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Abstract. The objective of the present work is to develop a novel approach for combining in an 
ensemble multiple base clusterings of operational transients of industrial equipment, when the 
number of clusters in the final consensus clustering is unknown. A measure of pairwise similarity is 
used to quantify the co-association matrix that describes the similarity among the different base 
clusterings. Then, a Spectral Clustering technique of literature, embedding the unsupervised K-
Means algorithm, is applied to the co-association matrix for finding the optimum number of clusters 
of the final consensus clustering, based on Silhouette validity index calculation. The proposed 
approach is developed with reference to an artificial case study, properly designed to mimic the 
signal trend behavior of a Nuclear Power Plant (NPP) turbine during shut-down. The results of the 
artificial case have been compared with those achieved by a state-of-art approach, known as 
Cluster-based Similarity Partitioning and Serial Graph Partitioning and Fill-reducing Matrix 
Ordering Algorithms (CSPA-METIS). The comparison shows that the proposed approach is able to 
identify a final consensus clustering that classifies the transients with better accuracy and robustness 
compared to the CSPA-METIS approach. The approach is, then, validated on an industrial case 
concerning 149 shut-down transients of a NPP turbine. 

Keywords: Unsupervised Learning, Ensemble Clustering, Final Consensus Clustering, Spectral 
Clustering, Operational Transients, Nuclear Power Plant (NPP) turbine shut-down.  
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1. Introduction 

In industries such as nuclear, oil and gas, automotive and chemical, equipments are subjected to 

several causes of performance degradation and exposed to faulty conditions, e.g., presence of 

manufacturing defects, unexpected interactions with the environment, wear and tear (Bolotin & 

Shipkov, 1998; Muller, Suhner, & Iung, 2008; Baraldi, Di Maio, & Zio, 2012; Baraldi, Di Maio, & 

Zio, 2013c). Capturing the different operational conditions of these equipments, detecting the onset 

of abnormal conditions and classifying them in different types can aid the decision maker to decide 

a proper maintenance intervention policy and, hence, increase equipment reliability and system 

safety while reducing overall corrective maintenance costs (Jardine, Lin, & Banjevic, 2006; Al-

Dahidi, Baraldi, Di Maio, & Zio, 2014). 

Measurements of relevant signals are collected during operation. These transient data are 

representative of different operational conditions of the equipment. For fault diagnosis, these data 

are manipulated with the objective of partitioning them into dissimilar groups, whose number is “a 

priori” unknown, such that data belonging to the same group are more similar than those belonging 

to the other groups, and corresponding to different equipment conditions. In particular, one can 

distinguish, among the groups, anomalous behaviors of the equipment and relate them to specific 

root causes (Fred & Jain, 2005; Xiufeng & Changzheng, 2010; Wu & Lee, 2011; Serir, Ramasso, & 

Zerhouni, 2012; Baraldi, Di Maio, Zio, Rigamonti, & Seraoui, 2013a; Serir, Ramasso, Nectoux, & 

Zerhouni, 2013).  

The problem of grouping the operational transients of an industrial equipment can be formulated as 

an unsupervised clustering problem aimed at partitioning the transient data into homogeneous 

clusters so that those data belonging to the same cluster are very similar to each other and dissimilar 

to those of the other clusters (Salvador, 2002; Bocaniala, Sa Da Costa, & Palade, 2004; Zhou, 

Zhang, & Wang, 2004; Chaovalit & Zhou, 2005; Wang, Yu, Siegel, & Lee, 2008; Wang, 2010; 

Baraldi et al. 2013a; Lin, Chen, & Zhou, 2013). 

Over the last few decades, several clustering algorithms have been proposed and used in practice, 

like K-Means (Hartigan, 1975; Vlachos, Lin, Eamonn, & Dimitrios, 2003; Siegel & Lee, 2011), 

Self-Organizing Maps (SOM) (Bhavaraju, Kankar, Sharma, & Harsha, 2010; Gonçalves, Bosa, 

Balen, Lubaszewski, Schneider, & Henriques, 2011; Al-Dahidi, 2014), Fuzzy C-Means (FCM) 

(Bezdek, 1981; Leguizamón, Pelgrum, & Azzali, 1996; Baraldi et al. 2012; Di Maio, Hu, Tse, 

Pecht, Tsui, & Zio, 2012; Baraldi et al. 2013c), Spectral Clustering (Von Luxburg, 2007; Zhao & 
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Liu, 2007; Baraldi, Di Maio, Zio, Rigamonti, & Seraoui, 2013b), Hierarchical clustering (Johnson, 

1967; Van Wijk & Van Selow, 1999; Datta, Mavroidis, & Hosek, 2007), and Hidden Markov 

Models (HMMs) (Baruah & Chinnam, 2005). However, there is no unique clustering algorithm 

capable of correctly identifying the underlying structure of any kind of dataset. Even the application 

of different clustering algorithms to the same set of data, or the same algorithm with different 

parameter settings leads to different clustering results (Fred & Jain, 2005; Fern & Lin, 2008; Vega-

Pons & Ruiz-Shulcloper, 2011).  

To handle this, ensemble approaches have been proposed that combine multiple base clusterings 

into a single consolidated clustering, i.e., the final consensus clustering P* (Strehl & Ghosh, 2002; 

Topchy, Jain, & Punch, 2004; Topchy, Jain, & Punch, 2005; Chen, 2007; Vega-Pons & Ruiz-

Shulcloper, 2011; Iqbal, Moh'd, & Khan, 2012). 

A typical ensemble clustering scheme is shown in Figure 1. For a given dataset ,X  the construction 

of the ensemble amounts to the aggregation of the results of multiple base clusterings. The base 

clusterings composing the ensemble can be different because of the different algorithms used and/or 

because of the different data and features upon which clustering is performed. The outcome of the 

multiple base clusterings are aggregated into a final consensus clustering P*, by a given method of 

aggregation (Strehl & Ghosh, 2002; Topchy et al. 2004; Chen, 2007; Greene & Cunningham, 2007; 

Vega-Pons & Ruiz-Shulcloper, 2011; Ahuja & Dhanya, 2012). 

