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ABSTRACT 

The present work addresses the problem of missing data in multidimensional time series such as 

those collected during operational transients in industrial plants. We propose a novel method for 

missing data reconstruction based on three main steps: (1) computing a fuzzy similarity measure 

between a segment of the time series containing the missing data and segments of reference time 

series; (2) assigning a weight to each reference segment; (3) reconstructing the missing values as a 

weighted average of the reference segments. The performance of the proposed method is compared 

with that of an Auto Associative Kernel Regression (AAKR) method on an artificial case study and 

a real industrial application regarding shut-down transients of a Nuclear Power Plant (NPP) 

turbine. 
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 NOTATION 

 

M  number of reference trajectories 

m  index of the reference trajectories 

J  number of dimensions of a trajectory 

j  index of the signal 
tr

mX   m-th reference trajectory 

T  time length of a reference trajectory 

k  time index 

),( jkx tr

m  value of signal j of trajectory m at time k 

X   test trajectory 

jmiss  signal with missing data 
   length of the time window with missing data 

t  present time in the test trajectory 

),( jkx   value of signal j at time tk   in the test trajectory 

ˆ( , )missx k j  reconstruction of a missing datum 

Lt  time length used for the similarity computation 

( )tx j   segment of the most recent Lt measurements of signal j in the test trajectory 

( , )tr

mx k j  segment of length Lt of signal j which ends at time k in reference trajectory m 

2 ( , )m k j   squared Euclidean distance between the monodimensional segment ( , )tr

mx k j  and 

)( jxt  

2 ( )m k  squared Euclidean distance between X  and the k-th segment of the m-th reference 

trajectory 

( )m k  membership function value of the “approximately zero” fuzzy set computed in 

2 ( )m k  

   parameter of ( )m k  

   parameter of ( )m k  

)(kdm  distance score between X  and the k-th segment of the m-th reference trajectory 

( )mw k   weight given to the k-th segment of the m-th reference trajectory 

 
 

1. Introduction 

The problem of missing data afflicts a variety of application areas in fields such as engineering, 

economics and finance. The datasets available to build models are often characterized by missing 

values, due to various causes such as sensor faults, problems of not reacting experiments, not 

recovering work situations, transferring data to digital systems [Qiao et al., 2005]. Missing data can 

lead to problems during model development.  
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In this work, we consider the problem of missing data in the context of on-line condition monitoring 

of industrial components by empirical, data-driven models [Saxena et al., 2007; Antory, 2007]. On-

line condition monitoring aims at informing on the health state of industrial components. When 

using empirical models, the condition monitoring performance is highly dependent on the 

availability and quality of the measurements used to establish (train) the model [Reifman, 1997]. 

Furthermore, during the use of condition monitoring models, if, for example, a sensor fails to 

provide an input value, the condition monitoring model may not be capable of inferring the health 

state of the component. Therefore, it is important to restore the missing sensor readings to provide a 

set of complete input data to the condition monitoring model, for its training and during its use. 

Three different approaches to the missing data problem are typically proposed. The first consists in 

removing from the dataset all the patterns with a missing datum in at least one signal [Nelwamondo 

et al., 2008]. The main drawback of such approach is the loss of valuable information that may be 

contained in the discharged signal measurements [Almeida et al, 2010]. The effect of this is 

particularly relevant when the dataset is small. The second approach consists in substituting the 

missing data by statistical values, e.g. the mean value of the available historical data [Schafer et al., 

2002]. The goodness of the substituting values depends on how close they actually are on the true 

(unknown) values [Timm et al., 2002]. Finally, the third approach consists in developing model to 

reconstruct the missing values based on the relationships between the signals [Nelwamondo et al., 

2008]. In this context, empirical, auto-associative, modelling techniques such as Auto-Associative 

Artificial Neural Networks (AANN) [Hines et al., 1996], Principal Component Analysis (PCA) 

[Hines et al., 2008; Luh et al., 2011] and Auto-Associative Kernel Regression Methods (AAKR) 

[Garvey et al., 2006; Baraldi et al., 2012] have been applied with success to the reconstruction of 

missing data. AANN have been shown to work well for reconstruction, although they may require 

high computational costs in large multidimensional problems [Hashemian et al., 2008]. PCA and 

AAKR methods are “leaner” and, thus, more suitable for application to missing data reconstruction 
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in large datasets, due to their lower computational burden. Other more complex approaches applied 

to the reconstruction of missing data are based on the use of similarity measures computed taking 

into account the correlation [Kim et al., 2005] and entropy [Brock et al., 2008] between the data. 

