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Quantifying the Impact of Unpredictable
Generation on Market Coupling∗

Hélène Le Cadre† Mathilde Didier‡

Abstract

Modeling Market Coupling using an agent-based approach, we compare two
organizations: centralized versus decentralized. To perform this comparison we
analytically study the impact of wind farm concentration and the uncertainty result-
ing from the increasing penetration of renewables on the total cost of procurement,
market welfare and the ratio of renewable generation to conventional supplies. We
prove that the existence and uniqueness of equilibrium depend on the number of
interacting demand markets. In a decentralized organization, forecast errors heav-
ily impact the behavior of the electrical system. Simulations show that suppliers
have incentives to certify the forecast uncertainty of other markets. We analytically
derive the uncertainty price that might be charged by a risk certificator depending
on the required confidence level.

Keywords: Uncertainty ; Optimization ; Energy Markets ; Intermittent Sources

1 Introduction
Market Coupling was developed jointly by power exchanges and transport operators
following the liberalization of energy markets and aims at improving the use of avail-
able cross-border capacity and promises a greater harmonization of prices between
countries [22]. It creates a unique platform for daily electricity transactions. It im-
plicitly allocates interconnection capacity in the day-ahead and real timescales until a
uniform market clearing price is achieved or the available capacity is fully utilized. In
this latter case i.e., when capacity becomes limiting, a congestion rent is paid to the
grid operator to encourage it to invest in capacity upgrading. The increasing penetra-
tion of renewable energy in the energy mix, required by governments, complexifies the
coupling mechanisms, due to their non-controllability1 and their intermittency. Their
∗The authors thank the Editors and the four anonyous referees for their reading and helpful comments.
†MINES ParisTech, PSL Research University, CMA - Center for Applied Math-

ematics, CS 10207 rue Claude Daunesse, 06904 Sophia Antipolis, France Email:
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1It is still possible to adapt the wind turbine speed.
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intermittency results from their strong dependence on meteorological conditions: if the
weather is favorable (i.e., wind and sun2) they will produce a lot ; very little otherwise.

Intermittent energy sources are decentralized. Non stationarity has been observed
in the historics of generation and extreme values are frequently reached [16]. This im-
plies that statistical techniques based on regression, times series, etc., can no longer
provide accurate forecasts of the generation of such sources. In the following parts of
the Introduction, we describe the major steps of energy market liberalization that has
challenged the design of new multi-tiered markets, the main questions raised by in-
creasing renewable penetration and, finally, give a quick overview of existing coupling
mechanisms.

Energy market liberalization and the emergence of multi-tiered market de-
signs: Energy markets, and especially electricity markets, were traditionally consid-
ered as natural monopolies due to the huge investments required and relatively low
marginal costs, and hence they were managed by national firms that owned both pro-
duction plants and the distribution network. Some interconnections were created be-
tween countries, but only for adjustment purpose [10], [21]. However, at the end of
the 1990s the European Union (EU) decided to progressively liberalize energy mar-
kets, i.e., gas and electricity, and to create a global competitive European market. In
France, one consequence of electricity market liberalization is that different activities
that were handled by a sole national company, such as production, transport, distribu-
tion and electricity sales are now divided up several firms. This measure clearly aims
at mitigating vertical market power [26]. However, the mitigation of horizontal market
power remains challenging. A successful attempt in the United States deregularized
power market lies in the design of multi-tiered markets [12], [13], [20], [26], [27].
Kamat and Oren consider a two-tiered approach where day-ahead contracts and real-
time transactions are settled at different prices for a two- and three-node networks with
potential congestion [13]. They show that welfare impacts of two sided systems are
highly sensitive to the probability that a network contingency reduces the transmission
capacity of the lines. Yao et al. generalize the previous work to more realistic multi-
node and multi-zone networks considering flow constraints, system contingencies and
demand uncertainty in the real-time market [26], [27]. The tractability of their models
to real size power systems is guaranteed through the use of mathematical programs
with equilibrium constraints algorithms based on quadratic programming solving and
on parametric linear complementarity problem pivoting. However their models do not
incorporate renewable generation and focus on competition modeling at the generator
level, though an attempt to model market interactions through multi-agent simulation
is provided by Veit et al. [25], as well as by Li and Shi [15].