Dataset
matrix

Base 
Clustering

X

Base 
Clustering

Base 
Clustering

…

Ensemble 
Clustering

P*

…

 

Figure 1: Scheme of ensemble clustering approach. 
The main challenges for an effective consensus strategy of aggregation are (Topchy et al. 2004): 1) 

different base clusterings group data differently and, maybe, in different numbers of clusters, 2) the 

correspondence between the clusters labels of different base clusterings is unknown, 3) the number 

of clusters M in the final consensus clustering is “a priori” unknown, 4) some base clusterings might 

not label some data (missing labels), and 5) for large datasets, large computational times might be 

needed.   
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Several methods have been used to obtain the final consensus clustering, for example Relabeling 

and Voting (Ayad & Kamel, 2010), Co-association Matrix (Vega-Pons & Ruiz-Shulcloper, 2011), 

Genetic Algorithms (Ghaemi, bin Sulaiman, Ibrahim, & Mustapha, 2011; Chatterjee & 

Mukhopadhyay, 2013), Finite Mixture Models (Topchy et al. 2004; Topchy et al. 2005), and Graph 

and Hypergraph partitioning (Karypis, Aggarwal, Kumar, & Shekhar, 1997; Strehl & Ghosh, 2002; 

Vega-Pons & Ruiz-Shulcloper, 2011). The success of these consensus strategies in addressing the 

above mentioned challenges is reported in Table 1. 

Table 1: Capabilities of ensemble clustering approaches (√ solved, Χ unsolved). 

Ensemble clustering 
approach 

Label 
correspondence 

problem  

Different 
number of 

clusters for each 
base clustering 

“A priori” 
knowledge of 

M  
Missing labels Computational 

limitations 

Relabeling and Voting  √ Χ Χ Χ No 

Co-association matrix Χ √ Χ √ Yes 

Genetic algorithm √ √ Χ Χ Yes 

Finite Mixture Models Χ √ Χ √ No 

Graph and Hypergraph 
partitioning 

Χ √ Χ √ Yes 

 

The Relabeling and Voting method solves the correspondence between the labels provided by 

different base clusterings, even for large datasets, by using a simple voting procedure to partition 

data in clusters (Dimitriadou, Weingessel, & Homik, 2001; Dudoit & Fridlyand, 2003), but it 

requires the number of clusters in the base clusterings to be the same and known “a priori” 

(Ghaemi, Sulaiman, Ibrahim, & Mustapha, 2009).   

Co-association based methods summarize similarities among base clusterings into a co-association 

matrix (Strehl & Ghosh, 2002), even for different numbers of clusters for the base clusterings, 

without any previous knowledge on M, but with high computational demands (Fred & Jain, 2005; 

Vega-Pons & Ruiz-Shulcloper, 2011).  

In genetic algorithm-based methods, the search capability of genetic algorithms is used to identify 

the most stable clusters once the label correspondence problem is solved (Ghaemi et al. 2009). The 

plus of the method is its ability to identify clusters that are not easily found by other methods, even 

for different numbers of clusters for each base clustering; on the other hand, its computational 

burden, and its inability to deal with the missing labels constitute practical limitations (Topchy et al. 

2004; Vega-Pons & Ruiz-Shulcloper, 2011).  
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In Finite Mixture Models, the final consensus clustering is seen as a probability model in the space 

of the base clusters and is found as a solution to the maximum likelihood problem for a given 

ensemble clustering (Topchy et al. 2004; Di Maio, Nicola, Zio, & Yu, 2014). The method does not 

solve the label correspondence problem, it is able to handle missing labels, it deals with different 

numbers of clusters for each base clustering and does not need any previous knowledge on M 

(Figueiredo & Jain, 2002), but its computational burden due to the estimation of the covariance 

matrices, makes the method difficult to apply in practice.  

Graph and Hypergraph partitioning algorithms, such as the Cluster-based Similarity Partitioning 

(CSPA), construct a graph from the similarities among the base clusterings, and cluster it using a 

graphic-based clustering algorithm, such as Serial Graph Partitioning and Fill-reducing Matrix 

Ordering Algorithm (METIS) (Karypis & Kumar, 1995; Karypis & Kumar, 1998; Strehl & Ghosh, 

2002; Topchy et al. 2004), for a predetermined value of M (Topchy et al. 2004; Ghaemi et al. 2009). 

The method does not solve the correspondence between the base clusterings labels, can handle the 

missing labels and different numbers of clusters for each base clustering, but it suffers computation 

limitations for large datasets. Despite this, CSPA and METIS algorithms have been taken as 

reference for comparison in this paper because CSPA-METIS is the simplest and “often” best 

performing method for consensus aggregation among other Graph and Hypergraph partitioning 

algorithms, e.g., Meta-CLustering Algorithm (MCLA) and HyperGraph-Partitioning Algorithm 

(HGPA) (Strehl & Ghosh, 2002; Chen, 2007), whose pitfall is that the number of final consensus 

clusters cannot exceed the maximum number of the individual base clusters.  

The novelty of the proposed approach is to replace METIS algorithm with Spectral Clustering (Von 

Luxburg, 2007; Baraldi et al. 2013b) and Silhouette validity index (Rousseeuw, 1987), to 

automatically determine M which by most industrial applications, is not known “a priori” 

(Chakaravathy & Ghosh, 1996; Strehl & Ghosh, 2002; Li & Chen, 2011). More specifically, the 

Spectral Clustering technique, embedding the unsupervised K-Means algorithm, is applied to the 

co-association matrix that describes the similarity among the different base clusterings obtained on 

a set of diverse sources of data (features) (e.g., vibration, temperature signals), rather than to the 

similarity values among the data themselves, for mining the clusters that are formed by the most 

similar data. Then, the optimum number of clusters C* is selected among several candidates 

Ccandidate, based on the morphology of the obtained final consensus clusters evaluated by the 

Silhouette validity index that measures the similarity of the data belonging to the same cluster and 

the dissimilarity of these in the other clusters (a large Silhouette value indicates that the obtained 
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clusters of the final consensus clustering are well separated and compacted (Rousseeuw, 1987; 

Charrad, Lechevallier, Ahmed, & Saporta, 2010).  