However, the performance of these techniques, which has been proven to be very satisfactory in 

non time dependent problems such as those encountered in genes expression data, tends to decrease 

when they are applied to datasets containing non-stationary, time-varying and nonlinear signal 

behaviours [Borgan et al., 2011].  

In this work, we address the problem of missing data in multidimensional time series, e.g. process 

signals monitored during turbine start-up transients in nuclear power plants or daily flow values of 

some rivers in a drainage basin. We assume to have available several examples of the time series, 

e.g. collection of the signal values measured during several, different turbine start-up transients or 

the daily measurements of the river flows during different years. A difficulty comes from the fact 

that the reconstruction of a datum missing at a given time does not depend only from the values of 

the other signals at that time, but also from previous values on the time series. 

In this paper, we present a missing data reconstruction method that we have developed based on a 

Fuzzy Similarity (FS) method [Zio et al., 2010a]. A measure of similarity is computed between a set 

of reference multidimensional time-series segments of given length and the multidimensional 

segment containing the missing data; then, the missing values are reconstructed as average of the 

reference segments weighted by the similarity with the segment containing the missing data. 

The method is tested on two case studies: a simulated four-dimensional time series and 27 signals 

measured during shut-down transients of nuclear power plants (NPP) steam turbines. The 

performance of the proposed method is compared with that of an AAKR method of literature 

[Baraldi et al., 2010]. 

The remainder of the paper is organized as follows: Section 2 introduces the problem that we want 

to address; Section 3 describes the proposed FS-based method and discusses the metrics that are 
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used to evaluate the missing data reconstruction performance; Sections 4 and 5 illustrate the 

application of the method to the artificial case study and to the industrial case study, respectively; 

finally, Section 6 draws the conclusion of the work. 

2. Problem Statement 

We consider a training dataset containing M different J-dimensional realizations of a time series, 

hereafter called trajectories, and indicated by MmX tr

m ,...,1,  . These reference trajectories are all 

complete, i.e. they do not suffer of any missing data. For simplicity of illustration, all the reference 

trajectories are assumed to have the same time length T. The generic element ),( jkx tr

m  of tr

mX  

indicates the value of signal j of trajectory m at time k. 

The objective of this work is the reconstruction of missing data in a (test) trajectory, X , that we are 

measuring. The length of X  can be shorter than T. We consider that the values of only one signal, 

hereafter referred to as jmiss, are missing in a single time window from time t  until the present 

time t. The generic element of the test trajectory, ),( jkx , indicates the value of signal j at time 

tk  . The obtained reconstruction of a missing datum of signal jmiss will be indicated by 

tktjkx miss ),,(ˆ .  

3. The Fuzzy Similarity-based reconstruction method 

The proposed method for missing data reconstruction is based on three main steps: 

(1) compute a measure of fuzzy similarity between multidimensional segments of the reference 

trajectories in a time window of length Lt and the most recent segment of length Lt of the test 

trajectory containing the missing datum; 

 (2) assign a weight to each reference segment; the weight is chosen proportional to the similarity of 

the reference segments to the test trajectory; 

(3) reconstruct the missing datum as a weighted average of the reference segments. 
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At the present time t, the segment of test trajectory containing only the most recent Lt measurements 

of signal j is denoted as )],(),...,,2();,1([)( jtxjLtxjLtxjx ttt   and the generic segment of 

length Lt of signal j in reference trajectory m which ends at time k is denoted as 

),:1(),( jkLkxjkx t

tr

m

tr

m  . 

