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In this paper, we study the properties of flexible queries in the OLAP (On-Line Analytical

Processing) framework, focusing on unary operators. For this purpose, we consider the
model we have defined for fuzzy multidimensional databases. This model provides means
to handle fuzzy data and flexible queries. The operators defined in this model are closed
on the set of fuzzy hypercubes (hereafter cubes), which means that the result of each
operator on a fuzzy cube is a cube. Thus, these operators can be nested into expressions.
In this paper, the combination of several queries is investigated in order to study the
possibility for the definition of an algebra to manipulate fuzzy cubes. This would provide
a framework for query rewriting and, as a result, for query optimization.

Keywords: Fuzzy Multidimensional Queries, Successive Queries, Combination of
Queries.

1. Introduction

OLAP (standing for On-Line Analytical Processing) is a recent framework de-
voted to the fast analysis of multidimensional information1. It consists in a set of
technologies to collect, store, and treat multidimensional data for analysis. It has
appeared that the relational database model is not suitable for this type of applica-
tions devoted to analysis, and the multidimensional model has emerged to support
OLAP1. The multidimensional model provides a framework to deal with data as
multidimensional arrays.

However, no model is able to deal with fuzziness, neither for the representation of
ill-defined data, nor for the handling of flexible queries. For this reason, a model for
fuzzy multidimensional data representation and manipulation has been proposed2.
In this work, several operations are introduced with a view to apply them to discover
relevant knowledge from fuzzy multidimensional databases. For this process, called
Fuzzy-OLAP Mining3, successive queries (including combinations) are needed.

In this paper, we limit ourselves to unary operator definitions, and we study their
properties when combining them. We aim at defining rules for query rewriting and
optimization. The final goal of this study is to provide the model with an algebra
to manipulate queries efficiently in a simple way. Binary operators are out of the
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2 Flexible Multidimensional Queries

scope of this paper but they have to be studied in order to deal efficiently with
several fuzzy hypercubes.

In this paper, properties of operation combinations are studied in the way fol-
lowed in papers on the relational algebra4. The paper is organized as follows.
Section 2 presents multidimensional databases and their fuzzy extension. Section 3
focuses on the choice of the operators in the model we propose. Sections 4 and 5
detail successive roll-up, slice, dice and projection operations. Section 6 deals with
the combination of queries.

2. Multidimensional Databases

Multidimensional databases have emerged to support OLAP. They are devoted
to the efficient treatment of large amounts of multidimensional data for analysis.
There is no unique model for the definition of multidimensional databases5. The
next Section presents some common properties of all existing models.

2.1. Classical Model

Roughly speaking, a multidimensional database is a set of hypercubes. Each
hypercube is defined by means of dimensions. A dimension of particular interest
is chosen to be the measure and its values are stored inside the hypercube, in
the cells. Hierarchies may be defined on dimensions in order to deal with several
levels of granularity. Fig. 1 shows a cube describing sale results by means of three
dimensions PRODUCT , DISTRICT and MONTH .
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Fig. 1. Example of a classical cube

Operations are defined in order to manipulate hypercubes. The unary operators
are slice and dice (selection of information), projection (selection of dimensions)
and roll-up (navigation through levels of hierarchies by means of an aggregation
function).

The slice operation consists in selecting slices from the cube by using a crite-
rion on a dimension, for instance to select sales that have occurred in ATLANTA.
The dice operation consists in selecting a subset of cells matching a criterion on
the measure, for instance to select sales between 50, 000 and 80, 000 units. The
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projection operation consists in deleting one or several dimension(s), for instance to
describe sale results by means of only two dimensions instead of three. The roll-up
operation consists in describing the cell values at some higher level of granularity
on a dimension, for instance by rolling a cube up from the level of months to the
level of quarters. The sum, mean or any other function may be considered in order
to get the sale results at this new level of granularity.

However, data from the real world are often imperfect, either because they are
imprecise (the age is young), or because they are uncertain (the age is perhaps 18).
A model has been defined for multidimensional databases in order to represent and
manipulate these data2. This model handles also flexible multidimensional queries.
For instance, the subset of data corresponding to the age young may be extracted.

