4.2.2. Model verification in FEV environmental conditions 

In order to further verify the proposed prognostic method in operating conditions similar to those that are 

encountered by electrolytic capacitors in FEV, a series of experimental tests are being performed at CEIT 

facilities within the FP7 European Project HEMIS (Electrical powertrain Health Monitoring for Increased Safety 

of FEVs). In particular, three climatic chambers kept at the constant temperatures of T
ag

=408 K, T
ag

=418 K and 

T
ag

=428 K are going to be used to degrade six capacitors. Three of them will degrade at constant temperature, 

each one in a different chamber, in order to verify the robustness of the prognostic method to different aging 

temperatures, whereas the remaining three will be randomly moved each 24 hours from one chamber to another, 

in order to verify the method performance at variable aging temperatures. Furthermore, the effect of the 

measurement temperature on the prognostic model will be investigated by repeating the ESR measurements at 

three different temperatures: T
ESR

=278 K, T
ESR

 =288 K and T
ESR

 =298 K. 

Once the model will be verified with respect to accelerated degradation tests, other experiments will be performed 

on capacitors operating in real FEV powertrains using a properly developed sensor for ESR measurement.  

In this respect, notice that the FLUKE PM6306 RLC meter or other sensors used in lab tests are not suitable for 

being used on PHM system installed in FEV due to their high costs. Therefore, an on-board low cost circuit for 
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the online measurement of the ESR has been developed within the FP7 European Project HEMIS. The circuit is 

shown in Figure 10, is based on a Hartley oscillator [49][49][49] which exploits the resonance of an LC tank 

formed by L1, L2 and C1. 

 

 

Figure 10. ESR online measurement circuit based on the Hartley oscillator 

The frequency and amplitude of the output wave highly depends on the values of the LC tank and on the influence 

of the parasitic elements. Ideally, if the components were lossless, the tank would always oscillate, but, given the 

presence of the parasitic elements, it is necessary to supply energy to the tank using an operational amplifier 

which compensates the losses of the parasitic elements. The current supplied is mainly controlled through the 

resistor R0, whereas the tank output voltage, Vout (see Figure 10) is inversely proportional to the losses; therefore, 

an increase of the ESR value corresponds to a decrease of Vout. This change can be easily detected using an 

analog to digital converter and a microcontroller [49].  

This sensor will allow to verify the effects of the inverter switching frequency and the applied voltage on the 

degradation of capacitors working in FEVs in order to assess the validity of the model in Eq. (12) and of the 

proposed prognostic algorithm. In this respect, notice that the switching frequency and voltage are expected to be 

almost constant during the operation of a given FEV inverter, although they can be different in different FEV, 

even if of the same type. 
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5. CONCLUSION 

In this paper, we have addressed the problem of predicting the RUL for components working in variable operating 

conditions. For exemplification, we have considered the case of aluminum electrolytic capacitors used in FEVs. 

Given the non-stationary operating conditions and, particularly, the varying operational temperature experienced 

by this kind of component, we have proposed a new degradation indicator independent from temperature. The 

indicator is defined as the ratio between the ESR measured at temperature T
ESR

  and its initial value at the same 

temperature T
ESR

. Using a physics-based model of the degradation evolution, we have developed a Particle Filter-

based modeling framework to predict the capacitor RUL and applied it to both simulated and real degradation 

data. We have, also, investigated the effects of the uncertainty of the degradation model associated to the process 

noise, performing a sensitivity analysis on few noise values and evaluating the corresponding performance by 

means of commonly used prognostic metrics. The satisfactory performance of the method on both simulated and 

real data encourages further developments towards industrial application. In particular, further laboratory 

experiments are being performed at CEIT facilities within the European Project HEMIS (www.hemis-eu.org), in 

order to collect data describing the capacitor degradation process in environmental conditions similar to those of a 

FEV. 
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