The increasing penetration of renewables: The energy world is being totally
restructured, both at the level of the final consumer, whose usages are more finely
analyzed to enable the launching of smart solutions such as demand response [12], but

2Other, more predictable sources of renewable energy such as those coming from marine currents, are
still under study. Déporte et al. studied a way to collect energy using a wavering membrane [6]. Although
this approach seems promising to overcome the uncertainties associated with renewable energy generation,
much remains to be done.
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also at the level of the electricity market, the design of which has stimulated lively
debates [18]. These debates originate from the increasing penetration of intermittent
energy sources. The European Commission has set of a 20% share of renewables in
the energy mix by 2020 ; measures encouraged by the launching of feed-in tariffs. We
have already mentioned the high uncertainty associated with generating of intermittent
sources. It is therefore essential for the agents involved in these markets to elaborate
accurate forecasts. Indeed, forecast errors generate penalties at the supplier level [16],
[17] and, at the global level, create disruptions in electricty market operations with
considerable consequences, such as negative prices [7], [8], crashes of price-based
coupling mechanisms and congestion which could result in the interruption of end user
supply, etc.

Some articles tackle the difficult problem of renewable energy integration in elec-
tricity markets. Modeling the generation of intermittent sources as random individ-
ual sequences, which require no underlying stochastic assumptions on the generating
process, Le Cadre and Bedo study the impact of distributed learning strategies in the
real-time balancing market [16], [17]. Focusing on the day ahead and assuming per-
fect coordination of the power exchanges and of the Transmission System Operators
(TSOs), Oggioni et al. compare the effect of two wind policies ("priority dispatch"
under which the TSO must accomodate all wind energy produced and "no priority dis-
patch" under which the TSO can decide not to inject all potential wind power into the
grid in order to limit congestion problems) in a context of Market Coupling organiza-
tion [22]. Morales et al. consider a two-tiered electricity market made of a day-ahead
and a real-time balancing market, including a number of stochastic generators [19].
They conclude that generation scheduling should be driven by the cost of its uncer-
tainty i.e., its economic impact due to system balancing. However their model does
not tackle market interactions that might result from the current restructuring of the
electricity market. In a multi-tiered market context, Nair et al. explicitly characterize
the impact of growing renewable penetration on the procurement policy by consider-
ing a scaling regime that models the aggregation of unpredictable renewable sources
[20]. They introduce a scaling regime for wind penetration, which models the effect
of aggregating the output of several wind generators. A key feature of their model is
that it takes into account the relative concentration (or, inversely, scattering) of the in-
termittent energy sources being aggregated. Based on this scaling model, they measure
the optimal reserves, the amount of conventional generation produced, as well as the
cost of procurement, in line with increasing wind penetration. Finally, using a market
design close to that of Nair et al., Jiang and Low propose a real-time demand response
algorithm while studying the effects of renewable generation on social welfare.

Market coupling: Competitiveness, sustainability and energy supply security are
essential issues in the pursuit of European energy market integration and the creation
of a single energy area. Energy markets were initially liberalized autonomously at na-
tional level, with domestic scope, but there has been a growing need for an optimal
management of cross-border transmissions and congestion. However, optimal network
governance of a centralized autority depends on the balance between different interests
accross countries [8]. Market functioning in terms of competition among generators
can be obstructed by limited transmission capacity at the borders of the interconnected
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markets. Therefore two mechanisms have been put forward to solve the allocation of
such scarce-border capacity: the first is implicit auctioning, and the second is coordi-
nated explicit auctioning which has not been implemented yet. The latter system will
allow countries to keep their power exchanges running, but it proves less efficient than
the former system when uncoordinated [8]. The implicit auction mechanism adopted in
Europe is designed to include cross-border trades in the day-ahead auction mechanism
on individual power exchanges, to avoid inefficiency. Different implementations of the
implicit coupling mechanism exist, such as no coupling, volume coupling, one way
price coupling, etc. The implementation of price coupling, which is the focus of this
article, optimizes cross-border flows to reflect energy-only price differences between
coupled markets. It implicitly allocates the interconnection capacity in the day-ahead
and real-timescales until a uniform market clearing price is achieved or the available
capacity is fully utilized.