With respect to the time window length, Lt, two situations may arise: 

CASE A) it is longer than the time duration of the missing data segment, i.e. tL ; in this 

case, the values )],1(),....,,1([ missmisst jtxjLtx    are available and only the values in 

)],(),....,,([ missmisst jtxjtx   are missing; 

CASE B) it is equal or shorter than the time duration of the missing data segment, i.e. 

tL ; in this case, all the values of 

)],(),...,,2();,1([)( missmisstmisstmisst jtxjLtxjLtxjx   are missing. 

For example, Figures 1 and 2 show the evolution of 4 signals in a time series in a case in which we 

are unable to measure signal missj =1 from time t=21. To perform the reconstruction of the missing 

values, we consider a time window of length Lt =5. Thus, at time t=21 (Figure 1), only φ=1 

measurements are missing for signal missj  (case A), whereas as time passes, the number of missing 

measurements increases until, at time t=26, we reach the situation of case B where tL . 

For ease of explanation, the case of missing values in a single signal is treated, but generalization to 

a multi-dimensional problem is straightforward.  
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The signal reconstruction method is based on the following steps: 

 Step 1: Trajectory pointwise difference computation  

 
Figure 2. Same trajectory of Figure 1 (present time t=26). 

 

 
Figure 1. A 4-dimensional trajectory (present time t=21, missing data from t=20). The time window considered for signal reconstruction 

has a length Lt=5. 
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In this step, we compute the squared Euclidean distance difference between the segment of 

the test trajectory containing the missing data and the segments obtained from the reference 

trajectories. 

In CASE A, characterized by tL , the squared Euclidean distance is computed taking 

into account all the available Lt measurements for the signals missjj   without missing data 

in the test trajectory and only the tL  available measurements for signal missj . In 

practice, the test segments )( jxt  of the test trajectory X  at time instant t  and the k-th 

segment of the m-th reference trajectory are:  

 

 
The squared Euclidean distance between the Lt elements of the k-th segment of the m-th 

reference trajectory ( , )tr

mx k j  and the elements of the test time segment )( jxt  of the j-th 

signal, is given by: 

 
 The distance is finally reduced to [Zio et al., 2010b]:  

 

In CASE B), characterized by all missing values of signal missj  in Lt, i.e. tL , only the 

remaining signals missjj   are considered for the computation of the squared Euclidean 

J

jk

k

J

j

m

m





1

2

2

),(

)(



       (5) 

2
2 ( , ) ( , ) ( )tr

m m tk j x k j x j            (4) 

( , ) [ ( 1, ); ( 2, );...; ( , )]tr tr tr tr

m m t m t mx k j x k L j x k L j x k j            if missjj   

    (3)  

( , ) [ ( 1, ); ( 2, );...; ( , )]tr tr tr tr

m m t m t mx k j x k L j x k L j x k j              if missjj   

 

)],();...;,2();,1([)( jtxjLtxjLtxjx ttt    if missjj   

  (2)  

)],();...;,2();,1([)( jtxjLtxjLtxjx ttt             if missjj   
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distance. In practice, the test segments )( jxt  of the test trajectory X  and the k-th segment 

of the m-th reference trajectory, are: 

 

The squared Euclidean distance ),(2 jkm  between the Lt components of the k-th time 

segment of the m-th reference trajectory ( , )tr

mx k j  and the Lt measurements of the test time 

segment )( jxt  of the j-th signal, missjj  , is calculated as in eq. (4). 

The distance is finally divided by the number of signals without missing values 1J : 

 

 

Step 2: Trajectory pointwise similarity and distance score computation 

To account for a gradual transition between ‘similar’ and ‘non-similar’ we introduce an 

“approximately zero” fuzzy set [Zio et al., 2010c] taken, in this work, as a bell-shaped function, 

whose membership function value computed in 
2 ( )m k  is equal to: 

The parameters   and   are set by the analyst: the larger the value of the ratio 2
)ln(



 , the narrower 

the fuzzy set and the stronger the definition of similarity [Zio et al., 2010a].  

