P Baraldi 
email: piero.baraldi@polimi.it
  
F Di Maio 
  
D Genini 
  
E Zio 
  
RECONSTRUCTION OF MISSING DATA IN MULTIDIMENSIONAL TIME SERIES BY FUZZY SIMILARITY

Keywords: time series, missing data, fuzzy similarity, Auto-Associative Kernel Regression (AAKR), operational transients in industrial plants, Nuclear Power Plant (NPP)

The present work addresses the problem of missing data in multidimensional time series such as those collected during operational transients in industrial plants. We propose a novel method for missing data reconstruction based on three main steps: (1) computing a fuzzy similarity measure between a segment of the time series containing the missing data and segments of reference time series; (2) assigning a weight to each reference segment; (3) reconstructing the missing values as a weighted average of the reference segments. The performance of the proposed method is compared with that of an Auto Associative Kernel Regression (AAKR) method on an artificial case study and a real industrial application regarding shut-down transients of a Nuclear Power Plant (NPP) turbine.

Introduction

The problem of missing data afflicts a variety of application areas in fields such as engineering, economics and finance. The datasets available to build models are often characterized by missing values, due to various causes such as sensor faults, problems of not reacting experiments, not recovering work situations, transferring data to digital systems [Qiao et al., 2005]. Missing data can lead to problems during model development.

In this work, we consider the problem of missing data in the context of on-line condition monitoring of industrial components by empirical, data-driven models [Saxena et al., 2007;Antory, 2007]. Online condition monitoring aims at informing on the health state of industrial components. When using empirical models, the condition monitoring performance is highly dependent on the availability and quality of the measurements used to establish (train) the model [Reifman, 1997].

Furthermore, during the use of condition monitoring models, if, for example, a sensor fails to provide an input value, the condition monitoring model may not be capable of inferring the health state of the component. Therefore, it is important to restore the missing sensor readings to provide a set of complete input data to the condition monitoring model, for its training and during its use.

Three different approaches to the missing data problem are typically proposed. The first consists in removing from the dataset all the patterns with a missing datum in at least one signal [Nelwamondo et al., 2008]. The main drawback of such approach is the loss of valuable information that may be contained in the discharged signal measurements [Almeida et al, 2010]. The effect of this is particularly relevant when the dataset is small. The second approach consists in substituting the missing data by statistical values, e.g. the mean value of the available historical data [Schafer et al., 2002]. The goodness of the substituting values depends on how close they actually are on the true (unknown) values [Timm et al., 2002]. Finally, the third approach consists in developing model to reconstruct the missing values based on the relationships between the signals [Nelwamondo et al., 2008]. In this context, empirical, auto-associative, modelling techniques such as Auto-Associative Artificial Neural Networks (AANN) [START_REF] Hines | [END_REF], Principal Component Analysis (PCA) [START_REF] Hines | [END_REF]Luh et al., 2011] and Auto-Associative Kernel Regression Methods (AAKR) [Garvey et al., 2006;Baraldi et al., 2012] have been applied with success to the reconstruction of missing data. AANN have been shown to work well for reconstruction, although they may require high computational costs in large multidimensional problems [Hashemian et al., 2008]. PCA and AAKR methods are "leaner" and, thus, more suitable for application to missing data reconstruction in large datasets, due to their lower computational burden. Other more complex approaches applied to the reconstruction of missing data are based on the use of similarity measures computed taking into account the correlation [Kim et al., 2005] and entropy [START_REF] Brock | [END_REF] between the data.

However, the performance of these techniques, which has been proven to be very satisfactory in non time dependent problems such as those encountered in genes expression data, tends to decrease when they are applied to datasets containing non-stationary, time-varying and nonlinear signal behaviours [Borgan et al., 2011].

In In this paper, we present a missing data reconstruction method that we have developed based on a Fuzzy Similarity (FS) method [Zio et al., 2010a]. A measure of similarity is computed between a set of reference multidimensional time-series segments of given length and the multidimensional segment containing the missing data; then, the missing values are reconstructed as average of the reference segments weighted by the similarity with the segment containing the missing data.

