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Abstract 10 

In the last decade, the installed capacity of wind turbines has increased far more than other 11 

renewable energy sources such as solar, biomass or geothermal. As for any energy 12 

equipment, reliability is the fundamental attribute that needs to be guaranteed. A number of 13 

studies have been carried out for wind turbine reliability assessment. Most of them model the 14 

wind turbine system as a whole, without investigating its interior structure and failure logic.  15 

In this paper, a modeling and simulation framework is proposed for the reliability assessment 16 

of generic geared wind turbine systems. It is based on a Goal Tree, Success Tree and Master 17 

Logic Diagram for modeling the relationships among components and functions in a wind 18 

turbine system, and the impact of factors and mechanisms influencing the failure of the 19 

components. The modeling framework is customized to represent the strength of the 20 

relationships and the uncertainty of the impact of failures of these components on other 21 

components and functions. The model is eventually integrated in a Monte Carlo simulation 22 

framework for the computation of the wind turbine system reliability. Finally, model 23 

validation is performed by comparing the simulation results with those obtained by a 24 

Bayesian network model developed for this purpose. 25 

 26 
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1. Introduction 29 

In recent years, technological advances have led to the development of small-scale, user-30 

friendly, easily installed renewable energy systems. These types of systems enable energy 31 

end-users to install renewable generators on-site, connect them to the distribution network 32 

and trade energy on the electricity market. The functionality of these systems is dependent on 33 

the functions provided by different components, whose reliability must be properly designed 34 

and availability carefully maintained [1-3].  35 

Wind is a resource that can be used in excess without threatening to reduce its natural stock. 36 

In fact, wind can be found almost anywhere on Earth. Even though wind power systems are 37 

only used within a certain range of wind speeds, this type of energy production is quite 38 

efficient. Although the power outputs depend on wind speed, a wind turbine on land can 39 

often generate a certain percentage of its theoretical maximum energy output, e.g. 20% to 30% 40 

in the case of a onshore small wind turbine located in UK [4]. In addition, a wind turbine 41 

produces enough electricity in six to eight months to “pay back” the energy used to 42 

manufacture and install the equipment [5].  43 

Wind turbine operation and maintenance represent an important part of the cost of wind 44 

power production. In fact, the share of operation and maintenance costs represents 20% to 45 

25% in the lifetime of a wind turbine. Actually, these costs are limited to 10% to 15% when 46 

the wind turbine is fairly new, but they increase to at least 20% to 35% by the end of its 47 

lifetime [6]. Modeling can help reduce these costs, as it provides information for the 48 

development of maintenance and repair policies.  49 

The goal of the work presented in this paper is to develop a modeling and simulation 50 

framework to evaluate the reliability of a generic geared wind turbine system. The power law 51 

process [7] and exergy analysis [8] have been used in the past to model the wind turbine 52 

system as a whole. However, these reliability modeling frameworks fail to account for the 53 

complexity of the interior structure of the wind turbine system. For example, Guo et al. [9] 54 

assume that the failure of any subassembly leads directly to the failure of the wind turbine. 55 

However, in reality the failure logic of wind turbine systems is more elaborated because of its 56 

interior structure. For example, if the anemometer fails during the operation of the wind 57 
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turbine system, it can certainly affect the electronic control but there is uncertainty 58 

surrounding the extent to which this failure affects the performance of the wind turbine 59 

system. The system logic of the wind turbine is such that it can still produce electricity even 60 

though some of its components have failed, although possibly in a less efficient way. In the 61 

example stated above, the failure of the anemometer can lead to inaccurate readings of the 62 

wind speed, which leads to providing less reliable information on which to base the system 63 

adjustments.  64 

In order to describe these conditions, a third state of degraded operation is introduced 65 

whereby the wind turbine system is performing its function but less efficiently. This is done 66 

to extend the common binary state description of system function (operating or failure). 67 

Actually, in practice, different minor failures of components could lead to various 68 

degradations, and correspondingly different performance levels. In this case, the state of 69 

degraded operation could be further discretized in levels of performance depending on the 70 

extent of the impact the components failures have on the wind turbine system. The transition 71 

dynamics would, then, be governed by the corresponding transition probabilities (see 72 

Section 4). To this day, however, it is difficult to quantify the impact of components failures 73 

on the wind turbine system in practice and, even more so, to obtain the related field data 74 

necessary to estimate the degradation model parameters. For this reason, we limit the 75 

description to the three states in this work, as discussed previously, which render the model 76 

feasible in the current situation. Furthermore, by neglecting the interior structure of the wind 77 

turbine system, the reliability models proposed in the literature do not consider the logic and 78 

functional relationships between the different components in the system. On the contrary, this 79 

is quite relevant to the electricity production function of the wind turbine. For example, if a 80 

sensor fails it can affect the electronic control which commands the system operation 81 

adjustments with respect to the signal measured by the sensor; in turn, the actuating hydraulic 82 

system controlled by the electronic control can fail and this can impact the functionality of 83 

the mechanical brake; failure of the mechanical brake to fulfill its function can lead to the 84 

failure of the low speed shaft of the turbine, and this can force the wind turbine system to a 85 

stop.  86 

Reliability models focusing on specific components or subassemblies have been developed, 87 

including Miner’s rule approach [10-12], neural networks [13], 3D finite element 88 

formulations [14,15], non-homogeneous Poisson processes [16] and Markov processes [17-89 
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19]. They allow reliability assessment to be performed at the component/subassembly level 90 

but not at the wind turbine system level.  91 

In the end, the wind turbine system has a certain logic complexity and the relationships 92 

within and between its subsystems must be considered and described for a proper evaluation 93 

of system reliability and availability. Approaches to do this can be function-oriented or 94 

object-oriented. Function-oriented approaches, such as structured analysis and design 95 

technique (SADT) [20] and multilevel flow modeling (MFM) [21], allow the system to be 96 

analysed according to goals and functions which are to be attained by all parts of the system 97 

in order to perform its function. On the other hand, object-oriented approaches such as the 98 

dynamic flowgraph methodology (DFM) [22] may be used to describe either the static or the 99 

dynamic structure of a system by defining the material elements and their interactions [23].  100 