The proposed approach is developed on an artificial case study properly designed to mimic the 

signal trend behavior of Nuclear Power Plants (NPPs) turbines during shut-down transients. 

Different sets of features have been simulated and used to obtain different base clusterings, 

representative of different groupings of the shut-down transients of the turbine. The correct number 

of clusters, for each base clustering, has been identified by the Davies-Bouldin (DB) criterion: the 

minimum DB value is reached for the number of clusters which gives optimal separation and 

compactness (Davies & Bouldin, 1979). Three controlled datasets containing M sparse or 

overlapping clusters of their base clusterings results have been considered. The results obtained 

have been compared with those achieved by CSPA-METIS. It has been found that the proposed 

approach is able to identify the final consensus clustering with better accuracy and robustness 

compared to the CSPA-METIS approach.  

The approach is, then, applied to a real industrial case concerning 149 shut-down transients of a 

NPP turbine: different base clusterings representative of different groupings of the shut-down 

transients of the turbine are obtained by using multiple different sources of data (features), i.e., 

vibration, turbine shaft speed, vacuum, and temperature signals, and a final consensus clustering is 

obtained that gives the optimal grouping of the shut-down transients of the NPP turbine, in terms of 

groups separation and compactness.  

The remainder of the paper is organized as follows. In Section 2, the basics of CSPA-METIS 

ensemble approach are recalled. In Section 3, the proposed ensemble clustering approach is 

presented. The artificial case study representative of the signal trend behavior of a Nuclear Power 

Plant (NPP) turbine during shut-down transients is introduced in Section 4. Furthermore, the results 

obtained with the application of the proposed approach to the artificial case and the comparison 

with CSPA-METIS, are discussed. Section 5 verifies the robustness of the proposed approach to 

clustering overlapping, in identifying the number M for three controlled datasets containing sparse 

or overlapping clusters of their base clusterings results. The real industrial case concerning 149 

shut-down transients of a NPP turbine is introduced in Section 6 and the results of the application of 

the proposed approach to the case study are discussed. Finally, Section 7 concludes the paper with 

some considerations. 
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2. The CSPA-METIS ensemble clustering approach  

In this Section, the combination of CSPA and METIS is described and considered as reference 

ensemble clustering approach, for the case when the number M of clusters in the final consensus 

clustering is known. 

The flowchart for the method is sketched in Figure 2. The algorithm goes along the following two 

phases: a procedure (i.e., CSPA) for establishing a co-association matrix and a procedure (i.e., 

METIS) for partitioning the graph obtained from the co-association matrix to obtain the final 

consensus clustering P* (Strehl & Ghosh, 2002; Topchy et al. 2004).  

We consider N data belonging to the dataset X that are clustered into H base clusterings. For each j-

th base clustering, j=1,…,H, each datum is labeled by an integer number ranging in [1, ]j
optC , where 

j
optC is the number of clusters for each j-th base clustering. The problem of clustering the N data is, 

thus, transformed into an aggregation problem of the base clusterings outcomes Y of size NxH. 

The algorithm entails three main steps; without loss of generality, these are hereafter described on a 

simple numerical example where X contains N=5 data, clustered into H=3 base clusterings: 

Step 1: Adjacency matrix computation. In practice, for each j-th base clustering (reported in Table 2 

for the simple explanatory example), if two data belong to the same cluster they are considered 

similar, i.e., similarity μ=1, and if not they are dissimilar, i.e., similarity μ=0. Thus, for each j-th 

base clustering, an adjacency binary similarity matrix, 
j

A , of size NxN, is built (Strehl & Ghosh, 

2002) (Figure 3, left, where the different black entries are μ=1 and the white entries are μ=0). 
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Figure 2: Flowchart of the CSPA-METIS approach. 
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Table 2: The H=3 base clusterings results of the N=5 data (illustrative example of CSPA). 

 j=1 j=2 j=3  

X1 1 2 1 

X2 1 2 2 

X3 2 1 3 

X4 2 1 1 

X5 2 1 2 

 

Step 2: Similarity matrix computation. The entry-wise average of the obtained H binary similarity matrices 

leads to obtaining the overall similarity matrix 1 T
S A A

H
 (Figure 3, right), of size NxN (Strehl & Ghosh, 

2002). In this way, each entry of the similarity matrix has a value in [0,1], which is proportional to how 

likely a pair of data is, when grouped together. 

1 2 3 4 5

1

2

3

4

5

  The j=1   
base clustering

1 2 3 4 5

1

2

3

4

5

  The j=2   
base clustering

1 2 3 4 5

1

2

3

4

5

  The j=3   
base clustering

1 2 3 4 5

1

2

3

4

5

           The overall           
similarity matrix S  

Figure 3: Base clusterings adjacency matrices (left) and the similarity matrix (right) of the numerical 
example. 

Step 3: Final consensus clustering computation. To produce a final consensus clustering P*, the 

graphic-based clustering algorithm METIS is adopted to partition the obtained similarity graph 

(shown in Figure 3, right) (Strehl & Ghosh, 2002). METIS is a multilevel graph partitioning 

algorithm that entails three main steps (refer to Karypis & Kumar, 1998, for more details): 

1. the original graph is collapsed (coarsed) in smaller graphs (where the vertices are the data and 

the edges are the similarities), by resorting to Random Matching (RM) (Bui & Jones, 1993),  

2. Spectral Bisection is used for partitioning the coarsened graphs (Barnard & Simon, 1994),  

3. The partitions effectiveness is quantified by successively projecting the partitions into the 

original graph. It has been shown that METIS produces a high quality partitioning in a relatively 

small amount of time. However, the number of partitions to be found and, hence, the number of 

clusters in the final consensus clustering, has to be known “a priori”. One option can be to 
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assign the number of clusters in the final consensus clustering to be equal to the maximum 

number of clusters in the H base clusterings, M=max ( j
optC ), j=1,…,H. 

In the following Section, an ensemble approach is proposed to overcome the requirement of an “a 

priori” knowledge of the number of clusters M in the final consensus clustering. 