The method is tested on two case studies: a simulated four-dimensional time series and 27 signals measured during shut-down transients of nuclear power plants (NPP) steam turbines. The performance of the proposed method is compared with that of an AAKR method of literature [Baraldi et al., 2010].

The remainder of the paper is organized as follows: Section 2 introduces the problem that we want to address; Section 3 describes the proposed FS-based method and discusses the metrics that are used to evaluate the missing data reconstruction performance; Sections 4 and 5 illustrate the application of the method to the artificial case study and to the industrial case study, respectively;

finally, Section 6 draws the conclusion of the work.

Problem Statement

We The objective of this work is the reconstruction of missing data in a (test) trajectory, X , that we are measuring. The length of X can be shorter than T. We consider that the values of only one signal, hereafter referred to as jmiss, are missing in a single time window from time

  t
until the present time t. The generic element of the test trajectory, ) , ( j k x

, indicates the value of signal j at time t k  . The obtained reconstruction of a missing datum of signal jmiss will be indicated by

t k t j k x miss    ), , ( ˆ.

The Fuzzy Similarity-based reconstruction method

The proposed method for missing data reconstruction is based on three main steps:

(1) compute a measure of fuzzy similarity between multidimensional segments of the reference trajectories in a time window of length Lt and the most recent segment of length Lt of the test trajectory containing the missing datum;

(2) assign a weight to each reference segment; the weight is chosen proportional to the similarity of the reference segments to the test trajectory;

(3) reconstruct the missing datum as a weighted average of the reference segments.

At the present time t, the segment of test trajectory containing only the most recent Lt measurements

of signal j is denoted as )] , ( ),..., , 2 ( ); , 1 ( [ ) ( j t x j L t x j L t x j x t t t     
and the generic segment of length Lt of signal j in reference trajectory m which ends at time k is denoted as

) , : 1 ( ) , ( j k L k x j k x t tr m tr m    .
With respect to the time window length, Lt, two situations may arise:

CASE A) it is longer than the time duration of the missing data segment, i.e. For ease of explanation, the case of missing values in a single signal is treated, but generalization to a multi-dimensional problem is straightforward. The signal reconstruction method is based on the following steps:


Step 1: Trajectory pointwise difference computation x k j and the elements of the test time segment ) ( j x t of the j-th signal, is given by:

The distance is finally reduced to [Zio et al., 2010b]: 

In CASE B), characterized
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x k j x k L j x k L j x k j      if miss j j  )] , ( );...; , 2 ( ); , 1 ( [ ) ( j t x j L t x j L t x j x t t t        if miss j j  (2) )] , ( );...; , 2 ( ); , 1 ( [ ) ( j t x j L t x j L t x j x t t t      if miss j j  distance.
In practice, the test segments ) ( j x t of the test trajectory X and the k-th segment of the m-th reference trajectory, are:

The squared Euclidean distance ) , (

2 j k m 
between the Lt components of the k-th time segment of the m-th reference trajectory ( , ) tr m

x k j and the Lt measurements of the test time segment ) ( j x t of the j-th signal, miss j j 

, is calculated as in eq. ( 4).

The distance is finally divided by the number of signals without missing values 1  J :

Step 2: Trajectory pointwise similarity and distance score computation

To account for a gradual transition between 'similar' and 'non-similar' we introduce an "approximately zero" fuzzy set [Zio et al., 2010c] , the narrower the fuzzy set and the stronger the definition of similarity [Zio et al., 2010a].

The distance score ) (k d m between two segments is, then, computed as: 
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Step 3: weights computation

The basic idea behind the weighted reconstruction is that all the reference training trajectories carry useful information for the reconstruction of the missing data in the currently developing trajectory [Zio et al., 2010a]. To this aim, weights are computed with a decreasing monotone function [Zio et al., 2010a], such that the smaller the distance ) (k d m the larger the weight given to the k-th segment of the m-th reference trajectory:

The same value of  used in eq.( 8) is here employed in order to reduce the number of parameters to be set.