In this paper, the Goal Tree, Success Tree and Master Logic Diagram (GTST-MLD) 101 

framework is used to model a wind turbine system for its reliability evaluation. The Goal 102 

Tree, Success Tree (GTST) and Master Logic Diagram (MLD) is a relatively recent 103 

approach, which has the advantage of integrating both of these points of view and has proven 104 

to be a powerful hierarchic method to represent the system [24-29]. The framework provided 105 

allows the modeling of the relationships between components and functions in a wind turbine 106 

system, as well as the impact of factors and mechanisms influencing the failure of the 107 

components. The modeling framework is further customised to represent the strength of the 108 

relationships and the uncertainty of the impact of failures of these components on other 109 

components and functions. These aspects are eventually integrated in the simulation 110 

framework for the computation of the wind turbine system reliability. Finally, the model is 111 

validated by comparing the simulation results with those obtained by a Bayesian network 112 

developed for this purpose. 113 

The rest of the paper is organised as follows. Section 2 presents background information on a 114 

generic geared wind turbine system architecture and the definition of its reliability. Section 3 115 

presents the GTST-MLD modeling framework and its customisation to the wind turbine 116 

system. Section 4 presents the simulation framework for the quantification of the model and 117 

the results obtained; also, a comparison is given with the results of a Bayesian network 118 

developed for this purpose. Finally, Section 5 offers the conclusions on the modeling 119 

framework proposed and recommendations for future work. 120 
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2. Wind Turbine System Architecture and Reliability 121 

2.1 Architecture of A Generic Geared Wind Turbine and Functionalities of Components 122 

A generic geared horizontal-axis wind turbine (HAWT) of Figure 1 is used as reference 123 

system for the model and simulation framework development presented in this work. 124 

Naturally, the framework can be extended to other types of system designs. For the 125 

comprehensiveness of the paper, we give a short description of the system hereafter.  126 

With respect to its operation, the wind acts on the turbine blades as it does on an airplane 127 

wing. The shape of the blade causes the air pressure to be uneven around the blade. This is 128 

what makes the rotor hub spin at the center of the turbine. On the top of the nacelle – which is 129 

part of the structural parts and housing of the wind turbine – a wind vane connected to a 130 

controller ensures that the turbine is turned into the wind using the yaw drive in order to 131 

capture the most energy. Next to this wind vane is an anemometer which is also connected to 132 

the controller. Most wind turbines are only efficient over a certain range of wind speeds, e.g. 133 

4 to 25 m/s [30], dependent on the operating concept and the adopted generator technology. 134 

Therefore, the anemometer measures the wind speed and the controller acts on the pitch to 135 

turn the blades parallel to the wind direction if the wind speed is too low or too high. The 136 

blades are connected to a low-speed shaft, which turns around 18 rpm on average [30]. In 137 

order to generate electricity with the HAWT, the rotor shaft spins a series of gears in the 138 

gearbox to increase the rotation up to around 1800 rpm [30]. Note that the mentioned rotation 139 

speeds are applicable only to geared wind turbines. The high-speed shaft delivers mechanical 140 

energy from the gearbox to the generator; the generator, then, transforms the mechanical 141 

energy into electricity, which is sent to the grid via the electrical system. A vital subassembly 142 

in the wind turbine electrical system is the power converter: an electronic device that 143 

modifies electrical signals from one kind of level to another. Namely, this can be any of the 144 

following conversions: AC to AC, DC to DC, AC to DC, or DC to AC [31]. The electrical 145 

system also includes the control unit that it regulates the supply of the power to the grid and 146 

provides protection functions [37]. 147 

With respect to its logic structure, Figure 2 shows the system logic diagram for the HAWT. 148 

The components in grey rectangles represent the primary components: the blades, the rotor, 149 

the low-speed shaft, the gearbox, the high-speed shaft, the generator, the yaw system and the 150 

electrical system. The wind turbine cannot produce electricity or unable to fulfill the 151 

interconnection and the grid code requirements if any of these components have failed. Note 152 

that the logic diagram is developed mainly based on the generic WTG architecture defined by 153 



6 
 

the US Department of Energy as shown in Figure 1 [36] and the WTG decomposition scheme 154 

presented in Table II, taken from [7]. This is coming directly from the Windstats database, 155 

and provides failure information from each component of the WTGs used in Germany and 156 

Denmark. In this decomposition scheme, the WTG components are generic, i.e. no specific 157 

types or modes are considered. For example, the generator failure rate counts different types 158 

of generators ranging from doubly-fed induction generator to direct-drive synchronous 159 

generator. Following [7], the WTGs considered are of the capacities ranging from 100 kW to 160 