3. The proposed ensemble clustering approach 

In this Section, an ensemble approach is proposed, that evolves from that of Section 2 to avoid the 

hypothesis on the number of clusters M in the final consensus clustering. The proposed approach is 

based on the combination of: 1) CSPA method to compute the similarity matrix ,S 2) Spectral 

Clustering to transform S into a normalized laplacian matrix ,rsL and then, compute its spectrum 

information (eigenvectors) (see Appendix A.1), 3) a clustering algorithm, e.g., the K-means 

algorithm, that is fed with the eigenvectors calculated in the previous step 2), to find the final 

consensus clustering, and 4) the Silhouette index to quantify the goodness of the obtained clusters 

(see Appendix A.2).  

The flowchart for the method is sketched in Figure 4. The method goes along the following steps: 

Step 1: Adjacency matrix computation. This Step corresponds to Step 1 of Section 2. 

Step 2: Similarity matrix computation. This Step corresponds to Step 2 of Section 2. 

Step 3: Spectral Clustering. Once the overall similarity matrix S is computed, Spectral Clustering 

(Appendix A.1) is used to reveal the hidden structure of .S  The basic idea of Spectral Clustering is 

to extract the relevant information of the matrix ,S by considering the eigenvectors associated to the 

ascended eigenvalues 1 2, ,..., ,...,
candidate NC    of the normalized laplacian matrix rsL of ,S to perform 

dimensionality reduction before clustering in fewer dimensions (see Step 1 in Appendix A.1) (Von 

Luxburg, 2007; Baraldi et al. 2013c). The eigenvectors 1 2, ,..., ,...,
candidate NCu u u u of the eigenvalues 

1 2, ,..., ,...,
candidate NC    are calculated and stored in a matrix U with a size NxN (see Steps 2 and 4 in 

Appendix A.1), where Ccandidate=[Cmin,Cmax] and Cmin and Cmax are the minimum and maximum 

numbers of clusters considered for the final consensus clustering, respectively.  

Step 4: Clustering algorithm. For each candidate number of clusters Ccandidate, the reduced matrix of 

U with a size NxCcandidate is partitioned into Ccandidate clusters by using a single clustering algorithm 

and the final consensus clustering *
candidateCP is obtained. In this work, we resort to the K-means 
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algorithm, one of the most used clustering methods, to partition U  into K=Ccandidate clusters (Su & 

Chou, 2001; Fern & Lin, 2008). 
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Figure 4: Flowchart of the proposed approach. 
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Step 5: Final consensus clustering selection. For each Ccandidate, the obtained consensus clustering 
*
candidateCP is evaluated by computing its Silhouette validity index 

candidateCSV (Rousseeuw, 1987). The most 

appropriate consensus clustering *
*

C
P  is the one for which the Silhouette reaches a maximum, for 

which clusters are well separated and compacted (see also Appendix A.2). 

4. Artificial case study  

An artificial case study has been designed to generate N=149 data representative of the signals 

trends behaviors of M=7 different settings of shut-down operations. This is done to mimic the real 

industrial case of Section 6, concerning N=149 real shut-down transients of a NPP turbine. Each 

datum is described by F=7 features (as for the real case study of Section 6), representative of the 

turbine condition, e.g., mean value of the vibration signals, and of the environmental and 

operational conditions that can influence the turbine behavior, e.g., mean values of the vacuum and 

temperature signals. These data are stored in a matrix X of a size 149x7. 

The objective is to reveal the “hidden” (but simulated and, thus, known) structure P* of the dataset 

X by identifying groups of data with similar functional behaviors, representative of different 

operational conditions of the turbine. Without loss of generality, it is assumed that the operational 

conditions of the NPP turbine are M=7: 1) three classes of normal condition (NC1, NC2, NC3), 2) 

three classes of abnormal condition (AC1, AC2, AC3), and 3) one class of outliers (i.e., unknown 

behaviours). The dataset X  is pictorially shown in Figure 5: data with similar characteristics, e.g., 

vibration signals, and environmental and operational conditions which can influence the turbine 

behavior, e.g., vacuum and temperature signals, have been grouped together and will be treated 

within the same base clustering.  

As shown in Figure 5, H=3 sets of features jX have been simulated and considered: the set of 

features 1, 2, and 3 (j=1), that of features 4 and 5 (j=2), and that of features 6 and 7 (j=3). This is 

found by a filter approach for which the optimal subsets of features are selected on the basis of 

statistical properties. 
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Figure 5: The seven operational conditions of the artificial case study. 

The values of the features for different classes of data have been created by randomly sampling 

their realization from different multivariate normal and log-normal distribution functions (1 to 10 in 

Figure 5), whose combination characterizes the class.   

Figure 6 shows the sampled data of the three sets of features: it is worth noticing that clustering 

each j-th set of features independently may reveal only some groups of the “hidden” NPP turbine 

operational conditions indicated in Figure 5, whereas only a final consensus clustering would 

enlighten all the M=7 clusters. In particular: 

1. Figure 6 (Left) shows the dataset of the j=1 set of features: clusters can be seen for NC1 and NC2 

in squares, NC3 in diamonds, and there are also three outliers (147-149). Base clustering of this set 

of features cannot reveal any abnormal operational condition.  

2. Figure 6 (Middle) shows the dataset of the j=2 set of features: clusters can be seen for NC1 in 

squares, NC2 and NC3 in diamonds, and there is also one outlier (149). Again, base clustering of 

this set of features cannot reveal any abnormal operational condition.  

3. Figure 6 (Right) shows the dataset of the j=3 set of features: clusters can be seen for all normal 

operational conditions in squares, and abnormal operational conditions AC1 in diamonds, AC2 in 

circles, and AC3 in triangles. Base clustering of this set of features cannot reveal any outlier. 

The objective is to aggregate these base clusterings into a final consensus clustering P*, capable of 

identifying the “true” grouping of the shut-down transients of the NPP turbine. 
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To mine the clusters shown in Figure 6, the j-th base clustering outcomes are obtained by the 

unsupervised Fuzzy C-Means (FCM) algorithm (Baraldi et al. 2013c). 
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Figure 6: The artificial datasets of the three sets of features. 