The distance score )(kdm  between two segments is, then, computed as: 

















)(

)ln( 2

2

)(
k

m

m

ek






       (8) 

1

),(

)(

1

1
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2


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




J

jk

k

J

j

m

m



      (7)

  

)],();...;,2();,1([)( jtxjLtxjLtxjx ttt   

           missjj   (6)  

( , ) [ ( 1, ); ( 2, );...; ( , )]tr tr tr tr

m m t m t mx k j x k L j x k L j x k j      
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Step 3: weights computation 

The basic idea behind the weighted reconstruction is that all the reference training trajectories carry 

useful information for the reconstruction of the missing data in the currently developing trajectory 

[Zio et al., 2010a]. To this aim, weights are computed with a decreasing monotone function [Zio et 

al., 2010a], such that the smaller the distance )(kdm  the larger the weight given to the k-th segment 

of the m-th reference trajectory: 

 

The same value of   used in eq.(8) is here employed in order to reduce the number of parameters 

to be set.  

Step 4: Missing Values Reconstruction  

The reconstruction of the missing datum, ),(ˆ missjtx , in the test trajectory is the weighted sum of the 

last elements ),( miss

tr

m jkx
 
of the reference training segments [Baraldi et al., 2010]: 

 

4. Application to an artificial case study 

We have considered an artificial case study built by simulating M=114 trajectories of length T =100 

time steps (in arbitrary units) in a J=4 dimensional signal space, whose projections into the 4-




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 


M
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m
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T
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t

t
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jkxkw
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1

1

)(

),()(

),(ˆ      (11) 

)(
1

))(1()(
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mm
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ekdkw 


   TLk t ,...,  , Mm ,...,1    (10) 

)(1)( kkd mm   TLk t ,...,  , Mm ,...,1    (9) 
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dimensional space are plotted in Figures 3-6. The trajectories are simulated by choosing for each 

signal one of the three following functional behaviors: 

 

 

                   

 

                                    

     

where  j=1, 2, 3, 4 is the signal index and a, b, c, d, e, μ, ω, 21,  and 3  are values randomly 

sampled from the probability distributions listed in Table I. 

Parameter Distribution 

a Uniform [0.45,0.55] 

b Uniform [0.3,0.4] 

c Uniform [1.1,1.3] 

d Uniform [1.2,1.3] 

e Uniform [0,2] 

1  
Uniform [1,1.5] 

2  
Uniform [1,1.2] 

3  
Uniform [0.9,1.1] 

u Uniform [2.2,2.7] 

ω Normal (0,1) 

 
TABLE I.     Distribution of the random parameters a, b, c, d, e, u, ω, α1, α2 and α3 

One hundred trajectories have been simulated using eq.(12) for signals 1, 2 and 4, and eq.(14) for 

signal 3 (Table II). These trajectories are intended to reproduce the nominal behavior of a system, 

e.g. the operation of a plant when no anomalies or faults occur. Hereafter, they will be referred to as 

‘normal condition trajectories’. To artificially reproduce possible anomalous behaviors of the 

system, 14 trajectories characterized by signal functional behaviors different from those of the 

  3

1
2 1 10

2
j

t e u
x a erf  

    
    

   

    (12) 

    

    3

2 10


ccx
etd

j      (13) 

   3

3 10 etbx j      (14) 
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corresponding signals in the 100 trajectories have been simulated according to the eqs. reported in 

Table II.  

The performance of the proposed model for missing data reconstruction will be evaluated in terms 

of its accuracy, i.e. the ability of providing correct reconstructions of missing data. The metric used 

is the Mean Square Error (MSE) between the reconstructions provided by the model and the true 

values [Baraldi et al., 2010], averaged over a number of different test trajectories. 
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Trajectories Signal 1 Signal 2 Signal 3 Signal 4 

1-100 Eq. (12) Eq. (12) Eq. (14) Eq. (12) 

101-105 Eq. (12) Eq. (13) Eq. (14) Eq. (12) 

106-109 Eq. (13) Eq. (14) Eq. (12) Eq. (12) 

110-112 Eq. (13) Eq. (14) Eq. (13) Eq. (12) 

113-114 Eq. (14) Eq. (14) Eq. (14) Eq. (12) 

Table II Equations used to simulate the signal evolution in the 114 trajectories of the case study 

Figure 4    Projection on the signal 2 axis of the 114 

simulated trajectories 

 

Figure 3    Projection on the signal 1 axis of the 114 

simulated trajectories 
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4.1 Results 