2.5 MW.  161 

In this same figure, the secondary components are represented in a white oval: the hydraulic 162 

system, the electronic control, some sensors (anemometer and wind vane) and the mechanical 163 

brake. The wind turbine system can still produce electricity when some of these components 164 

have failed; however, the electricity production would be inefficient. For additional 165 

information, Table 1 presents all the components of the HAWT, their functionality, their 166 

classification and the factors and mechanisms influencing their roles. The influencing factors 167 

are also summarized in Figure 2. These factors can affect the goal function of wind 168 

production either directly (by affecting the primary components) or indirectly (by affecting 169 

secondary components which, then, can affect the primary components).  170 

The relationships between the different types of components are represented by lines and 171 

arrows. First, primary components are connected by lines. These represent the fact that if one 172 

of them fails, then the wind turbine system no longer produces electricity and, as such, the 173 

system enters in a state of failure. Then, secondary components are connected by directional 174 

lines, either solid or dashed. In essence, an arrow going from one secondary component to 175 

another represents the fact that the failure of the initial component can affect the state of the 176 

other component. For example, the failure of the electronic control can affect the hydraulic 177 

system and the rotor. More specifically, the dashed lines represent potential relationships 178 

between sensors and components – either primary or secondary. In our model, only the 179 

anemometer and the wind vane were considered. However, depending on the wind turbine 180 

system, more sensors may exist. For example, accelerometers can be installed to measure the 181 

vibration created by a component like the low speed shaft, the gearbox, the high speed shaft 182 

or the generator [15].  183 

  2.2 Reliability of the Wind Turbine System  184 
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Reliability is an attribute of a component or system which describes the ability to perform the 185 

required function for a given amount of time and under specific conditions [32]. In practical 186 

reliability, availability and maintenance (RAM) evaluations, a component or system is often 187 

assumed to have only two states – ‘operating’ and ‘failure’ – and the underlying stochastic 188 

process of failure is described quantitatively by a power law process (PLP) characterized by 189 

the failure rate (t), usually described as a combination of Weibull distribution that takes the 190 

shape of a bathtub curve [7].  191 

However, in real components and systems, the process from operating to failure goes through 192 

multiple degradation states, and this should be taken into account in the models for reliability 193 

analysis. Looking at this from the system level, every component in the wind turbine system 194 

has a role that allows it to produce electricity in an efficient manner: if one component fails, 195 

then the wind turbine system does not have all the elements required to produce electricity at 196 

the planned level of performance. For this reason, three states for the wind turbine system are 197 

considered in the model developed in this work: normal operation, degraded operation and 198 

failure, denoted by ‘  ’, ‘  ’ and ‘  ’, respectively.  If one of the primary components fails, 199 

the system enters in a state of failure; if at least one secondary component has failed, the 200 

system is in a state of degraded operation. In literature, multi-state modeling has been 201 

adopted for WTG reliability/adequacy assessment [38-39]. Most of them model the WTG as 202 

a whole without investigating its failure logic and the complexity of its interior structure. 203 

Also, as discussed in Section 2.1, the failure of secondary components can affect the state of 204 

the primary components, which impacts the productivity of the wind turbine system. For 205 

example, if the hydraulic system fails due to an excessive fluid temperature it can directly 206 

impact the state of the mechanical brake, the yaw system and the rotor (cf. Figure 2). In turn, 207 

if the mechanical brake fails, it can affect the low speed shaft. Since the low speed shaft, the 208 

yaw system and the rotor are primary components, if one of them enters in a state of failure, 209 

then it can directly affect the efficient production of electricity by the wind turbine system. 210 

This is the assumed logic of operation, degradation and failure with respect to the wind 211 

turbine system.   212 

As for the quantification of the model, the aim is to obtain the system state probability vector 213 

at time t                                , where   denotes the system state (normal 214 

operation, degraded operation and failure). 215 
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3. GTST-MLD Model of the Generic Geared Wind Turbine System 216 

In this work, a GTST-MLD is originally used to model the wind turbine system. GTST can 217 

logically and hierarchically represent the functions, sub-functions and interactions among the 218 

different parts of the wind turbine system that enable it to produce electricity. The goal tree 219 

(GT) focuses on the qualities of the system while the success tree (ST) focuses on its parts. 220 

Incidentally, a dependency matrix can be used to display the underlying hierarchy of the 221 

MLD of the system [33]. The step-by-step process of developing such a model is presented in 222 

the following subsections. 223 

3.1. Goal Tree 224 

The GT focuses on the qualities of the system. These are composed of its goals and functions. 225 

The top function of the GT is named the goal function. In essence, it describes the principal 226 

purpose of the system [23]. This function should be carefully defined according to the scope 227 

of interest. Then, the goal function is decomposed into sub-functions at increasing levels of 228 

detail. The realisation of specified combinations of these sub-functions – named global 229 

functions – ensures that the goal function is achieved. A main difference with a fault tree (FT) 230 

representation of the logic relationships is that the GT focuses on the functions of the system 231 

whereas the FT concentrates on its components. 232 

As explained in Section 2, the goal function of the wind turbine system is to generate 233 

electricity and to send it to the grid. This goal function can be decomposed into the following 234 

four independent global functions, as illustrated in Figure 3.  235 

- Capture the wind energy; 236 

- Convert the wind energy into mechanical energy; 237 

- Convert the mechanical energy into electrical energy; and 238 

- Send the electrical energy to the grid. 239 
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These four global functions represent the four steps of the power generation process in 240 

physically unambiguous terms. In Figure 3, these functions are linked by AND logic. In fact, 241 

the goal function of producing electricity and sending it to the grid can only be fulfilled if all 242 

four steps are completed simultaneously. First, the energy needs to be captured; then, it must 243 