2.2. Fuzzy Model

A fuzzy multidimensional database contains elements which may be imperfectly
defined, imprecise and/or uncertain. Given a reference set (R for instance), an
element is a pair (v, d) where v is a value which may be precise (25) or defined by a
fuzzy set (for example young) and d (d ∈ [0, 1]) is the confidence degree associated
with this value. A domain is a finite set of elements.

A dimension is defined on a given domain. The pair (v(di), d(di)) represents an
element di of dimension Di.
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µ : X [0,1]
where JANUARY is described by its membership function
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(CANOES , .7)

(TENTS , 1) 

domain = {(BOSTON, .8) , (CHICAGO, 1) , (DENVER, .2)}

PRODUCT: X = set of products
domain = {(CANOES, .7) , (TENTS, 1)}

Fig. 2. Example of a fuzzy cube

A fuzzy cube is defined as a mapping:

D1 × . . .×Dk → DC × [0, 1]

where D1, . . . , Dk are dimensions, and DC is the measure. A degree ranging from 0
to 1 is associated to each cell element to denote the extent to which the cell belongs
to the cube. This degree is denoted by µ.

Thus the model handles degrees indicating to which extent entities (slices of the
cube and cells) belong to the cubes. These degrees may come from the data them-
selves (e.g., degrees of reliability of heterogeneous sources providing data) or from
the fuzzy operations successively applied to the cube (selection of values matching
a fuzzy criterion).

−→x denotes the cell identified by a set of values describing its position on all the di-
mensions. For instance, a cell is identified by its position (Tents, January, Atlanta)
on dimensions PRODUCT, MONTH, DISTRICT. An element in a cell −→x of a



4 Flexible Multidimensional Queries

cube is denoted (v(−→x ), d(−→x )) where v(−→x ) is the value contained in the cell, and
d(−→x ) the degree of confidence associated with this value.

Moreover, each cell −→x is associated with a degree µ corresponding to the extent
to which this cell belongs to the cube. This degree thus applies on the whole
information given by the dimension positions and the cell value. An example is
given by Fig. 2.

As for relational databases, there may be two definitions of the equivalence of
two cubes, based either on the structure of the cube (mapping), or on the content
of the cube (element values). In the sequel of this paper, we consider two fuzzy
cubes as equivalent if the following conditions are fulfilled:

• the 2 cubes are defined on the same dimensions,

• active domains of all the dimensions are the same (the elements taken from
the cubes are the same ones -values and degrees)

• the 2 cubes contain exactly the same cells (same elements, same degrees µ).

For the sake of simplicity, a query is said to be equivalent to another if it produces
an equivalent cube.

Operations are defined, providing tools to manipulate cubes by means of flex-
ible OLAP queries. They are briefly described below and will be further studied
in Section 3. For each operation, C denotes the cube on which the operation is
performed, and C ′ the resulting cube.

Fuzzy Dice. The first type of query is a selection over the cells of the cube. The
degrees µ of membership of cells are modified according to the satisfaction of the
value v(−→x ) in the cell, the former degree µC(−→x ) and the degree of confidence d(−→x ).
The satisfaction of the value to the criterion O is computed by means of a so-called
measure of satisfiability C6. We denote by µO the membership function of criterion
O. For each cell −→x , the membership degree after selection is computed as follows:

µC′(−→x ) = T (C(µO , v(−→x )), d(−→x ), µC(−→x )) (1)

where T : [0, 1]× [0, 1]× [0, 1] → [0, 1] is defined for instance from a t-norm >
as T (x, y, z) = >(x,>(y, z)) ∀(x, y, z) ∈ [0, 1]3. Note that in our model, the chosen
formula does not take the degree of confidence into account when comparing the
value to the criterion. Another solution would be to merge first the value with its
degree of confidence but we do not adopt this solution. The degree of confidence
behaves as an upper bound, or a threshold.

Also note that for the fuzzy sets we consider, membership degrees are not inter-
preted as possibility degrees, but as degrees of truth. No disjunctive interpretation
is supposed. This is the reason why theory of possibility (with necessity/possibility
measures) is not carried.