The application of the proposed signal reconstruction method requires to properly set the values of 

the length of the time window for the segment of values used for the reconstruction, Lt, and of the 

parameters   and   in eqs.(8) and (10). Table III reports the optimal values of  and   found 

with a systematic procedure based on the computation of the MSE on a validation set. In practice, 

we have considered all the possible combinations of Lt,   and   with Lt=2,5,10,20 and   and   

with discrete values taken from the intervals [10-6, 10-1] and [10-3, 10-1], respectively. Finally, the 

parameter setting with minimum MSE is selected. Notice that the larger Lt, the smaller the ratio 

2
)ln(



  (in eq. (8)): this means that the the larger Lt, the larger the fuzzy set that defines the similarity 

between reference trajectories and test time segment. This is expected because the similarity   in 

eq. (8) has to accommodate larger the Euclidean distance between the segments (eq. (7)) due to 

larger Lt, i.e., longer reference trajectories and time segments. 

 

Figure 5   Projection on the signal 3 axis of the 114 

simulated trajectories 

 

Figure 6   Projection on the signal 4 axis of the 114 

simulated trajectories 

 



14 

 

 

Figure 7 shows the accuracy metric, MSE, as a function of the length of the time segment, Lt, 

obtained in the reconstruction of 20  data in signal 1 (upper left), 2 (upper right), 3 (lower left) 

and 4 (lower right). In this case, the best results are obtained with 10tL . 

 

In order to verify the performance of the signal reconstruction method, we have considered 113 

trajectories to train the reconstruction model and one trajectory to test it. In the test phase, we 

assume to have missing data in only one signal from time tA=21 to time tB=40, and we generate 
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Figure 7: Reconstruction accuracy considering different values of Lt 

 

tL      

2 8.0  01.0  

5 5101 x  05.0  

10 5101 x  05.0  

20 1x10-5 0.05 

 

TABLE III.     Optimal values of the parameters α and β in correspondence of different time segment lengths Lt 
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from a trajectory 4 different test trajectories each one containing missing data in a different signal. 

In order to cross-validate the accuracy computation, this procedure has been repeated 114 times, 

each time choosing a different test trajectory according to a leave-one-out procedure [Quan et al., 

2010; Baraldi et al., 2011]. Table IV reports the accuracy obtained by the proposed method and by a 

literature AAKR method for comparison [Baraldi et al., 2010]. 

 

 Test on all 114 

trajectories 

Test on the 100 normal 

condition trajectories 

Test on the 14 

anomalous trajectories 

AAKR 8.3×10-4 1.7×10-4 5.6×10-3 

FS-BASED 2.9×10-4 1.5×10-4 1.3×10-3 

 

The two methods provide similar performances in the reconstruction of the 100 normal condition 

trajectories, whereas the proposed method is remarkably more accurate than the AAKR one in the 

reconstruction of the 14 anomalous trajectories. This is pictorially seen in Figures 8 and 9, which 

show the reconstructions obtained in normal condition and anomalous trajectories, respectively.  
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Figure 8: Missing values reconstruction for a normal condition trajectory; the true value is represented by a short dashed line, the 

Fuzzy Similarity-based reconstruction by a thick continuous line with circles and the AAKR reconstruction by a long dashed line 

Table IV Reconstruction accuracy provided by the AAKR and the proposed Fuzzy Similarity-based reconstruction method. 
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It is interesting to observe that in the case of Figure 9 from t=32 until the end of the test trajectory, 

the AAKR reconstruction deviates largely from the true signal values, whereas the FS-based 

reconstruction is more accurate. The difference in performance between the two reconstruction 

methods is motivated by the different procedure used for the weights assignment. For instance, let 

us consider the signal 1 reconstructions provided at time t = 34 whose true (unknown) value 