be converted into a manageable resource, which requires two steps in this system; finally, the 244 

energy must be sent to the consumers. The decomposition of functions of the GT is the 245 

starting point of the GTST-MLD and is therefore important to grasp since the rest of the 246 

model builds on this concept. 247 

3.2. Success Tree 248 

The ST focuses on the physical aspects of the system and is developed from top to bottom, 249 

looking at all levels at which the system can be analysed. In essence, the physical elements 250 

collect all the components of the system necessary to achieve any of the functions present in 251 

the GT [23].  252 

In the wind turbine system, the ST can be broken down into two sections. First, the 253 

component tree includes all the primary components of the wind turbine: the system cannot 254 

accomplish its goal function without all of these components correctly functioning. If any one 255 

of these components fails then the wind turbine system enters a state of failure. These 256 

components are the blades, the rotor, the low speed shaft, the gearbox, the high speed shaft, 257 

the generator, the structural parts and housing, the electrical system and the yaw system. 258 

These parts are considered as the main elements of the ST. 259 

Then, the supporting tree includes all secondary components, which are required for the 260 

efficient production of electricity. If any one of these components fails, the wind turbine 261 

system enters a state of degraded operation rather than a state of failure. This state of 262 

degraded operation is introduced in order to define the wind turbine system state in which the 263 

goal function of producing electricity is still fulfilled but in an inefficient manner. These 264 

secondary components are the mechanical brake, the hydraulic system, the electronic control, 265 

the anemometer and the wind vane. These are considered as the supporting components of 266 

the system. Figure 4 presents the ST developed in this work.    267 

The impacts of the failures of the secondary components onto the primary components are 268 

explained as follows. There are analyzed and quantified in the development of GTST-MLD 269 

in section 3.5. 270 
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- Mechanical brake: its failure can lead to the failure of the low speed shaft of the 271 

turbine, and this can force the wind turbine system to a stop. 272 

- Hydraulic system: its failure can directly impact the state of the mechanical brake, the 273 

yaw system and the rotor. In turn, if the mechanical brake fails, it can affect the low 274 

speed shaft. 275 

- Electronic control: it commands the system operation adjustments. Its failure can 276 

affect the hydraulic system. 277 

- Wind vane: its failure can lead to inaccurate readings of the wind direction and, thus, 278 

affect the commands of the electronic control. 279 

- Anemometer: its failure can lead to inaccurate readings of the wind speed and, thus, 280 

affect the commands of the electronic control. 281 

 282 

3.3. Faults and Failures 283 

Faults and failures are introduced as a third part of the system model to describe the 284 

dysfunctional aspects [23]. Defined by the IEC 61508 functional safety standards [34], a fault 285 

is an abnormal condition that may cause a reduction in, or loss of, the capacity of an entity to 286 

perform a required function; a failure is the termination of the ability of an entity to perform a 287 

required function – or in any way other than as required. In this work, all possible causes of 288 

failure of the system components are considered as failure-influencing factors. For example, 289 

influencing factors are the wear of the mechanical brake, the formation of cracks on the 290 

blades, the break of a toothed wheel in the gearbox, the random shocks on a sensor, and the 291 

eccentricity of the low speed shaft. 292 

3.4. Master Logic Diagram 293 

The master logic diagram (MLD) connects the GT and ST in a clear and logically ordered 294 

manner. As seen in Figure 5, a grid is formed and rectangular bars are placed at the 295 

intersection between connecting sub-parts of the ST and sub-functions of the GT: a 296 

rectangular bar represents the fact that the sub-part of the ST acts on the sub-function of the 297 

GT, or that the sub-function of the GT depends on the sub-part of the ST. 298 

3.5. Relationship Analysis of the GTST-MLD 299 

Figures 6 and 7 present the complete GTST-MLD modeling framework of the wind turbine 300 

system developed in this work. Dependence relationships using a black rectangle are stronger 301 
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than those using a grey one. For example, the failure of a blade will have a strong impact on 302 

the ability of the system to capture the wind energy. In fact, blades are vital in ensuring the 303 

capture of the wind energy since it is the primary contact between the wind and the wind 304 

turbine system.  305 

In addition, uncertainty is represented by asterisks: the more uncertain the relationship is, the 306 

more asterisks are associated to it in the graphical representation. Using the same example, 307 

the relationship between the blades and the capturing of the wind energy is not ambiguous. 308 

Therefore, the relationship between the blades and the global function of capturing the wind 309 

energy is certain as well as strong and is represented by a black rectangle with one asterisk.  310 

The reasoning behind the greyscale and asterisk assignments in the GTST-MLD developed in 311 

this work is that uncertainty is as important to define as relationship strength when modeling 312 

a complex system. In fact, these factors are fundamental in developing a reliability model for 313 

the wind turbine system.  314 

Using the same logic, the following relationships are represented in Figure 6: 315 

- The relationship between the rotor and the global function of capturing the wind 316 

energy is certain as well as strong. 317 

- The relationship between the low-speed shaft and the global function of converting 318 

wind energy into mechanical energy is certain as well as strong. 319 

- The relationship between the gearbox and the global function of converting wind 320 

energy into mechanical energy is certain as well as strong. 321 

- The relationship between the high-speed shaft and the global function of converting 322 

wind energy into mechanical energy is certain as well as strong. 323 

- The relationship between the generator and the global function of converting the 324 

mechanical energy into electrical energy is certain as well as strong. 325 

- The relationship between the electrical system (and its back-up) and the global 326 

function of sending the electrical energy to the grid is certain as well as strong. 327 