Fuzzy Slice. The second type of query is a selection over some dimension. For each
value di of the considered dimension, the new degree dC′(di) is computed according
to the former degree dC(di) and the extent to which the value satisfies the selection
criterion O. Therefore, for each di of the dimension, we have:

dC′(di) = >(C(µO, v(di)), dC(di)) (2)

Fuzzy Roll-Up. This operation consists in the generalization of a cube at a higher
level of granularity. Choosing a dimension and a hierarchy on this dimension, rolling
a cube up results in a modification of the active domain of the dimension: values
are taken from the new level of granularity, and degrees of membership of each
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slice are computed according to the degrees of the children of each value from the
former cube. Cell elements are modified according to the function of aggregation.
For instance, a count function may be chosen in order to summarize a cube at a
high level of granularity. Computations are detailed below.

Let C be a fuzzy cube to roll-up, and dim the dimension to be generalized. Let
h be the considered hierarchy, defined by a fuzzy relation R. The roll-up operation
is performed from the level of granularity L1 to the level L2, using the function φ.
Let C ′ be the resulting cube. We have:

C
(dim,h,L1,L2,φ)
−−−−−−−−−−→

roll−up
C ′

For each value b on dimension dim from level L2, coefficients indicating to which
extent each value a from level L1 generalizes into b are considered. If the hierarchy
is defined by means of a fuzzy relation, then these coefficients are computed using
the transitive closure of R. If the hierarchy is defined by means of fuzzy partitions,
then these coefficients are computed using the degree of membership of each value
a to the fuzzy set describing b. c(a,b) denotes the coefficient of transition between
values a ∈ L1 and b ∈ L2.

In the resulting cube C ′, the degrees µ in cells and the degrees on slices are mod-
ified. They are computed according to previous values and coefficient of transition
between values from levels L1 and values from level L2.

For each b ∈ L2, µC′(..., b, ...) is a function of

• the degrees µC(..., a, ...) with a ∈ L1, and

• the values c(a, b).

We have:

µC′(..., b, ...) = max
a∈L1

min(c(a, b), µC(..., a, ...))

Concerning slice degrees, the same operation is performed. Note that each
element e from the domain of the dimension dim to be rolled up is like (v(e), d(e)).
For each element e2 in the resulting cube such that v(e2) = b and b ∈ L2, we have:

dC′(e2) = max
{e1|v(e1)=a}

min(c(a, b), d(e1))

Note that drill-down is not altered by the introduction of fuzziness.

Fuzzy Projection. This operation is not modified by the extension of the model
to fuzziness. The projection is possible only if the domains of all dimensions to
destroy (the ones that are not selected) are reduced to a singleton7. This means
that a roll-up operation may be required before applying a projection.

3. Further Study of the Operators

This section focuses on the choice of operators for equations (1) and (2). For
this purpose, both the semantic of the operators and the efficiency of computations
have to be taken into account. Indeed, fast computations are required, due to the
huge amount of data. For this reason, we require our model to be consistent with
the classical case, in order to deal with the classical case as often as possible, letting
the classical multidimensional database management system work.
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3.1. Comparing the value with the criterion

Here, we focus on the choice of the measure C used to compare the value to
the criterion. We need comparison measures between fuzzy subsets to determine to
which extent two fuzzy values are similar. In our case, we will have to evaluate the
satisfiability of a value to a reference description (a fuzzy criterion described by its
membership function). This requires a particular kind of measure of resemblance
which must enable the measurement of the inclusion of a (classical or fuzzy) de-
scription V into a reference REF and must produce a single value in order to be
easily understandable. Such measures are called measures of satisfiability 6. We use
the notation C for these operations. In the proposed model, the chosen measure is
the following one:

C(V, REF ) =

{

M(V ∩REF )
M(V ) if M(V ) 6= 0

0 otherwise

where

M(A) =

{ ∑

x∈Ω

fA(x) if Ω is countable
∫

Ω
fA(x)dx otherwise

This measure is chosen because it is consistent with the classical case. It is
equivalent to the classical case when considering a precise value. This property is
interesting because it enhances performances when dealing with precise data. The
proof of consistency is very easy:

We denote by µREF and µV the membership functions describing the criterion
REF and the data V . If the data is precise then it is a singleton {x0} such that
for all x 6= x0, we have µV (x) = 0 and µV (x0) = 1. Thus we have M(V ∩ REF ) =
µREF (x0) and M(V ) = 1. The computation is thus reduced to the computation
of the membership degree of x0 to the fuzzy set representation of the criterion:
C(V, REF ) = µREF (x0)

3.2. Aggregation operator

Most of the existing relational fuzzy querying models consider precise data and
fuzzy criteria8. In our model, we have to take into account first the fact that both
data and criteria may be fuzzy, and second the fact that all the successive operators
applied are closed on the set of fuzzy cubes. Thus in order to compute the degree
µ of each cell after a dice operation, we have to aggregate the degrees representing:

• the appropriateness of the value to the vague criterion,

• the degree of confidence in the value of the cell, and

• the degree µ from the former cube.

The properties below have to be fulfilled by this operator for the semantic of the
operation, and for computational reasons.

Level of membership. After a selection, a cell cannot belong to the cube
at a higher degree than the previous one or than the satisfaction of the criterion.
This leads to consider an operator such that for all (x, y, z) ∈ [0, 1]3, T (x, y, z) ≤
min(x, y, z). As a consequence, 0 is an absorbent element: T (x, y, z) = 0 if x, y or
z equals 0. A t-norm > is suitable.

Monotonicity (decreasing). The result of the aggregation must decrease
when decreasing one or several degrees: T (x′, y′, z′) ≤ T (x, y, z) if x′ ≤ x and
y′ ≤ y and z′ ≤ z.



Flexible Multidimensional Queries 7

Idempotence. Idempotence may be required in order not to alter the mem-
bership degree of a cell when the degree of appropriateness for the value is the
same as the former degree µ. This would lead to the choice of the t-norm min,
which is the only idempotent one, to construct T . This choice is very interesting
when considering successive selections by the same criterion, since it guarantees the
stability of the result. Any other t-norm would modify the resulting degree in a
counter-intuitive way. This is the reason why the current implementation of the
system uses this t-norm min. We have thus ∀x ∈ [0, 1], T (x, x, x) = x.

However, in the case of successive selections by different criteria, it would be also
interesting to weaken the degree µ each time a selection is performed to data which
do not completely fulfill the criterion. For this reason, a t-norm like the product
may be considered.

Commutativity and associativity. These properties allow the system to
enhance performances since it can optimize the order of computations. T-norms
are commutative and associative, thus the t-norms min and product, among others,
are suitable.

Concerning the slice operation, the C measure and the > operator have to be
chosen. As previously, we argue that a slice cannot belong to the cube with a higher
degree than the previous degree or than the degree of satisfaction of the criterion.
This would be counter-intuitive to obtain a degree higher than the former one after
a selection operation. Thus depending on whether the idempotence is required or
not, the chosen t-norm is either min or product (these operators are both common
and available in classical multidimensional database management systems).

3.3. The Need for Successive Queries

This paper is devoted to the study of successive queries. This study is motivated
by several reasons.

First, Fuzzy OLAP Mining requires the application of combinations of queries.
For instance, building a fuzzy decision tree requires successive slice, successive dice
in order to build the successive partitions of the data set. Moreover, successive
operations and combination of queries are needed when navigating through the
data, especially when dealing with hierarchies for successive roll-up operations. Fi-
nally, this study is motivated from the theoretical point of view in comparison with
the classical relational and multidimensional models, where the study of operator
properties is a classical task, especially for query optimization4.

4. Successive Roll-Up Operations

This section focuses on roll-up. This operator aggregates the data from a level
of granularity to a higher one (for instance from the level of districts to the level
of regions). An operator φ is thus required in order to merge cell values (e.g. sum,
average). We study here the result of two successive roll-up operations on the same
dimension, for a hierarchy defined by a fuzzy relation.
We are given:

• dim the dimension to roll up,

• R the fuzzy order relation defining the hierarchy (we denote by fR the mem-
bership function of R and by fRT

the membership function of its max−min
transitive closure),

• {Li} levels of granularity from the hierarchy (for all i, Li ⊆ dom(dim)),

• and φ the function used to merge cell values.
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We compare the results of operations (3) and (4).