From the end user’s point of view, Market Coupling should impact favorably on
his energy bill [23]: by maximizing the use of cross-border interconnection capacity,
Market Coupling increases the level of market integration and facilitates access to low-
cost generation for consumers located in high-cost generation countries, such as Italy.
However, the associated congestion management costs may increase significantly in
the future due to a higher share of renewables and potential divergences in the devel-
opments of transmission and generation infrastructure [14].

Article organization: The literature dealing with energy market economic models
can be roughly divided into two areas: Market Coupling mechanisms [7], [8], [10],
[11], [21], [22], [23], and models for multi-tiered markets with uncertain supply [12],
[13], [19], [20], [25], [27], [26]. In this article, we try to reconcile both approaches.

In Section 2, we detail the involved agents (suppliers, generators), wind generation
modeling, derive coupling prices and optimal conventional supplies. In Section 3, we
compare first theoretically two organizations of Market Coupling: centralized versus
decentralized. Simulations are then run in Subsection 3.3. Finally in Section 4, we sim-
ulate the suppliers’ behavior under asymmetric and partial knowledge of the forecast
uncertainty in a decentralized Market Coupling organization. We derive analytically
the price of uncertainty.

2 The model
Market Coupling is progressively moving from a decentralized to a more centralized
organization. This distinction may become more relevant with the increasing wind pen-
etration, which is a result of both European and national policies that complicate this
comparison. In a decentralized Market Coupling organization, each market selfishly
maximizes its objective function. A good illustration of this type of organization is
Germany, where each market participants are responsible for planning their unit com-
mitment [14]. On the contrary, in a centralized Market Coupling organization, a central
agent rules the markets.

Market Coupling is organized as a two-tiered system with a day-ahead market,
occuring at tf, and a real-time system, occuring at t0. In the EU, the real-time systems
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introduced in this article can either be assimilated to intra-day markets, whose design
and timing are still debated, or to an EU balancing mechanism in which the imbalance
price settlement mechanism is designed so that no compensation is provided in case of
over-provisioning [18]. This choice of modeling can be justified by the fact that our
model aims at determining how suppliers share the risk of under-provisioning between
day-ahead and real-time markets. Furthermore we assume price coupling in both day-
ahead and real-time markets.

We consider a certain number of geographic demand markets, each character-
ized by price-insensitive demand. This assumption is justified by the fact that nowa-
days in France, demand response deals mainly with (relatively) low consumption re-
ports/reductions. This is because end-user pricing is still restricted to flat rates and
on/off peak hour tariffs. Wind generation in each geographic demand market is price
insensitive and random. It is unknown on the day ahead and revealed in real time. Each
geographic demand market is composed of:

(i) A conventional generation system. Marginal costs are linear [9], [11], [15]
and higher in real time than on the day ahead. The ordering of marginal costs
can be justified by the fact that any conventional energy that is demanded closer
to real time is provided by generators that require several hours to start up [20].
Conventional generators being price takers, they do not exercise market power
i.e., they cannot charge margins on top of marginal costs. This implies that
suppliers buy electricty at marginal costs.