- The relationship between the structural parts / housing and all the global functions is 328 

of medium strength and highly uncertain. 329 

- The relationship between the yaw system and the global function of capturing the 330 

wind energy is of medium strength and highly uncertain. 331 
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The following relationships are represented in Figure 7 between the Supporting Material 332 

Elements and the Main System (Figure 6): 333 

- The relationship between the hydraulic system and the yaw system if of medium 334 

strength and yet certain. 335 

- The relationship between the hydraulic system and the rotor is of medium strength 336 

and uncertain. 337 

- The relationship between the mechanical brake and the low-speed shaft is of medium 338 

strength and uncertain. 339 

The following relationships are represented in Figure 7 within the Supporting Material 340 

Elements: 341 

- The relationship between the hydraulic system and the mechanical brake is of medium 342 

strength and certain. 343 

- The relationship between the electronic control and the hydraulic system is of medium 344 

strength and certain. 345 

- The relationship between the wind vane and the electronic control is of medium 346 

strength and uncertain. 347 

- The relationship between the anemometer and the electronic control is of medium 348 

strength and uncertain. 349 

The following relationships are represented in Figure 7 between the Faults and Failures 350 

(influencing factors) and the Supporting Material Elements: 351 

- The relationship between the wear of the mechanical brake and the failure of the 352 

mechanical brake is of medium strength and uncertain. 353 

- The relationship between random shock on the anemometer and the failure of the 354 

anemometer is strong and yet uncertain. 355 

- The relationship between random shock on the wind vane and the failure of the wind 356 

vane is strong and yet uncertain. 357 

- The relationship between wiring issues in the electronic control and the failure of the 358 

electronic control is of medium strength and uncertain. 359 

- The relationship between overheating of the electronic control and the failure of the 360 

electronic control is of medium strength and uncertain. 361 
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- The relationship between high fluid temperature in the hydraulic system and the 362 

failure of the hydraulic system is of medium strength and uncertain. 363 

- The relationship between aeration / cavitation in the hydraulic system and the failure 364 

of the hydraulic system is of medium strength and uncertain. 365 

- The relationship between the loss of flow in the hydraulic system and the failure of 366 

the hydraulic system is of medium strength and uncertain. 367 

The following relationships are represented in Figure 7 between the Faults and Failures 368 

(influencing factors) and the Main System (in Figure 6): 369 

- The relationship between the eccentricity of the yaw shafts and the failure of the yaw 370 

system is of medium strength and uncertain. 371 

- The relationship between crack formation and the failure of the yaw system is of 372 

medium strength and uncertain. 373 

- The relationship between a break in teeth in the yaw wheel and the failure of the yaw 374 

system is of medium strength and uncertain. 375 

- The relationship between a toothed wheel displacement in the yaw system and the 376 

failure of the yaw system is of medium strength and uncertain. 377 

- The relationship between a random shock on the structural parts / housing and the 378 

failure of the structural parts / housing is of medium strength and uncertain. 379 

- The relationship between crack formation on the structural parts / housing and the 380 

failure of the structural parts / housing is of medium strength and uncertain. 381 

- The relationship between a wiring issue in the electrical system and the failure of the 382 

electrical system is of medium strength and uncertain. 383 

- The relationship between a wiring issue in the generator unit and the failure of the 384 

generator is of medium strength and uncertain. 385 

- The relationship between winding damage in the generator and the failure of the 386 

generator is of medium strength and uncertain. 387 

- The relationship between the overheating of the generator and the failure of the 388 

generator is of medium strength and uncertain. 389 

- The relationship between the wear of the high-speed shaft and the failure of the high-390 

speed shaft is of medium strength and uncertain. 391 

- The relationship between the eccentricity of high-speed shaft and the failure of the 392 

high-speed shaft is of medium strength and uncertain. 393 
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- The relationship between the wear of the gearbox wheels and the failure of the 394 

gearbox is of medium strength and uncertain. 395 

- The relationship between crack formation in the gearbox and the failure of the 396 

gearbox is of medium strength and uncertain. 397 

- The relationship between the break in teeth of the gearbox wheels and the failure of 398 

the gearbox is of medium strength and uncertain. 399 

- The relationship between toothed wheel displacement in the gearbox and the failure of 400 

the gearbox is of medium strength and uncertain. 401 

- The relationship between the wear of the low-speed shaft and the failure of the low-402 

speed shaft is of medium strength and uncertain. 403 

- The relationship between the eccentricity of low-speed shaft and the failure of the 404 

low-speed shaft is of medium strength and uncertain. 405 

- The relationship between random shock on the rotor and the failure of the rotor is of 406 

high strength and uncertain. 407 

- The relationship between crack formation on the rotor and the failure of the rotor is of 408 

medium strength and uncertain. 409 

- The relationship between a blade adjustment error in the rotor pitch and the failure of 410 

the rotor is of medium strength and uncertain. 411 

- The relationship between random shock on the blades and the failure of the blades is 412 

of high strength and uncertain. 413 

- The relationship between crack formation on the blades and the failure of the blades is 414 

of high strength and uncertain. 415 

Based on the GTST-MLD, the relationships between system elements were analysed (i.e. 416 

influencing factors, supporting material elements, primary components and global functions). 417 