C
(dim,R,L1,L2,φ)
−−−−−−−−−−−→

roll−up
C ′ (dim,R,L2,L3,φ)

−−−−−−−−−−−→
roll−up

C1 (3)

C
(dim,R,L1,L3,φ)
−−−−−−−−−−−→

roll−up
C2 (4)

Proposition. Let C be a cube to be rolled up by function φ on dimension dim
structured by hierarchy R. Let L1 be the level of granularity of C, and L2 and
L3 two higher levels of granularity. Degrees on slices and µ degrees in cells are the
same by direct roll-up (from L1 to L3 in cube C2) or indirect roll-up (first from L1

to L2 in cube c′ and then from L2 to L3 in cube C1):

• For all −→x , we have dC2
(−→x ) = dC1

(−→x ) and µC2
(−→x ) = µC1

(−→x ).

• For all cn ∈ L3, we have dC2
(cn) = dC1

(cn).

Proof. Let us consider query (3), we have:
∀cn ∈ L3, dC1

(cn) = max
bl∈L2

min( max
ak∈L1

min(d(ak), fRT
(ak, bl)), fRT

(bl, cn))

Considering query (4), we have:
∀cn ∈ L3, dC2

(cn) = max
ak∈L1

min(d(ak), fRT
(ak, cn))

Besides,
fRT

(ak, cn) = max
bl∈L2

min(fRT
(ak, bl), fRT

(bl, cn))

Thus d′(cn) =
max

ak∈L1

min(d(ak), max
bl∈L2

min(fRT
(ak, bl), fRT

(bl, cn)))

Hence we have dC2
(cn) = dC1

(cn)

The same holds for degrees µ.

Aggregate functions∗used for the construction of cubes and the computation
of super-aggregates (aggregates of aggregates) are of several kinds9. Aggregate
functions can be distributive (e.g. count, min, max), algebraic (e.g. average), or
holistic (e.g. median). The two first categories of functions allow optimizations
while the third one requires a direct computation from the whole database. For
instance, the minimum value can be easily computed using a lower level, since it
is associative. For counting, a sum has to be applied on the intermediate level,
while average requires two values to be handled (count and sum). However in
this paper, neither the construction of the cubes nor the semantic of the measures
are studied. Thus this question is out of the scope of this paper. Note that the
problem described here is not due to the introduction of fuzziness and that is the

∗Note that aggregate refers here to the function defined to compute a summary value of cell values,
as used in the classical relational model. This must not be confused with the aggregation of degrees
in the Fuzzy Logic framework.
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same in classical multidimensional databases. Only associative aggregate functions
(which are parts of distributive ones) result in the equality of equations (3) and (4).
Associativity guarantees that values obtained directly by computing the resulting
cube from level L1 to level L3 are the same as using an indirect computation by
first rolling the cube up to level L2.

5. Successive Slice, Dice and Projection Operations

This section focuses on the methods for query rewriting and studies the rules
that are applicable in our framework. These properties are quite the same as in the
relational framework and guarantee that some optimization may be done4.

5.1. Successive Dice Operations

Due to the commutativity property of t-norms, the result of two successive
selections on the cells is independent of the order:

C
γ1

−−→
dice

C ′ γ2

−−→
dice

C1 (5)

is equivalent to:

C
γ2

−−→
dice

C ′′ γ1

−−→
dice

C2 (6)

Proposition. Given C1 the cube obtained by applying a selection on the cells of
the cube by the criterion γ1 followed by a selection by the criterion γ2, and C2 the
cube obtained by applying a selection on the cells of the cube by the criterion γ2
followed by a selection by the criterion γ1, we have C1 = C2.

Proof. This amounts to show that each cell contains the same degree µ since this
degree is the only one that is modified by a dice operation. µγ1

(resp. µγ2
) denotes

the membership function of γ1 (resp. γ2). Due to associativity and commutativity
properties of t-norms, we have:

∀−→x , µC1
(−→x )

= T (C(v(−→x ), µγ2
), d(−→x ), T (C(v(−→x ), µγ1

), d(−→x ), µC(−→x )))
= T (T (C(v(−→x ), µγ2

), d(−→x ), µC(−→x )), C(v(−→x ), µγ1
), d(−→x ))

= T (C(v(−→x ), µγ1
), d(−→x ), T (C(v(−→x ), µγ2

), d(−→x ), µC(−→x )))
= µC2

(−→x )

Remark. Note that the only way to get C1 = C ′(= C ′′ = C2) by applying twice
the same selection (γ1 = γ2) is to consider an idempotent t-norm.