(ii) Suppliers who, contrary to standard assumptions, are not price takers. They
are aware that their decision modifies prices and take that knowledge into account
to minimize their procurement cost. They purchase energy in the day-ahead mar-
ket on the basis of forecast of demand and wind generation. Then they procure
energy in real time on the basis of wind realization. This procurement process
is complex in the sense that suppliers consider their impact on (both day-ahead
and real-time) energy market prices. This, in turn, assumes that suppliers can
anticipate the equilibrium that will prevail on these markets under different as-
sumptions of demand and wind generation.

2.1 Description of the geographic demand markets
Geographic demand market i = 1, ...,N is defined by:

• di the end users’ total demand of energy at time t0. It is price insensitive.

• wi the wind generation produced at time t0. It is price insensitive and random
i.e., there exists a random variable εi representing the forecast error such that:
wi = ŵi − εi where ŵi is the forecast made at tf of the quantity of renewable
energy that market i generator will produce at t0. εi is distributed according to
a density function fεi with support [Li;Bi] where Li ∈ {−∞} ∪ R and Bi ∈
R∪ {+∞} and Fεi (resp. Fεi = 1−Fεi ) is the associated (resp. complementary)
cumulative distribution function. In the rest of the article, the forecast generating
density function will coincide with a Gaussian distribution function centered in
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zero and of standard deviation σi. More general distribution functions can, of
course, be considered. Furthermore there is no correlation between any two
geographic demand market forecast errors.

• qfi (resp. q0i ) market i demand of conventional energy in day-ahead (resp. real-
time) markets.

• sfi (resp. s0i ) market i supply of conventional energy in day-ahead (resp. real-
time) markets.

• cfi(sfi) = afi + b
f
is
f
i (resp. c0i (s

0
i ) = a0i + b

0
i s
0
i ) the marginal cost function

of conventional energy produced by market i and purchased at tf (resp. at t0).
For convenience, they are supposed to be linear in the supply [9], [11], [15]. We
assume that a0i > a

f
i > 0 and that b0i > b

f
i > 0 guaranteeing that the marginal

cost in the real-time market remains higher than in the day-ahead market.

At EU level, the global market is characterized by the equilibrium between supply
and demand: qftot(N) =

∑
i=1,...,N

qfi =
∑

i=1,...,N

sfi (resp. q0tot(N) =
∑

i=1,...,N

q0i =∑
i=1,...,N

s0i ) which is the global quantity of conventional energy exchanged in day-

ahead (resp. real-time) markets.
The amounts of energy purchased by market i at tf and at t0 are defined as follows:

qfi =
(
di − ŵi + ri

)
+

and q0i =
(
di −wi − q

f
i

)
+

where ri is a reserve of energy

purchased in the day-ahead (lower cost) market because of the uncertainty of supply
at t0. Following Kamat and Oren’s financial terminology, it can be interpreted as the
day-ahead position of demand market i supplier [13]. The hypothesis that qfi > 0 holds
as long as the demand exceeds the average wind capacity. In the rest of the article, we
will assume that: qfi , di − ŵi + ri.

As mentioned above, since generators do not exercise market power, we make the
assumption that the prices pfi and p0i paid by market i suppliers for the energy pur-
chased at tf and t0 respectively equal the marginal costs: pfi , cfi(s

f
i) and p0i ,

c0i (s
0
i ). As stated in the Introduction, the fundamental idea behind Market Coupling is

to create an integrated energy market with uniform energy prices among the countries
involved. Therefore, we assume that a clearing price is reached at tf i.e., pfi = pfj ,
pf, ∀i, j = 1, ...,N, i 6= j. Because the transfers are limited by the available transmis-
sion capacities, it will be harder to align the market prices at t0: if there is equilibrium
then p0i = p0j , p0,∀i, j = 1, ...,N, i 6= j ; otherwise there exists at least one mar-
ket i ∈ {1, ...,N} in which the supplier pays p0i 6= p0j for j ∈ {1, ...,N} and j 6= i3.
In the rest of the article, we will make the hypothesis that, at tf, the markets are my-
opic and do not anticipate the potential congestion of the lines. In practical terms, this
means that network capacities are sufficient to guarantee that demand market prices

3In case where p0i 6= p0j , a congestion rent CR = (p0i − p
0
j )t
0
j→i is paid to the transmission operator ;

t0j→i represents the traded flow of energy from market j to market i in a real-time market. CR is: positive
if the lower price market is exporting energy to the higher price market ; null if the interconnection line,
binding market i to market j, is not congested and p0i = p0j = p0 ; negative if the lower price market is
importing energy from the higher price market.
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will be aligned on the day ahead and in real time4. The case where markets anticipate
congestion in real time is detailed in [18].