For identifying the correct number of clusters j
optC  for each base clustering, single clustering 

validity index (e.g., Silhouette, Davies-Bouldin (DB), etc.) or a combination of different validity 

indices can be used (Onanena, Oukhellou, come, Jemei, Candusso, Hissel, & Aknin, 2013). In this 

work, Davies-Bouldin (DB) validity criterion has been considered for mining the clusters of the 

base clusterings (Davies & Bouldin, 1979) (whereas, the Silhouette validity index is used for 

identifying the optimum number of clusters in the final consensus clustering). The Davies-Bouldin 

(DB) criterion is based on the ratio of within-cluster and between-cluster distances: the optimal 

clustering, which gives optimal separation and compactness of the obtained clusters, has the 

smallest DB index value (Davies & Bouldin, 1979; Legány, Juhász, & Babos, 2006; Onanena et al. 

2013).   

Figure 7 shows the DB values for different numbers of clusters in the range of [2,10], for each j-th 

set of features: the star indicates the optimum number of clusters j
optC . For validation of the DB 

validity criterion to decide j
optC , we use the information on the “simulated” classes to which the data 

belong, to calculate the misclassification rate (Table 3) (it is worth noticing that in real industrial 

applications the real class is unknown). 
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Figure 7: DB values vs. cluster numbers for the three sets of features. 

Table 3: Optimum numbers of clusters and misclassification rates of clustering for the three sets of features. 

 

 

 

The obtained base clustering labels for each set of features have been, then, stored in a matrix Y of 

size 149x3. The application of the clustering ensemble approach aims at finding the final consensus 

clustering of the data. In Section 4.1 and Section 4.2 the CSPA-METIS approach and the proposed 

approach are applied, respectively. 

4.1. Application of CSPA-METIS approach 

The application of the CSPA-METIS approach is here described according to the steps illustrated in 

Section 2: the overall adjacency matrix A  and the overall similarity matrix S have been computed 

(Steps 1 and 2), respectively. A graph is obtained from S and METIS is used to produce a final 

consensus clustering (Strehl & Ghosh, 2002; Topchy et al. 2004). 

To this aim, the number of clusters M=7 in the final consensus clustering is assumed to be known “a 

priori”. Figure 8 shows the obtained results of the aggregation P* (left) compared to the true 

clustering (right). 

The Figure shows the N=149 data (middle) in chronological order from top to bottom, with the 

associated true clustering labels located on the right coordinate, i.e., NC1, NC2, NC3, AC1, AC2, 

AC3, and Outliers with different color shades for their transients allocations. A fully symmetric plot 

would mean 100% of correct label assignment, whereas the blurrier the plot, the larger the 

misclassification rate. The application of CSPA-METIS leads us to distinguish mainly three clusters, 

i.e., NC1, NC2 and NC3, whereas the remaining data have not been correctly clustered. Comparing 

Set of features j
optC  Misclassification 

rate  
j=1 2 8.1% 

j=2 2 5.3% 
j=3 4 6.1% 
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the obtained clustering results with the true “simulated” clustering, one can calculate the 

misclassification rate to be equal to 41.6% (62 out of 149 data incorrectly classified), which is not a 

satisfactory result. 
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Figure 8: The obtained final consensus clustering by CSPA-METIS for M=7 vs. the true clustering. 

One might be wondering whether the result would change if a different validity index would be 

used at this stage of the approach. For completeness, we use the Silhouette for selecting the number 

of clusters from the interval [2,16], where the lower bound (2) is the minimum number of base 

clusters (see Table 3), whereas the upper bound (16) is the number of the largest combination of the 

three base clusters (i.e., 2x2x4). The optimum number of clusters C* in the final consensus 

clustering is found for the value at which the Silhouette measure is maximized, i.e., C* =3 (star in 

Figure 9) (for which the obtained clusters are well separated and compacted). Despite that, again the 

clusters are not representative of the true “simulated” clustering, i.e., M=7.  

The obtained results of the aggregation P*, compared with the true clustering are shown in Figure 

10 (left and right, respectively). Comparing the obtained clustering results with the true “simulated” 

clustering, one can calculate the misclassification rate to be equal to 36.9% (55 out of 149 data 

incorrectly classified). 
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Figure 9: Silhouette values vs. cluster numbers. 
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Figure 10: The obtained final consensus clustering by CSPA-METIS for C* = 3 vs. the true clustering. 

In the following Section, the application of the developed approach is shown to improve the final 

consensus clustering. 

4.2. Application of the proposed ensemble clustering approach 

The application of the proposed ensemble clustering is here described according to the steps 

presented in Section 3: the method entails a similar procedure of CSPA-METIS for calculating 

S and a procedure to identify the final consensus clustering P*. 

Given the similarity matrix ,S we calculate rsL  and its eigenvectors 1 2 149, ,..., ,..., ,
candidateCu u u u  and the 

corresponding eigenvalue 1 2 149, ,..., ,..., .
candidateC    The obtained eigenvectors are stored in the matrix U  

with size 149x149 (see also Appendix A.1). The number M of clusters in the final consensus 
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clustering is selected according to the values of the Silhouette index for different numbers of 

clusters Ccandidate that span the interval [2,16], where the lower bound (2) is the minimum number of 

base clusters (see Table 3), whereas the upper bound (16) is the number of the largest combination 

of the three base clusters (i.e., 2x2x4): the optimum number of clusters C* in the final consensus 

clustering is the value at which the Silhouette is maximized, i.e., C* =6 (star in Figure 11). 
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Figure 11: Silhouette values vs. cluster numbers. 

The results of the application of the proposed method to the artificial case study are represented in 

Figure 12. Comparing the obtained clustering results (left) with the true “simulated” clustering 

(right), one can recognize that the misclassification rate has been reduced to 4.03% (6 out of 149 

data incorrectly classified).   
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Figure 12: The obtained final consensus clustering by the proposed approach vs. the true clustering. 
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It is worth noticing that only six out of seven operational conditions have been recognized (C* =6, 

while M=7). The outliers (three transients – class 7) have not been grouped together: this depends 

on the capability of the base clustering algorithm in recognizing the outliers (Topchy et al. 2004; 

Topchy et al. 2005; Serir et al. 2012). 

For example, the optimum number of clusters for the j=1 set of features is  1 2optC   (see Figure 7), 

whereas it should be equal to 3 (see Figure 5). This sensitivity to the quality of the data at hand calls 

for an investigation on the robustness of the proposed method to different dataset characteristics, as 

it will be discussed in the following Section. 