Step 4: Missing Values Reconstruction

The reconstruction of the missing datum, ) , ( ˆmiss j t x , in the test trajectory is the weighted sum of the last elements ) , ( miss tr m j k x of the reference training segments [Baraldi et al., 2010]:

Application to an artificial case study

We have considered an artificial case study built by simulating M=114 trajectories of length T =100 time steps (in arbitrary units) in a J=4 dimensional signal space, whose projections into the 4-
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One hundred trajectories have been simulated using eq.( 12) for signals 1, 2 and 4, and eq.( 14) for signal 3 (Table II). These trajectories are intended to reproduce the nominal behavior of a system, e.g. the operation of a plant when no anomalies or faults occur. Hereafter, they will be referred to as 'normal condition trajectories'. To artificially reproduce possible anomalous behaviors of the system, 14 trajectories characterized by signal functional behaviors different from those of the
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corresponding signals in the 100 trajectories have been simulated according to the eqs. reported in Table II.

The performance of the proposed model for missing data reconstruction will be evaluated in terms of its accuracy, i.e. the ability of providing correct reconstructions of missing data. The metric used is the Mean Square Error (MSE) between the reconstructions provided by the model and the true values [Baraldi et al., 2010], averaged over a number of different test trajectories. 1-100 Eq. ( 12) Eq. ( 12) Eq. ( 14) Eq. ( 12)

101-105 Eq. ( 12) Eq. ( 13) Eq. ( 14) Eq. ( 12)

106-109 Eq. ( 13) Eq. ( 14) Eq. ( 12) Eq. ( 12) 110-112 Eq. ( 13) Eq. ( 14) Eq. ( 13) Eq. ( 12)

113-114 Eq. ( 14) Eq. ( 14) Eq. ( 14) Eq. ( 12) 

Results

The application of the proposed signal reconstruction method requires to properly set the values of the length of the time window for the segment of values used for the reconstruction, Lt, and of the parameters  and  in eqs.( 8) and ( 10). Table III reports the optimal values of  and  found with a systematic procedure based on the computation of the MSE on a validation set. In practice, we have considered all the possible combinations of Lt,  and  with Lt=2,5,10,20 and  and  with discrete values taken from the intervals [10 -6 , 10 -1 ] and [10 -3 , 10 -1 ], respectively. Finally, the parameter setting with minimum MSE is selected. Notice that the larger Lt, the smaller the ratio 2 ) ln(   (in eq. ( 8)): this means that the the larger Lt, the larger the fuzzy set that defines the similarity between reference trajectories and test time segment. This is expected because the similarity  in eq. ( 8) has to accommodate larger the Euclidean distance between the segments (eq. ( 7)) due to larger Lt, i.e., longer reference trajectories and time segments. In order to cross-validate the accuracy computation, this procedure has been repeated 114 times, each time choosing a different test trajectory according to a leave-one-out procedure [START_REF] Quan | [END_REF][START_REF] Baraldi | [END_REF]. Table IV reports the accuracy obtained by the proposed method and by a literature AAKR method for comparison [Baraldi et al., 2010].

Test on all 114 trajectories Test on the 100 normal condition trajectories

Test on the 14 anomalous trajectories AAKR 8.3×10 -4 1.7×10 -4 5.6×10 -3 FS-BASED 2.9×10 -4 1.5×10 -4 1.3×10 -3

The two methods provide similar performances in the reconstruction of the 100 normal condition trajectories, whereas the proposed method is remarkably more accurate than the AAKR one in the reconstruction of the 14 anomalous trajectories. This is pictorially seen in Figures 8 and9, which show the reconstructions obtained in normal condition and anomalous trajectories, respectively. xk . On the other hand, the AAKR is considering similarities between instantaneous signal values and not between time segments. According to this different procedure for the similarity computation, the AAKR assigns the largest weights (all in the range of [3,4]) to which is ten times larger than the signal true value (34,1) 0.053 x  .