2.2 Suppliers’ total costs, generators’ profits and social welfare
We define Ui, as the expectation of the total cost, TCi, that the supplier has to pay for
its end-user energy consumption5:

Ui = E
[
TCi

]
= qfip

f + E
[
q0ip

0
i

]
(1)

We take Πi to be the expected profit of market i energy generator. It is defined as
the difference between the price conventional energy is sold each time to the demand
markets and the cost of the conventional energy. We assume that all the supply is sold
at each time. Then:

Πi = sfip
f + E[s0ip0i ] −

∫sfi
0

cfi(s)ds− E
[ ∫s0i
0

c0i (s)ds
]

(2)

Finally, we define Wi, the welfare of market i, as the difference between the gen-
erator’s expected profit and the supplier’s expected total cost:

Wi = Πi −Ui

As usual in Game Theory [5], social welfare is defined as the sum of the welfares of all
the agents involved:

W =
∑

i=1,...,N

Wi

A simultaneous game is played, involving on the one side, the generators, and on
the other side, the suppliers (resp. the market operators). It is described as follows:

• Generators selfishly and simultaneously determine their conventional supplies
on the day ahead and in real time so as to maximize their profits

• Suppliers (resp. market operators) selfishly and simultaneously determine their
reserve on the day ahead so as to minimize their total costs (resp. their welfare)

The last step can be decentralized provided the suppliers (resp. the market operators)
operate independently or it can be centralized provided a supervisor (like a regulator at
the EU level) takes the decisions for all the suppliers (resp. the market operators).

2.3 Wind generation modeling
For each geographic demand market, its wind generation is a function of the number of
wind farms and their concentration, which is characterized by their spatial distribution.
To determine the renewable procurement for market i, we use Nair et al. model [20].
For geographic demand market i, we introduce:

4Under this assumption, the congestion rent is expected to be null.
5Note that the expectation of TCi is taken with respect to εi, (εj)j 6=i.
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• αi the average generation of a single wind farm

• γi the number of wind farms

• θi ∈ [1
2
; 1] (resp. 1−θi ∈ [0; 1

2
]) a constant capturing the concentration (resp. the

scattering) of the wind farm locations over market i geographic coverage area.
The more (resp. the less) concentration, the more (resp. the less) correlation
there is between the wind farm generations

We suppose that, at tf, αi is the best forecast of wind energy procurement of a
wind farm [20]. Then: ŵi(γi) = αiγi. The forecast error will also depend on the
wind penetration, and we choose the coefficient θi so that εi(γi) = γθii ε̃i where ε̃i
represents the forecast error for the generation of a single wind farm and σ̃i its standard
deviation. If the wind farms are co-located they will all generate the same quantity of
energy at the same time i.e., their generations are strongly correlated. This is the case
when θi = 1. This implies in turn that: εi = γiε̃i and that: ŵi = wi + γiε̃i. If
their generations are independent from one another i.e., uncorrelated, and under the
assumption that the forecast errors are distributed according to Gaussian distribution
functions, the Central Limit Theorem tells us that: σi =

√
γiσ̃i [20]. Therefore, the

wind farm generations are independent from one another if, and only if, θi = 1
2
. Note

that in case of more general forecast error distribution functions, it can be interpreted
as a sufficiently broad approximation for γi large enough.

With these notations, we obtain wi(γi) = ŵi(γi) − εi(γi) = γiαi − γ
θi
i ε̃i and

σi(γi) = γ
θi
i σ̃i.