5. Robustness of the ensemble clustering approach to clustering overlapping 

To verify the robustness of the proposed approach, a controlled sensitivity test has been designed. 

By robustness, here we intend the property of the approach to provide final consensus clustering 

with low misclassification rate even in case of a large overlap or separation of the real clusters.  

With this aim, the clusters of Figure 6 have been modified by changing the parameters of the 

multivariate distributions from which the data are sampled, as follows: 

1. Case I (Large separation): in this case, the clusters of the j-th set of features, j=1,…,3 are 

designed to be well separated and compacted.  

2. Case II: this is typically the case of Section 4. In this case, the clusters of the j-th set of features, 

j=1,…,3, are slightly overlapped compared to Case I. 

3. Case III (Large overlap): in this case, the obtained clusters from the j-th set of features, 

j=1,…,3, are overlapped and less compact. 

Figure 13 shows the three cases for the three sets of features. As long as we are moving from Case I 

to Case III, the clusters identified start overlapping and become less compact. 
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Figure 13: The three controlled cases for the three sets of features. 

Figure 14 shows the results of the application of the proposed method to Cases I, II and III. The 

maximum Silhouette values (star in Figure 14 (left)) of the three cases indicate that the optimum 

number of clusters C* in the final consensus clustering is still equal to 6. 

The corresponding final consensus clustering (Figure 14 (right)) is compared with the one obtained 

by CSPA-METIS for the predetermined value M=7 (Figure 14 (middle)). It is interesting to notice 

that the clusters of the final consensus clustering obtained by the proposed approach are well 

representative of the true clusters, contrarily to the final consensus clustering obtained by CSPA-

METIS. 
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Figure 14: Silhouette values (left) and the final consensus clustering obtained for the three artificial cases by the 

proposed approach (right) and CSPA-METIS (middle). 

The performances of the two approaches can be more precisely compared by calculating the 

misclassification rates in the three test cases by using the information on the real classes to which 

the data belong. The misclassification rates for the three cases using the two approaches are 

reported in Table 4. 
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Table 4: The misclassification rates of the proposed and CSPA-METIS approaches for the three test cases. 

 
The Proposed 
approach 

The CSPA-
METIS 
approach 

Case 1 2.7% 36.9% 

Case 2 4.0% 40.3% 

Case 3 8.7% 43.6% 

 

Furthermore, as the clusters of the sets of features are overlapped and spread (Case III), the 

performance of the proposed approach decreases compared to Case I, as expected. In conclusion, 

we can state that the proposed approach is superior to CSPA-METIS, for this particular dataset. 

6. The real case study  

The proposed approach has been applied to a real industrial case concerning N=149 real shut-down 

multidimensional transients of a NPP turbine. The generic i-th transient is a multidimensional 

transient in a Z=70 dimensional signal space with a time horizon of Np=4500 time steps (2.5 hours). 

The objective is to partition the N=149 multidimensional transients into M (“a priori” unknown) 

dissimilar groups, such that transients belonging to the same group are more similar than those 

belonging to the other groups. Engineering and experts judgment suggest a set of H=2 base 

clusterings: 

1. Clustering of data representative of the turbine condition (j=1): seven signals of the turbine shaft 

vibrations have been considered (taken from sensors located at different stages of the turbine, 

whose detailed characteristics cannot be provided, due to confidentiality reasons), since 

vibration data contains signatures which, if properly interpreted, can reveal the operational 

condition of the turbine (Betta, Liguori, Paolillo, & Pietrosanto, 2002; Baraldi et al. 2013a). The 

similarity between the transients is measured by computing the pointwise difference between all 

seven vibration signals values. Then, a Spectral Clustering technique, embedding the 

unsupervised Fuzzy C-Means (FCM) algorithm, is applied to the obtained similarity matrix. 

Five different groups of transients 1 5optC  representing different operational conditions have 

been identified thanks to the Eigengap heuristic theory (see Appendix A.1 – Step 3). 

2. Clustering of data representative of the environmental and operational conditions that can 

influence the turbine behavior (j=2): the values of turbine shaft speed, vacuum and structural 
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temperature signals have been considered (Baraldi et al. 2013b) (taken from different locations 

of the turbine, whose details cannot be disseminated, due to confidentiality reasons). The 

optimum numbers of clusters is found to be 2 6optC  . 

The base clusterings results have been aggregated in a matrix Y with a size of 149x2 and the 

proposed approach has been applied following the steps illustrated in Section 3. The optimum 

number of clusters C* in the final consensus clustering is selected according to the Silhouette values 

for different numbers of clusters Ccandidate  that span in the interval [5,30], where the lower bound (5) 

is the minimum between  1
optC  and 2

optC , and the upper bound (30) is the number of the largest 

combination of the two base clusters (i.e., 5x6).  

It is important to point out that neither a too large nor a too small number of clusters can be 

considered as a valuable result from the practical point of view of linking turbine conditions with 

environmental and operational conditions: a large number of clusters makes the explanation of the 

turbine conditions too vague, whereas a small number is at risk of poor specification of the obtained 

clusters. In this analysis, the optimum number of clusters C* in the final consensus clustering is 

found to be C* =14, at which the Silhouette measure is maximized (star in Figure 15): this is a good 

compromise between small and large numbers of clusters. Figure 15 shows, indeed, that the 

Silhouette values for small and large numbers of C* are much worse than for C* =14, due to the 

dissimilarity of the data (inappropriately) assigned to the same clusters. 
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Figure 15: Silhouette values vs. cluster numbers. 

Results of the application to the real case study are shown in Figure 16, where the N=149 transients 

are plotted in chronological order on the horizontal axis along with the j=1 base clustering results 

(the vertical axis) and the j=2 base clustering results represented by six different markers (square, 

diamond, star, triangle, circle, and dot). 
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Looking to the j=1 base clustering results, one can clearly identify four blocks of different labels 
1 1 1 1
1 2 3 4( , , and ).C C C C Since the transients are numbered in increasing order with respect to their 

“calendar” occurrence, it has been possible to infer from the experts that the functional behavior of 

the turbine is different in the four clusters because of major maintenance interventions that have 

been undertaken at the specific calendar times and have resulted in radical changes of the turbine 

behaviour.  