For this, the approach presented in Brissaud et al [23] was followed.  418 

Let Dd represent an influencing factor d (fault or failure) that occurs, where d = 1, ... , nd and 419 

nd  is the number of influencing factors. Let Pp represent a secondary component p that is in a 420 

state of failure, where p = 1, ... , np and np  is the number of secondary components. Let Mm 421 

represent a primary component m that is in a state of failure, where m = 1, ... , nm and nm  is 422 

the number of primary components. Let Ff represent a global function f that fails to be 423 

delivered, where f = 1, ... , nf and nf  is the number of global functions that the system is 424 

intended to provide. 425 
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Relationships among system elements – which can be direct, indirect or total – are defined in 426 

a relationship matrix AB. As a general notation, the direct relationship between an element a 427 

and an element b in the GTST-MLD hierarchy is indicated at row a, column b of the matrix, 428 

with the following meaning: ABa,b represents the fact that element Aa directly implies (i.e. by 429 

itself, without the need of any other element) element Bb. 430 

Following the approach in Brissaud et al [23], direct relationships are: DPd,p, an occurrence of 431 

fault or failure d directly implies a failed state of secondary component p; DMd,m, an 432 

occurrence of fault or failure d directly implies a failed state of primary component m; PMp,m, 433 

a failed state of secondary component p directly implies a failed state of primary component 434 

m; MFm,f, a failed state of unit m directly implies a loss of global function f. 435 

All these direct relationships are assumed to be independent. As a general notation, their 436 

probabilities of occurrence are denoted P[ABa,b]. Note that P[ABa,b] can be interpreted as a 437 

conditional probability: the probability that Bb occurs given that Aa has occurred. These 438 

probabilities describe the uncertainty in the influence Aa can have on Bb (see Section 4.3). 439 

Other relationships are indirect. For example, the occurrence of fault or failure d can directly 440 

imply the failure state of secondary component p and the component p failure state can 441 

directly imply the failure state of primary component m. Then, the occurrence of d can imply 442 

the failure state of m through the failure of p. In general, indirect relationship events are 443 

combinations of direct relationship events. In the developed GTST-MLD model, only direct 444 

relationships are filled in. Then, the total relationships, which logically integrate both direct 445 

and indirect relationships, are obtained by the logic expressions of Equations 1 and 2 below: 446 

                                      (Eq. 1) 447 

                                   (Eq. 2) 448 

where DMtotd,m represents an occurrence of fault or failure d (directly or indirectly) implying 449 

a failed state of primary component m, and          represents an occurrence of fault or 450 

failure d (directly or indirectly) implying a loss of global function f. 451 

From the logic expressions (Eq. 1) and (Eq. 2), the system failure probability, (i.e. the 452 

probability of failing to supply the global functions) can be computed: 453 

                                 (Eq. 3) 454 
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 This probability can be evaluated by Monte Carlo simulation. 455 

4. Simulation and Validation 456 

Monte Carlo simulation was used to generate time-dependent state probability results of the 457 

wind turbine system from the GTST-MLD. The annual failure frequencies of the wind 458 

turbine components in Figure 8 were used for the Monte Carlo simulation of the system 459 

failure behavior with respect to time, assuming exponential probability distributions: 460 

                    (Eq. 4) 461 

where λ is the transition rate in failures per year. 462 

For those components whose failure depends on multiple influencing factors, a uniform 463 

distribution of the influencing factor occurrence has been assumed. In other words, if a 464 

component functional failure can be due to three direct influencing factors, to each of these 465 

factors is assigned an equal probability of occurrence equal to one-third of the functional 466 

failure probability of that specific component calculated with (Eq. 4). Furthermore, repairs 467 

were assumed as-good-as-new, i.e. after a repair the wind turbine system has the same time-468 

dependent state probabilities as a newly installed wind turbine system. 469 

The simulation of system evolution runs in two successive phases: initiation and propagation. 470 

In the initiation phase, the simulation runs as follows: 471 

1) Set time t after last repair, in years. 472 

2) Generate a realisation of a uniform random variable, vi in [0, 1] 473 

3) Compare the value of vi with the annual probability of influencing factor occurrence, pA,  474 

a) If vi < pA, then the state of the influencing factor is set to “0”, meaning occurrence 475 

b) If vi > pA, then the state of the influencing factor is set to “1”, meaning no occurrence. 476 

The propagation step of the simulation framework consists in answering the following 477 

questions through the GTST-MLD:  478 

- If an influencing factor occurs, how does it affect the components on which it acts on 479 

(see Section 3)? 480 

- If a component enters in a state of failure, how does it affect other components? 481 
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- If a component enters in a state of failure, how does it affect the system global 482 

functions? 483 

This is done by introducing a probability of propagation, pP, which represents the probability 484 

that the failure of one component will lead another component, or a global function, to enter a 485 

state of failure as well. This variable is introduced in order to quantify and model the 486 

relationships in the GTST-MLD and is essential to run the Monte Carlo simulation developed 487 

in this work. Furthermore, this variable is one of the factors that make the GTST-MLD 488 

appealing in that it can be updated when more accurate data are available.  489 

Then, for the first question with respect to each influencing factor of a specific component the 490 

simulation proceeds as follows: 491 

1) Generate a realisation of a uniform random variable, vP1 in [0, 1]. 492 

2) If the state of the influencing factor is “0” (occurrence): 493 

a) If vP1 < pP, then the state of the component is set to “0” (failed). 494 

b) If vP1 > pP, then the state of the component is set to “2” (operating)  495 

If the state of the specific component considered is “0” (failed), then, for the second question 496 

with respect to components related to the each other: 497 

1) Generate a realisation of a uniform random variable, vP2 in [0, 1]. 498 

a) If vP2 < pP, then the state of the related component is set to “0” (failed). 499 

b) If vP2 > pP, then the state of the related component is set to “2” (operating)  500 