Indeed, if for each cell −→x , T (C(v(−→x ), µγ), d(−→x ), T (C(v(−→x ), µγ), d(−→x ), µC(−→x )))
is equal to T (C(v(−→x ), µγ), d(−→x ), µC(−→x )) then T is necessarily built using the t-
norm min.
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5.2. Successive Slice Operations

The proof of the commutativity is very simple, and it is quite the same as the
previous one for the dice operation. When applying a selection on a dimension by
criteria γ1 and γ2, the order has no effect on the resulting cube:

C
(D,γ1)
−−−−→

slice
C ′ (D,γ2)

−−−−→
slice

C1 (7)

is equivalent to:

C
(D,γ2)
−−−−→

slice
C ′′ (D,γ1)

−−−−→
slice

C2 (8)

Proposition. Denoting C the first cube, D the dimension on which the selection
is applied, dom(D) its domain, C1 (resp. C2) the cube obtained by selection first
by criterion γ1 (resp. γ2) and then by criterion γ2 (resp. γ1).

Proof.
∀di ∈ dom(D),

dC1
(di) = >(C(v(di), µγ2

),>(C(v(di), µγ1
), dC(di)))

= >(>(C(v(di), µγ2
), C(v(di), µγ1

), dC(di)))
= >(C(v(di), µγ1

),>(C(v(di), µγ2
), dC(di)))

= dC2
(di)

Remark. Note that, as mentioned above, the only way to get the same cube by
applying twice the same selection (γ1 = γ2) is to consider an idempotent t-norm.
If for each slice di ∈ dom(D), >(C(v(di), µγ),>(C(v(di), µγ), d(di))) is equal to
>(C(v(di), µγ), d(di)) then > is the t-norm min.

5.3. Cascade of Projections

Considering a set of dimensions {A1, ..., An, B1, ..., Bm} such that {A1, ..., An} ⊆
{B1, ..., Bm}, we know that the two queries (9) and (10) are equivalent. This is
analogous to the classical model by Agrawal and al.7:

C
{B1,...,Bm}
−−−−−−−−→

Proj
C ′ {A1,...,An}

−−−−−−−→
Proj

C1 (9)

C
{A1,...,An}
−−−−−−−→

Proj
C2 (10)

Indeed, the projection is the operation consisting in selecting a set of dimensions by
destroying the other ones (whose active domains have to be reduced to singletons).
In this case, since the set of Ai’s is among the set of Bi’s, limiting directly the
dimensions to the Ai’s leads to the same result as limiting first to the Bi’s and then
to the Ai’s.
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5.4. Splitting Criteria

This section studies if there are equivalences between successive queries using
two criteria and a single query using the conjunction of these criteria.

5.4.1. Cascade of Dice Selections

We study here if query (11) is equivalent to query (12), where ∧ stands for the
conjunction of criteria.

C
γ1

−−→
dice

C ′ γ2

−−→
dice

C1 (11)

C
γ1∧γ2

−−−−→
dice

C2 (12)

v
µ

1

2γ

γ

µ

µ

Fig. 3. A Counter Example

We show below that µC1
is not equal to µC2

in any case (see Fig. 3). A counter-
example may be considered. In the case the following conditions are true, µC1

is
different from µC2

:

• γ1 ∩ γ2 = ∅,

• v ∩ γ1 6= ∅,

• v ∩ γ2 6= ∅,

• T is built using a strict t-norm > (such that >(a, b) > 0 if a > 0 and b > 0).