Among these main blocks, 17 transients (1, 3, 20, 24, 25, 26, 28, 31, 51, 70, 114, 115, 130, 136, 

145, 146, and 147) are classified as outliers, since they are not clustered together with the previous 

4 groups and, thus, could be representative of different faulty conditions in the turbine 1
5 )(C (Baraldi 

et al. 2013a). 
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Figure 16: The 149 transients in chronological order along with the j=1 and j=2 base clustering results. 

For the ease of clarity, we only consider vibration signal 1 as an example of vibration signal 

evolution of the j=1 base clustering results for the 5 clusters 1 1 1 1 1
1 2 3 4 5,, , andC C C C C and the 

corresponding turbine speed values (Figure 17). 

One can recognize that, on one side, the functional behaviors of transients belonging to clusters 1 to 

4 1 1 1 1
1 2 3 4( , , and )C C C C are similar, with some peculiarities that lead to their splitting into 4 clusters 

rather than being clustered together, whereas the transients of cluster 5 1
5 )(C  greatly differ from the 

others (outliers) (Baraldi et al. 2013a). 
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Figure 17: The evolution of vibration signal 1 of the 5 obtained clusters of the j=1 base clustering and the 

corresponding turbine speed values. 

It is worth mentioning that the consensus clustering P* can provide us with more insights than the 

j=1 base clustering. In fact, j=2 base clustering helps explaining the characteristics of 1
1C , 1

2C , 1
3C  and 

1
4C  (of Figure 17) on the basis of the environmental and operational conditions. 

In fact, looking at the environmental and operational conditions obtained by the j=2 base clustering 

in Figure 16, one can recognize that transients of each cluster obtained by the j=1 base clustering 

are influenced by different environmental and operational conditions that are obtained by the j=2 

base clustering. 

For example, Figure 18 shows pictorially that the transients belonging to 1
2C  of the j=1 base 

clustering have been splitted into four different final consensus clusters  *
3(P , *

7P , *
10P , and *

13 ),P  each 

one due to a different environmental and operational conditions 2
5(C , 2

1C , 2
6C , and 2

4 )C  as recognized 

by the j=2 base clustering (circle, square, dot and triangle markers, respectively in Figure 16). 
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Figure 18: Characteristics of cluster 2 of the j=1 base clustering in the final consensus clustering on the basis of 

four environmental and operational conditions of the j=2 base clustering. 

Figure 19 (top) shows the evolution of vibration signal 1 and the corresponding turbine speed for 

the transients belonging to 1
2C  of the j=1 base clustering splitted into four clusters *

3(P , *
7P , *

10P , and 
*

13 )P obtained in the final consensus clustering (Figure 19 (bottom)): the transients indeed have 

similar functional behaviors as obtained by the j=1 base clustering, but they are further divided 

since they are influenced by different environmental and operational conditions obtained by the j=2 

base clustering. 

1300 1100 900 700 500
0

50

100

150

200

250

300

Turbine shaft speed (rpm) 

V
ib

ra
tio

n
sig

na
l 1

 

1300 1100 900 700 500
0

100

200

300

P3

V
ib

ra
tio

n
 si

gn
al

 1

Turbine shaft speed (rpm)
1300 1100 900 700 500
0

100

200

300

P7

V
ib

ra
tio

n
 si

gn
al

 1

Turbine shaft speed (rpm)

1300 1100 900 700 500
0

100

200

300

P10

V
ib

ra
tio

n
 si

gn
al

 1

Turbine shaft speed (rpm)
1300 1100 900 700 500
0

100

200

300

P13

V
ib

ra
tio

n
 si

gn
al

 1

Turbine shaft speed (rpm)

C12

 

Figure 19: The evolution of vibration signal 1 of cluster 2 obtained by the j=1 base clustering with respect to the 

4 clusters obtained in the final consensus clustering. 

As last remark, it is worth mentioning that two clusters   *
2(P  and *

12 )P  of the final consensus 

clustering aggregate most of the outliers which belong to 1
5C  of the j=1 base clustering (all these 
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transients are explained by the environmental and operational conditions 2
2C  and 2

5C  of the j=2 base 

clustering).  

This lead us to distinguish, in the set of outlier transients with peculiar behavior of the turbine, two 

representative faulty conditions at two different environmental and operational conditions *
2(P and 

*
12 )P .  

Figure 20 shows the evolution of vibration signal 1 and the corresponding turbine speed for the 

transients of the two final consensus clusters *
2(P  and *

12 )P : despite that these transients are 

sufficiently similar in functional behaviour to belong to 1
5C  of the j=1 base clustering, their grouping 

into only two consensus clusters is driven (and can be explained) by the two different 

environmental and operational conditions 2
2(C  and 2

5 )C  obtained by the j=2 base clustering. 
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Figure 20: The evolution of vibration signal 1 of the transients aggregated in the two clusters *
2(P  and *

12 )P  of the 

final consensus clustering. 

The ability of the proposed approach to distinguish the different operational conditions of the 

turbine and recognize different faulty conditions of the turbine is an indication of the good 

performance of the proposed approach. 

7. Conclusions 

In this work, an approach to build a consensus clustering of individual base clusterings is proposed, 

based on Spectral Clustering and Silhouette validity index. First, the base clustering results are 
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summarized in a co-association matrix by pairwise similarity computation. Then, a Spectral 

Clustering technique, embedding the unsupervised K-Means algorithm, is applied to the matrix of 

similarity values so that the clusters are formed by the most similar data. The optimum number of 

clusters is selected among several candidates based on the morphology of the obtained clusters, 

measured by the Silhouette validity index that gives reason of the similarity of data belonging to the 

same cluster and the dissimilarity with those in the other clusters. 

The proposed approach has been successfully applied to an artificial case study “properly” designed 

to reproduce the signal trend behavior of a Nuclear Power Plant (NPP) turbine during shut-down 

transients. The results obtained have been shown satisfactory by comparison to those obtained by 

the CSPA-METIS approach of literature. Further, three controlled datasets containing M sparse or 

overlapping clusters have been analyzed to verify the robustness with respect to clustering 

overlapping.   