Finally, with respect to the third question on the effects of component failures on the system 501 

global functions: 502 

1) If the state of any primary component is “0” (failed): 503 

a) Generate a realisation of a uniform random variable, vP3 in [0, 1]. 504 

i) If vP3 < pP, then the state of the associated global functions are set to “0” 505 

(unfulfilled). 506 

ii) If vP3 > pP, then the state of the associated global functions are set to “2” 507 

(fulfilled).  508 

2) If the state of all primary components is “2” (operating): 509 

a) If any secondary component is in state “0” (failed), then the state of the associated 510 

global functions is set to “1” (degraded). 511 
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Propagation needs to be carried out through each relationship defined in the GTST-MLD of 512 

the wind turbine system from the primary and secondary components to the global functions 513 

(see Section 3). Table 2 illustrates an example of propagation. As seen in the second line, the 514 

state of the component is set to “1” since the influencing factor occurs (“0”) but the random 515 

variable realisation is larger than the probability of propagation. Therefore, the associated 516 

global function is in a degraded state. On the other hand, as seen in the fourth line, the state of 517 

the associated global function is set to “0” since the influencing factor occurs (“0”) and the 518 

random variable generated is lower than the probability of propagation. Therefore, the 519 

component is in a state of failure – a state denoted by “0” in this work.  520 

4.1. Relationship Strength and Data Uncertainty 521 

Defining relationship strength and data uncertainty is crucial for the quantitative reliability 522 

evaluation of the wind turbine system, in which failures can propagate from one component 523 

to another. In fact, the impact of a component failure on another component’s functionality 524 

can be more or less relevant and known with more or less certainty. For example, the impact 525 

of a blade failure on the global function of capturing the wind energy is very strong and 526 

certain; on the other hand, the impact of a wind vane failure on the electronic control is of 527 

medium level and not always certain. More specifically, the failure of the wind vane in a 528 

wind turbine system has an impact on the electronic control since the latter, then, would not 529 

have accurate wind direction readings to base its adjustments on; however, the wind turbine 530 

system could still function without the wind vane, which is the logic in defining the effect of 531 

such a component failure to be of medium value.  532 

The impact of a component failure can be more or less important depending on different 533 

factors that are known (e.g. extreme change in wind direction) or unknown. This fact is 534 

accounted for by introducing an uncertainty description on the variable measuring the 535 

strength of the relationship, i.e. the probability of propagation of the failure from one 536 

component to another.  537 

In the simulation framework proposed in this work, the uncertainty of the strength of 538 

relationship driving the failure propagation is  implemented by generating realizations of  the 539 

uncertain (random) variable ‘probability of propagation’, representing the strength of the 540 

relationship.  541 

The values used in the particular simulation framework here proposed are presented in 542 

Table 3. Thus, for example, the probability of propagation representing a medium yet 543 
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uncertain relationship – like the one between the wind vane and the electronic control – is 544 

represented by a random variable uniformly distributed between 0.25 and 0.75.  545 

4.2. Results 546 

A total of 10,000 simulations of system behavior were run for different points in time. 547 

Figure 9 illustrates the state probabilities as a function of time. As can be expected, the 548 

probability of normal operation decreases with time and the probability of failure increases 549 

with time. A notable point is that the probability of the wind turbine system of being in a state 550 

of degraded operation seems to plateau around 0.2 after 1 year of installation. 551 

4.3. Validation by Bayesian Network 552 

Figure 10 shows a Bayesian network developed for the reliability analysis of the wind turbine 553 

system considered. It was developed using Microsoft Belief Networks. A Bayesian network 554 

is a probabilistic graphical model that represents the conditional dependencies of a set of 555 

random variables [35]. The nodes of the graph are random variables in the Bayesian sense – 556 

observable quantities, latent variables, unknown parameters or even hypotheses. In essence, a 557 

Bayesian network is an influence graph. 558 

Bayesian networks allow for the direct computation of the probability that one event (or state) 559 

will lead to another. Even though it could seem like a simpler modeling solution for some 560 

applications, the conditional probabilities at each node of the Bayesian network must be 561 

computed for each possible scenario and entered in the network in order to compute the 562 

global state probabilities of the system. This makes it less appealing for the modeling of 563 

complex systems with multiple states that require many preliminary calculations that would 564 

need to be repeated for any update in the data. On the other hand, the GTST-MLD simulation 565 

framework developed in this work does not require these preliminary calculations and, 566 

therefore, makes it a flexible modeling tool for complex systems modeling.  567 

In addition, the GTST-MLD developed in this work takes into account relationship strengths 568 

and uncertainty factors while keeping the presentation of the complex logic of the wind 569 

turbine system clear and unambiguous. As can be seen in Figure 10, a Bayesian network for 570 

such a system can be cluttered and the relationships between components can be unclear.   571 

For the numerical comparison, the probabilities of occurrence of each influencing factor 572 

presented in Figure 8 were used as prior probabilities in the Bayesian network. Since the 573 

program used to develop the Bayesian network simulation did not allow for the generation of 574 
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random variables for the uncertain relationships as explained in Section 4.1, it was assumed 575 

that the probability of propagation used for uncertain relationships in the Bayesian network 576 

simulation was equivalent to the mean of the range defined in Table 3. 577 

For example, with respect to the effect that the failure of the mechanical brake can have on 578 

the state of the low speed shaft, which is of medium value and uncertain, instead of 579 

generating realizations of a random variable uniformly distributed between the lower and 580 

upper bounds, respectively 0.25 and 0.75, as done in the GTST-MLD Monte Carlo 581 

simulation, the probability of such occurrence in the Bayesian network simulation is set to the 582 

mean value of the interval of variability, i.e. 0.5. 583 

Table 4 reports the state probability values at one year, obtained with the Bayesian network 584 

and by Monte Carlo simulation. The absolute difference between the results is less than 2.4%, 585 

which is judged satisfactory given the slight differences in the assumption made in running 586 

the two models. 587 

5. Conclusion and Future Work 588 

In order to analyse the reliability of a generic geared wind turbine system, a novel GTST-589 