2.4 Coupling prices
In this subsection, we determine the analytical expressions of the coupling prices in
day-ahead and real-time markets.

We set: Af ,
∑

i=1,...,N

afi
bfi

and Bf ,
∑

i=1,...,N

1

bfi
. Furthermore, we make the

assumption that the marginal cost parameters at tf are chosen so that Bf 6= 0.

Lemma 1. The coupling price in the day-ahead market is: pf =

∑
i=1,...,N

qfi +A
f

Bf
.

Proof of Lemma 1. Using the assumption of the supply and demand equilibrium
guaranteed by the market rules, we have:

qftot(N) =
∑

i=1,...,N

qfi =
∑

i=1,...,N

sfi

=
∑

i=1,...,N

pfi − a
f
i

bfi
under the assumption that pfi = c

f
i

=
∑

i=1,...,N

pf − afi
bfi

since the N markets are coupled at tf
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= pf
( ∑
i=1,...,N

1

bfi

)
−

∑
i=1,...,N

afi
bfi

We infer from the following equations the day-ahead price for the coupled demand

markets: pf =

∑
i=1,...,N

qfi +A
f

Bf
.

We also set: A0 ,
∑

i=1,...,N

a0i
b0i

and B0 ,
∑

i=1,...,N

1

b0i
. Furthermore, we make the

assumption that the marginal cost parameters at t0 are chosen so that B0 6= 0. As in
Lemma 1 proof, we infer the real-time price for the coupled demand markets:

Lemma 2. The N demand markets being coupled at time t0, the coupling price in the

real-time market is: p0 =

∑
i=1,...,N

q0i +A
0

B0
.

2.5 Conventional supplies
Substituting the coupling prices derived in Lemmas 1 and 2 in demand market i gener-
ator’s profit Πi defined in Equation (2), we obtain:

Πi = sfi

∑
j=1,...,N

(
dj − ŵj + rj

)
+Af

Bf
+ s0iE

[ ∑
j=1,...,N

(εj − rj)+ +A0

B0

]
− afis

f
i − b

f
i

(sfi)
2

2
− a0i s

0
i − b

0
i

(s0i )
2

2
(3)

The conventional energy procurement can be optimized before the market takes
place i.e., at tf and t0. It should be optimized so as to maximize the generator’s profit
at tf and at t0. It is straightforward to observe, judging by Equation (3), that market i
generator’s profit at tf (resp. t0) is concave in sfi (resp. s0i ) since it is a second order

polynomial equation in sfi (resp. s0i ) with a negative highest order coefficient: −bfi
2

(resp. −b0i
2

).

Proposition 3. In demand market i, the supply of conventional energy at time tf max-

imizing the generator’s profit is: sf∗i = 1
bf
i

[ ∑
j=1,...,N

(dj − ŵj + rj) +A
f

Bf
− afi

]
and,

at time t0: s0∗i = 1
b0
i

[ ∑
j=1,...,N

E[(εj − rj)|εj ≥ rj] +A0

B0
− a0i

]
.

Proof of Proposition 3. Before the market takes place at tf, the generator optimizes
its conventional energy procurement so as to maximize its profit: Πi. But, as already
mentioned, Πi is a second order polynomial equation in sfi with a negative highest