Finally, the proposed approach has been applied to a real industrial case concerning the 

multidimensional signals of 149 shut-down transients of a NPP turbine. Different base clusterings 

representative of different groupings of the shut-down transients of the turbine have been obtained 

by using multiple, different sources of data (features), such as vibration, turbine shaft speed, 

temperature, and vacuum signals. The approach has led to distinguishing 14 different operational 

conditions of the turbine, representative of different behaviors under different environmental and 

operational conditions. Two peculiar behaviors of the turbine have been identified, representative of 

two faulty conditions at two different environmental and operational conditions. 
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Nomenclature 
NPP Nuclear Power Plant I  Eigenvectors of rsL  

CSPA Cluster-based Similarity Partitioning 
Algorithm 
Original space dataset matrix 

F 
Number of features (columns) of X  

METIS Serial Graph Partitioning and Fill-reducing 
Matrix Ordering Algorithm 

Z Number of signals of each i-th transient 

NC Normal operational conditions 
jY  j-th base clustering result, j=1,…,H 

AC Abnormal operational conditions *C  Optimum number of clusters in the final consensus 

clustering 

SOM Self-Organizing Maps *
candidateCP  Final consensus clustering with candidateC  clusters, candidateC  

ϵ [Cmin, Cmax] 

FCM Fuzzy C-Means 
*

*
C

P  Final consensus clustering at the optimum number of 

clusters, *C   

HMMs Hidden Markov Models M True number of clusters in the final consensus clustering 

P* Final consensus clustering DB Davies-Bouldin criteria  

X  Original space dataset matrix 
jX  j-th set of features of the original dataset, j=1,…,H 

Y  Labels aggregation matrix (base clustering 
results) candidateCSV  Silhouette validity value at ,candidateC  candidateC  ϵ [Cmin, 

Cmax] 

H 
Number of base clusterings 

ia  Average distance of the i-th datum from the other data 

belonging to the same cluster 

j 
Index of base clustering 

ib  Minimum average distance of the i-th datum from the 

data belonging to a different cluster 

N Number of data (rows) of X  mS  Mean Silhouette value for the m-th cluster 

i Index of a datum (transient) belonging to 

X  
ijS  Pairwise similarity value between the i-th and j-th data 

j
optC  Optimum number of clusters of the j-th set 

of features mC  m-th cluster in the final consensus clustering 

j
A  Adjacency binary similarity matrix of the 

j-th base clustering, j=1,…,H mn  Total number of data in the m-th cluster in the final 

consensus clustering 
  Pairwise binary similarity value  iS  Silhouette value of the i-th datum 

S  Co-association matrix D  i-th entry of the diagonal matrix D  

minC  Minimum number of clusters in the final 

consensus clustering P* 
rsL  Diagonal matrix with diagonal entries d1, d2,…, dN 

maxC  Maximum number of clusters in the final 

consensus clustering P* 
candidateCu  

Normalized Laplacian Matrix 

candidateC  Possible number of clusters in the final 

consensus clustering P*, candidateC  ϵ [Cmin, 

Cmax]  

  

The Ccandidate-th eigenvector of rsL  

  U  Eigenvalue of rsL  
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Appendices 
Appendix A.1 Unsupervised Spectral clustering 
 
Spectral Clustering technique uses the spectrum (eigenvalues) of the similarity matrix of the data to 

perform dimensionality reduction before clustering in fewer dimensions (Baraldi et al. 2012; 

Baraldi et al. 2013c). In this work, the similarity matrix S  of size NxN is computed by Cluster-

based Similarity Partition Algorithm (CSPA). The Spectral Clustering technique entails four steps 

(Baraldi et al. 2013a): 

Step 1: Normalized Laplacian Matrix. Starting from the similarity matrix S , the degree matrix D  

is calculated, whose entries d1, d2,…, dN are: 

1
, 1, 2,...,

N

i ij
j

d S i N


   (A1) 

Based on D , the normalized Laplacian matrix rsL , is calculated: 

1 1
rsL D L I D S

 

    (A2) 

where L D S=  and I is the identity matrix of size [N, N]. 

Step 2: Eigenvalues and eigenvectors of .rsL Given ,rsL  compute the eigenvectors 1 2, ,..., .Nu u u The 

first C eigenvalues are such that they are very small whereas λC+1 is relatively large (Ng, Jordan, & 

Weiss, 2001; Von Luxburg, 2007; Zhao & Liu, 2007). 

Step 3: Number of clusters. The number of clusters is set equal to C, according to the Eigengap 

heuristic theory (Mohar, 1997). 
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Step 4: Feature extraction. The relevant information on the structure of the matrix S is obtained by 

considering the eigenvectors 1 2, ,..., Nu u u associated to the C smallest eigenvalues of its laplacian 

matrix rsL . The square matrix S is transformed into a matrix U of size [N, C], in which the C 

columns of U are the eigenvectors (Von Luxburg, 2007). 

 
Appendix A.2 Silhouette validity index 
 

To evaluate the optimal number of clusters *C among several clusters candidates, Silhouette validity 

index has been adopted. The silhouette value for the i-th datum, i=1,…,N, is a measure of how 

similar/dissimilar that datum is to others in its own cluster and to the other clusters, respectively. 

The silhouette value for the i-th datum Si is defined as (Rousseeuw, 1987): 

   - / max ,i
i i i iS b a a b  (A3) 

where ai is the average distance from the i-th datum to the others in the same cluster, and bi is the 

minimum average distance from the i-th datum to the others in a different cluster, minimized over 

clusters. 

The mean of the silhouette values for the m-th cluster Cm is called the cluster mean silhouette and is 

denoted as Sm (Eq. (A4)): 

1

m

i
m

i Cm

S S
n 

   (A4) 

where mn  is total number of data in the m-th cluster. Finally, the global silhouette index 
candidateCSV is 

the mean of the mean silhouettes (Eq. (A5)) through all the clusters. 

1

1 C candidate

candidate

candidate

C m
mC

SV S


   (A5) 

The Silhouette value ranges from -1 to +1. A high Silhouette value *C
SV  indicates that the *C  

clusters of the final consensus clustering are well separated and compacted. 

 