For each −→x , we have:
µC2

(−→x ) = T (C(v(−→x ), µγ1∧γ2
), d(−→x ), µC(−→x ))

and µC1
(−→x ) = T (C(v(−→x ), µγ2

), d(−→x ), T (C(v(−→x ), µγ1
), d(−→x ), µC))

= T (>(C(v(−→x ), µγ1
), C(v(−→x ), µγ2

)), d(−→x ), µ(−→x ))
Thus C(v(−→x ), µγ1

) 6= 0 and C(v(−→x ), µγ2
) 6= 0.

Besides, C(v(−→x ), µγ1∧γ2
) = 0 since v(−→x ) ∩ γ1 ∩ γ2 = ∅.

Thus >(C(v(−→x ), µγ1
), C(v(−→x ), µγ2

)) 6= C(v(−→x ), µγ1∧γ2
)
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However, successive selections on the cells are often performed in order to refine
a criterion, and there is no need to apply two successive criteria having an empty
intersection. We focus thus on the cases where γ1 ∩ γ2 6= ∅. Considering successive
selections for the refinement of the selection criterion, we have γ2 ⊆ γ1. If the used
t-norm to aggregate the degrees is not idempotent then there exist some examples
where the result is different when applying successively the two criteria or by ap-
plying simultaneously γ1 ∧ γ2 = γ2. If > is the t-norm min then queries (11) and
(12) are equivalent:

Proposition. We consider T built using the idempotent t-norm > = min. Denot-
ing C1 the cube obtained by applying a selection on the cells of the cube by the
criterion γ1 followed by a selection by the criterion γ2, and C2 the cube obtained
by applying a selection on the cells of the cube by the criterion γ1 ∧ γ2, C1 is equal
to C2 if and only if γ2 ⊆ γ1.

Proof.
only if see above the counter-example
if

T (C(v(−→x ), µγ2
), d(−→x ), T (C(v(−→x ), µγ1

), d(−→x ), µC(−→x )))
= T (>(C(v(−→x ), µγ2

), C(v(−→x ), µγ1
)), d(−→x ), µC(−→x ))

Besides, C(v(−→x ), µγ2
) ≤ C(v(−→x ), µγ1

) since γ2 ⊆ γ1 and C is monotonous, being
a measure of satisfiability. Thus we have:

µC1

= T (>(C(v(−→x ), µγ2
), C(v(−→x ), µγ1

)), d(−→x ), µC(−→x ))
= T (C(v(−→x ), µγ2

), d(−→x ), µC(−→x ))
= T (C(v(−→x ), µγ1∧γ2

), d(−→x ), µC(−→x ))
= µC2

5.4.2. Cascade of Slice Selections

The problem is the same as previously, checking whether query (13) is equivalent
to query (14), where ∧ stands for the conjunction of criteria. The slice operation,
applied twice on the same dimension, either by two successive criteria, or by their
conjunction, results in the same cube only if the second criterion is included within
the first one.

C
(D,γ1)
−−−−→

slice
C ′ (D,γ2)

−−−−→
slice

C1 (13)

C
(D,γ1∧γ2)
−−−−−−−→

slice
C2 (14)

Proposition. Denoting C1 the cube obtained by applying a selection on the cells
of the cube by the criterion γ1 followed by a selection by the criterion γ2, and C2
the cube obtained by applying a selection on the cells of the cube by the criterion
γ1 ∧ γ2, C1 is equal to C2 iff:

• γ1 ⊆ γ2,

• > is idempotent (> = minimum)
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The proof is the same as previously.

6. Combining Operators

Next subsections focus on projection, slice and dice combination properties.
Problems appear when dealing with roll-up. However, we insist on the fact that
this is not due to the introduction of fuzziness. The points described here are of
the same kind in the classical models.

6.1. Commuting Slice and Dice

The slice and dice operations do not modify the same entities in the cube. Thus
queries (16) and (15) are equivalent.

C
γ1

−−→
dice

C ′ (D,γ2)
−−−−→

slice
C1 (15)

C
(D,γ2)
−−−−→

slice
C ′ γ1

−−→
dice

C1 (16)

Proposition. Slice and Dice operations can be applied successively without any
effect of the order.

The proof of this property is obvious since these operations do not interact. The
first operation modifies degrees d(di) on slices di from the domain of dimension D
while the second one modifies degrees µ inside cells.