(34,1) 0.053x  . The FS-based method identifies in the four-dimensional training input space a 

reference segment,  ,1tr

mx k , very similar to the test segment )1(34tx  (Figure 10, top, line with 

circles) and it assigns to this segment a very large weight (1.2×106). Thus, by applying eq.(11), one 

obtains a signal reconstruction of the missing data, ˆ(34,1) 0.080x  , which is very similar to the last 

signal value in  ,1tr

mx k . On the other hand, the AAKR is considering similarities between 

instantaneous signal values and not between time segments. According to this different procedure 

for the similarity computation, the AAKR assigns the largest weights (all in the range of [3,4]) to 
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Figure 9: Missing values reconstruction of signal 1 in a test trajectory. The true value is represented by a short dashed line, the FS-based 

reconstruction by a thick continuous line with circles and the AAKR reconstruction by a long dashed line  
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several training patterns  (circles in Figure 10, bottom) leading to a reconstruction ˆ(34,1) 0.55x  , 

which is ten times larger than the signal true value (34,1) 0.053x  . 

 

 

5. Application to an industrial case study 

The industrial case study concerns the operation of nuclear power plant turbines during shut-

down transients. We consider the values of 27J  signals taken at 4500T  time steps in 

148M  different transients. Most of the signals refer to temperatures measured in different 

parts of the turbines [Baraldi et al., 2010]. Figure 11 shows some examples of signal evolutions 

during different plant transients. 
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Figure 10. Upper: signal 1 evolution in the test trajectory (dotted line) including signal 1 test segment (squares) used for the reconstruction and the missing 

datum (triangle). The most similar segment in the training set is represented by circles. Bottom: signal 1 evolution in the test trajectories (continuous line) 

and missing datum (triangle). Patterns in the training set to which the largest weights are associated are represented by a circle. Notice the different scales 

of the signal 1 value in the two figures.  
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In order to verify the performance of the FS-based method, in this Section we perform the 

reconstruction of signal segments whose true values is known, but for which we assume to have 

missing data in time intervals of φ=20 time instants in a single signal.  

The values of the FS-method parameters  and  , and of the length of the time segment have been 

set equal to 2.0 , 5.0 and 10tL . Figure 12 shows the overall accuracy of the FS-based 

and of the AAKR methods in the reconstruction of the 27 plant signals in test transients, according 

to a leave-one-out procedure. 
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Figure 11: Evolution of a signal in different plant transients. 
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The performance of the FS-based reconstruction method is more satisfactory than that of the AAKR 

method. In particular, Figure 13 compares the FS-based method (continuous line with circles) and 

the AAKR (long dashed line) reconstructions of some signals in a transient, assuming missing data 

on a time window from instant tA=81 to instant tB=100. Notice that for several signals such as j=2, 

14, 18, 22 and 27 the AAKR method provides reconstructions which remarkably deviate from the 

true signal values, whereas the reconstructions of the FS-based method are more accurate. 

 
 

Figure 12: Average accuracy in the reconstruction of the 27 signals. 
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With respect to signal 26, both methods provide very inaccurate reconstructions. This is due to the 

fact that the behaviour of this transient in signal 26 is very different from the behaviour of the signal 

in all the considered reference trajectories as shown in Figure 14. Since the reconstruction is a 

weighted mean of the training values, this leads to the inaccurate signal reconstruction. 
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Figure 13. Reconstruction of a time window of 20 time instants in some signals. The true value is represented by a short dashed lines, the FS-based 

reconstruction by a continuous line with circles and the AAKR reconstruction by a long dashed line.  
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6. Conclusions 

A fuzzy similarity-based method for missing data reconstruction has been proposed in the 

context of on-line condition monitoring of industrial components. The method allows performing 

signal reconstructions in multidimensional time series. It has been applied with success to an 

artificial case study and a real industrial application concerning the reconstruction of missing data in 

nuclear component transients, and it has been shown superior to an AAKR-based method of 

literature. 

Given the difficulty of the signal reconstruction task in situations characterized by the presence of 

long segments containing missing values, we think that it would be important to associate the signal 

reconstruction with an estimate of its degree of confidence, which should take into account the 

amount and quality of the information used to perform the reconstruction. This will be object of 

future research activity. Indeed, future work will be devoted to estimate the degree of confidence in 
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Figure 14 Signal 26 behaviour in the test (dotted line) and in the reference transients (continuous line). 
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the provided signal reconstruction, taking into account the amount of information available in the 

reference trajectories used to perform the reconstruction. 
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