order coefficient: −b
f
i

2
. Therefore Πi admits a unique maximum in sfi . It is obtained

as a solution of ∂Πi
∂sf
i

= 0. Similarly the generator determines s0i just before the market
occurs at t0.
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3 How should Market Coupling be organized?
In this section, we determine the optimal quantities of energy to be purchased by de-
mand markets in the day-ahead market, (qfi)i, or equivalently, their optimal reserves,
(ri)i since the demands (di)i and the wind generation forecasts (ŵi)i are common
knowledge in the day-ahead market. The optimization programs can either be central-
ized by a supervisor (for instance, a regulator at EU level) who determines the optimal
reserves for all demand markets (cf. Subsection 3.2) or, they can be decentralized
provided each demand market optimizes its reserve selfishly (cf. Subsection 3.1). Fur-
thermore, depending on which agent takes the decision (i.e., either the suppliers or the
demand markets ruled by their own operators) and on the timing of the game, it might
be relevant to minimize the supplier’s total cost or maximize the market welfare. In-
deed, if we consider the short term effect, the costs of the suppliers remain fixed and,
in perfect competition, they will bid at their marginal cost, so that the energy suppliers,
who buy energy from the generators, have most of the economic power and will try to
minimize their own total costs. However, if we consider the effects in the longer term,
the generators can choose to change their costs, by investing in new technologies or
by scaling their plants for example, in order to optimize their own profits, so that the
economic power is shared between the generators and the suppliers. In this latter case,
it is more appropriate to maximize the market welfare.

3.1 Decentralized organization of Market Coupling
In this subsection, the suppliers (resp. the market operators) selfishly and simultane-
ously optimize their reserves in Subsection 3.1.1 (resp. Subsection 3.1.2).

3.1.1 Suppliers’ total cost minimization

In each demand market i, the suppliers independently and simultaneously determine
their reserve ri so as to minimize their procurement total cost:

min
ri≥0

Ui = E
[
TCi

]
(4)

In all the optimization programs described in this article we make the assumption that
ri ≥ 0 since otherwise a supplier could fall short in the day-ahead market, which may
not seem realistic given that conventional plants are more expensive in real time.

Market i supplier determines the best response, rBRi (r−i), where r−i is a N − 1
dimensional vector containing the reserves of all the suppliers except market i supplier,
which minimizes its total cost. The decentralized program output is a Nash equilibrium,
(rNEi )i=1,...,N, defined by: rNEi = rBRi (r−i),∀i = 1, ...,N.

Proposition 4. There exists a Nash equilibrium solution of Program 4. It is unique
if the number of interacting demand markets, N, is such that: N−3

Bf
< C0i fεi(ri) +

1
B0
F̄εi(ri)

[
2−

∑
j=1,...,N,j6=i

F̄εj(rj)
]
,∀i = 1, ...,N.
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Proof of Proposition 4. We let: C0i ,

∑
j=1,...,N,j6=i

E
[
(εj − rj)|εj ≥ rj

]
+A0

B0

and Cfi ,

∑
j=1,...,N,j6=i

(dj − ŵj + rj) +A
f

Bf
. The Lagrangian function associated with

Program 4 is: LUi (ri, µ1) = Ui−µri where µ ∈ R+ is a Lagrange multiplier. Accord-

ing to the Karush-Kühn-Tucker (KKT) conditions, at the optimum in ri:
∂LUi (ri,µ)

∂ri
=

0, ri = 0 or µ = 0.
Going back to the definition of the supplier’s total cost, as defined in Equation (1),

it can be rewritten by substituting the coupling price expressions derived in Lemmas 1
and 2:

Ui =
(
di − ŵi + ri

) ∑
j=1,...,N

(
dj − ŵj + rj

)
+Af

Bf

+ E
[
(εi − ri)+

∑
j=1,...,N

(εj − rj)+ +A0

B0

]
(5)

Differentiating Ui with respect to ri, we obtain:

∂Ui

∂ri
=

∑
j=1,...,N

(dj − ŵj + rj) +A
f

Bf
+
1

Bf
(di − ŵi + ri)

+ C0i
∂

∂ri
E
[
(εi − ri)|εi ≥ ri

]
+
1

B0
∂

∂ri
E
[
(εi − ri)

2|εi ≥ ri
]