6.2. Dealing with projections when combining queries

A projection operation results in the destruction of one or several dimensions.
Moreover, note that the projection can only be performed if the dimension to destroy
has an active domain containing a single value. Otherwise, a slice would have to
be automatically chosen, which is not possible. Thus a slice operation reducing the
active domain to a singleton may be required (or a roll-up). In this framework, the
following queries are not applicable:

C
D\{D}
−−−−→

proj
C ′ (D,γ)

−−−→
slice

C1

C
D\{D}
−−−−→

proj
C ′ (D,h,L1,L2,φ)

−−−−−−−−−→
roll−up

C1

where D stands for a set of dimensions, and D\D stands for a set of dimensions
that does not include dimension D.

6.2.1. Commuting Selections and Projections

C
D

−−−→
proj

C ′ (dim,γ)
−−−−−→

slice
C1 (17)
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C
(dim,γ)
−−−−−→

slice
C ′ D

−−−→
proj

C1 (18)

A slice operation is not relevant if the dimension has been destroyed by a pro-
jection. If the projection and the slice do not apply on the same dimension, the
order of the two successive operations has no effect on the resulting cube.

Proposition. If D ∩ {dim} = ∅ then a slice operation on dimension dim can
be mixed with a projection on dimensions D whatever the order may be without
modifying the result.

The proof of this property is obvious since the two operations (projection and
slice) do not modify the same entities of the cube. Obviously, the same holds for
dicing, without any restriction on the dimension(s) to be deleted by projection:

Proposition. A dice operation on dimension can be mixed with a projection
whatever the order may be without modifying the result.

6.2.2. Commuting Roll-Up and Projection

Note that most of the time, a roll-up is necessary before a projection in order
to reduce the active domain. If the dimension to roll-up is among the ones to be
destroyed, then the roll-up must be performed first to the upper level where only
one value is contained in the active domain. This level is usually called level ALL.

Proposition. If D ∩ {dim} = ∅ then a roll-up operation on dimension dim can
be mixed with a projection on dimensions D whatever the order may be without
modifying the result.

The proof of this property is obvious, since the projection operation does not
modify the set of cells to be merged in order to compute the cube on the higher
level of granularity.

6.3. Commuting Roll-Up and Selection (slice or dice)

Rolling a cube up modifies the active domain of a dimension to a higher level of
granularity. It modifies the content of the cells (elements and µ degrees) as well. The
compatibility of the criterion regarding the data has to be studied very carefully.
For instance, selecting sales results by a criterion describing medium sales does not
have the same effect depending on the level of granularity. This level of granularity
depends on the roll-up operations previously applied. If the roll-up operation is
applied using the aggregation function count or sum, the selection criterion is not
compatible anymore with data after roll-up whereas it was compatible before.

For instance, we consider the cube describing cell results, Fig. 4 shows that the
description of sales depends on the level of granularity. The sum of all units sold
within a region is supposed to be greater than the number of units sold within a
district. However, this definition depends on the function used to determine the cell
values. If the average (or minimum, maximum, median . . . ) value is considered,
then the definition of low, medium, and high sales does not depend on the level of
granularity.
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units

0

1
highmediumlowhighmediumlow

units

0

1

REGION LEVELDISTRICT LEVEL

Fig. 4. Criteria Depending on the Granularity Level

7. Conclusion

In this paper, we study the properties of unary operators over fuzzy cubes. This
work is twofold. First it aims at studying operators of aggregation in order to deal
with degrees of confidence and degrees of membership. Second, this work aims at
studying the combination of unary operators in order to define an algebra.

In most cases, properties from the classical relational and multidimensional mod-
els are preserved after the introduction of fuzziness. Moreover if a property is not
preserved, it appears for particular cases that do not occur in the framework of data
mining, which is the goal of the fuzzy multidimensional database model.

Current and future work concern the study of binary operators (union, intersec-
tion, difference, product, join). It will provide foundations to manipulate complex
queries in an algebraic way for query rewriting. The system will thus be able to
perform query optimization. The enhancement of the implementation of the oper-
ators introduced in this paper is also planned. The existing system FUUB (standing
for FUzzy cUBe) is implemented using Oracle Express Server, Oracle Express

Objects, Java and C++2.
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