Application to an industrial case study

The industrial case study concerns the operation of nuclear power plant turbines during shutdown transients. 

Time

The performance of the FS-based reconstruction method is more satisfactory than that of the AAKR method. In particular, Figure 13 Given the difficulty of the signal reconstruction task in situations characterized by the presence of long segments containing missing values, we think that it would be important to associate the signal reconstruction with an estimate of its degree of confidence, which should take into account the amount and quality of the information used to perform the reconstruction. This will be object of future research activity. Indeed, future work will be devoted to estimate the degree of confidence in 
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 2 Figure 2. Same trajectory of Figure 1 (present time t=26).
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 1 Figure 1. A 4-dimensional trajectory (present time t=21, missing data from t=20). The time window considered for signal reconstruction has a length Lt=5.
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  taken, in this work, as a bell-shaped function, whose membership function value computed in 2 parameters  and  are set by the analyst: the larger the value of the
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  Figure 4 Projection on the signal 2 axis of the 114 simulated trajectories

FigureFigure 7

 7 Figure 5 Projection on the signal 3 axis of the 114 simulated trajectories
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  Figure 7: Reconstruction accuracy considering different values of Lt

Figure 8 :

 8 Figure 8: Missing values reconstruction for a normal condition trajectory; the true value is represented by a short dashed line, the Fuzzy Similarity-based reconstruction by a thick continuous line with circles and the AAKR reconstruction by a long dashed line

Figure 9 :

 9 Figure 9: Missing values reconstruction of signal 1 in a test trajectory. The true value is represented by a short dashed line, the FS-based reconstruction by a thick continuous line with circles and the AAKR reconstruction by a long dashed line

Figure 10 .

 10 Figure 10. Upper: signal 1 evolution in the test trajectory (dotted line) including signal 1 test segment (squares) used for the reconstruction and the missing datum (triangle). The most similar segment in the training set is represented by circles. Bottom: signal 1 evolution in the test trajectories (continuous line) and missing datum (triangle). Patterns in the training set to which the largest weights are associated are represented by a circle. Notice the different scales of the signal 1 value in the two figures.

  compares the FS-based method (continuous line with circles) and the AAKR (long dashed line) reconstructions of some signals in a transient, assuming missing data on a time window from instant tA=81 to instant tB=100. Notice that for several signals such as j=2, 14, 18, 22 and 27 the AAKR method provides reconstructions which remarkably deviate from the true signal values, whereas the reconstructions of the FS-based method are more accurate.

Figure 12 :

 12 Figure 12: Average accuracy in the reconstruction of the 27 signals.

Figure 13 .

 13 Figure 13. Reconstruction of a time window of 20 time instants in some signals. The true value is represented by a short dashed lines, the FS-based reconstruction by a continuous line with circles and the AAKR reconstruction by a long dashed line.

Figure 14

 14 Figure 14 Signal 26 behaviour in the test (dotted line) and in the reference transients (continuous line).

  In this step, we compute the squared Euclidean distance difference between the segment of the test trajectory containing the missing data and the segments obtained from the reference trajectories.
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X at time instant t and the k-th segment of the m-th reference trajectory are:

The squared Euclidean distance between the Lt elements of the k-th segment of the m-th

TABLE I . Distribution of the random parameters

 I 

Table II Equations used to simulate the signal evolution in the 114 trajectories of the case study

 II 

TABLE III . Optimal values of the parameters α and β in correspondence of different time segment lengths Lt from

 III a trajectory 4 different test trajectories each one containing missing data in a different signal.
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In order to verify the performance of the FS-based method, in this Section we perform the reconstruction of signal segments whose true values is known, but for which we assume to have missing data in time intervals of φ=20 time instants in a single signal.

The values of the FS-method parameters  and  , and of the length of the time segment have been the provided signal reconstruction, taking into account the amount of information available in the reference trajectories used to perform the reconstruction.