MLD modeling framework was developed and quantified by Monte Carlo simulation. The 590 

developed framework allows for the representation of the relationships among all functional 591 

and material elements of the system in a systematic, clear and effective manner. The global 592 

functions that the wind turbine system must fulfill are connected to the components, 593 

supporting systems and influencing factors that can affect their state. A systematic and logic 594 

relationship analysis can then be performed to determine the direct effect of each influencing 595 

factor on each global function. Strength and uncertainty in the failure propagation 596 

relationships of the system components can be considered explicitly, which makes the 597 

developed model most appealing for a realistic representation and analysis of complex 598 

systems. 599 

Then, quantification of the system functional reliability by Monte Carlo simulation becomes 600 

straightforward.  In order to validate the numerical results obtained, a Bayesian network of 601 

the wind turbine system was used, and the results compared satisfactorily with those obtained 602 

by simulation.  603 

In this study, a generic geared WTG model is considered for reliability assessment. The level 604 

of abstraction of the model achieves a balance between complexity and accuracy for a pilot 605 
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study of this kind. However, specific WTG components need to be considered in future 606 

works, from the practical point of view. For examples, the different types of generators, e.g. 607 

DFIG or SCIG, and the components of the electrical system, e.g. control unit and protection 608 

function/components, will be taken into account. This will be done in connection with the 609 

redefinition of the goal function(s) of WTGs, e.g. based on the relevant grid code. For 610 

example E. ON German grid code may be considered in the identification of the steady state 611 

operation goals. The grid code requirements are expected to significantly alter the 612 

classification of components. For example, the control unit will become a primary 613 

component. A failure in such unit of a DFIG may lead to severe stability problems and 614 

actions of protection devices. 615 

 616 
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Table 1: Component Classification 733 

Component Functionality Component Type Influencing Factors 

Blades Captures the wind energy and 

converts  it into mechanical 

energy 

Primary Crack formation 

Random shock 

Rotor Hub to which the blades are 

connected and angled. It also turns 

a low speed shaft inside the WT 

Primary Crack formation 

Random shock 

Low Speed Shaft Delivers mechanical energy from 

the rotor to the gearbox 

Primary Wear 

Eccentricity 

Gearbox Converts the low rotational speed 

from the rotor into high rotational 

speed to feed the generator 

Primary Wear 

Crack formation 

Toothed wheel 

displacement 

Break in teeth of 

wheel 

High Speed Shaft Delivers mechanical energy from 

the gearbox to the generator 

Primary Wear 

Eccentricity 

Generator Converts the mechanical energy 

into electrical energy 

Primary Wiring issue 

Winding damage 

Overheating 

Electrical System Delivers electrical energy to the 

grid 

Primary Wiring issue 

Overheating 

Structural Parts / Housing Protects the inner components of 

the WT from external factors 

Primary Crack formation 

Random shock 

Yaw System Turns the WT into the wind in 

order to capture the wind energy 

efficiently 

Primary Crack formation 

Break in teeth 

Eccentricity of shafts 

Toothed wheel 

displacement 

Mechanical Brake Locks the WT when needed (e.g. 

when the wind speed is too low) 

Secondary Wear 

Hydraulic System Controls some subunits of the WT 

(e.g. yaw system, mechanical 

brake, ...) 

Secondary High fluid 

temperature 

Aeration/Cavitation 

Loss of flow 

Electronic Control Centralises all the data received by 

the sensors and sends commands 

to some components 

Secondary Wiring issue 

Overheating 

Sensors Instruments that provide data on 

the external conditions and state of 

some components 

Secondary Random shock 

 734 

735 
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Table 2: Excerpt of Simulation Framework 736 

 737 

738 
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Table 3: Conditional Probability Definition Considering Uncertainty 739 

 740 

  741 
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Table 4: Comparisons of state probabilities at year 1 742 

State GTST Simulation 
Bayesian Network 

Simulation 

Absolute 

Error 

Normal Operation 23.6% 22.9% 0.7% 

Degradation 20.5% 22.9% 2.4% 

Failure 55.9% 54.1% 1.8% 

 743 

  744 
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Figure 1: Horizontal axis wind turbine system [36] 745 
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Figure 2: Wind Turbine System Diagram749 
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Figure 3: GT of the Wind Turbine System754 
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Figure 4: Success Tree759 
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 764 

Figure 5: Goal Tree - Success Tree - Master Logic Diagram Representation [34] 765 
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 768 

Figure 6: GTST-MLD Applied to Wind Turbines (PART 1 of 2)  769 
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 771 

Figure 7: GTST-MLD Applied to Wind Turbines (PART 2 of 2) 772 
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 774 

Figure 8: Annual Failure Frequencies and Down Time per Failure of Wind Turbine Components [40]775 
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 778 

Figure 9: State Probabilities of the Wind Turbine System over Time 779 
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Figure 10: Bayesian Network of Wind Turbine System 782 
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