But: ∂
∂ri

E
[
(εi − ri)|εi ≥ ri

]
= −F̄εi(ri) and

∂

∂ri
E[(εi − ri)2|εi ≥ ri] =

∂

∂ri

∫+∞
ri

(xi − ri)
2fεi(xi)dxi

= 2ri

∫+∞
ri

fεi(xi)dxi − 2

∫+∞
ri

xifεi(xi)dxi

= 2riF̄εi(ri) − 2E
[
εi|εi ≥ ri

]
By substitution in ∂Ui

∂ri
expression, we obtain the simplified expression: ∂Ui

∂ri
=

2
Bf

(
di − ŵi + ri

)
+ Cfi +

(
2ri
B0

− C0i

)
F̄εi(ri) −

2
B0

E
[
εi|εi ≥ ri

]
. Differentiating

twiceUi with respect to ri we obtain: ∂
2Ui
∂r2
i

= 2
Bf

+
(
C0i −

2ri
B0

)
fεi(ri)+

2
B0
F̄εi(ri)+

2
B0
rifεi(ri) = 2

Bf
+ C0i fεi(ri) +

2
B0
F̄εi(ri) > 0. This proves that r−i being fixed,

function Ui is convex with respect to ri.
Program 4 is solved simultaneously by all the demand market suppliers. The

Nash equilibria are obtained at the intersections of the best responses: rBRi (r−i),∀i =
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1, ...,N. To show uniqueness of the resulting Nash equilibrium, we apply the con-
traction mapping approach. Due to Bertsekas [2], it is sufficient to show that the
Hessians of the suppliers’ total costs fulfill the diagonal dominance condition i.e.,∑
j=1,...,N,j6=i

|
∂2Ui

∂ri∂rj
| < |

∂2Ui

∂r2i
|,∀i = 1, ...,N. Since ∂2Ui

∂ri∂rj
= 1
Bf

+ 1
B0
F̄εi(ri)F̄εj(rj),

the diagonal dominance condition becomes: N−3
Bf

< C0i fεi(ri)︸ ︷︷ ︸
>0

+
1

B0
F̄εi(ri)︸ ︷︷ ︸
>0

[
2 −

∑
j=1,...,N,j6=i

F̄εj(rj)
]
.

ri = 0 checks the KKT conditions. Provided the diagonal dominance condition is
checked, Ui has a unique minimum in R+. Therefore either it is reached in rNEi = 0
or in rNEi > 0 such that ∂Ui

∂ri
|ri=rNEi

= 0.
We note that if there are no more than three interacting demand markets, the suf-

ficient condition of Proposition 4 is checked, guaranteeing the uniqueness of the Nash
equilibrium at the intersection of the suppliers’ best responses.

3.1.2 Maximization of welfare

Each market i independently and simultaneously determines its reserve, ri, so as to
maximize its welfare:

max
ri≥0

Wi (6)

Proposition 5. There exists a Nash equilibrium solution of Program 6 if the conven-
tional supply in the real-time is striclty lower than B0C0i . It is unique if the num-

ber of interacting demand markets, N, is such that: N−3
Bf

<
[
C0i −

s0i
B0

]
fεi(ri) +

1
B0
F̄εi(ri)

[
2−

∑
j=1,...,N,j6=i

F̄εj(rj)
]
.

Proof of Proposition 5. To solve Program 6, we need to determine the zero(s) of the
differentiate ofWi with respect to ri: ∂Wi∂ri

= −∂Ui
∂ri

+
sfi
Bf

−
s0i
B0
F̄εi(ri).Differentiating

twiceWi with respect to ri, we obtain: ∂
2Wi
∂r2
i

= − 2
Bf

+
(
s0i
B0

−C0i

)
fεi(ri)−

2
B0
F̄εi(ri).

If s0i < B
0C0i then ∂

2Wi
∂r2
i

< 0. This proves that r−i being fixed, functionWi is concave
with respect to ri.

As in Proposition 4 proof, the resulting Nash equilibria are obtained at the intersec-
tions of the best responses. Since ∂2Wi

∂ri∂rj
= − 1

Bf
− 1
B0
F̄εi(ri)F̄εj(rj) and under the

assumption that s0i < B
0C0i , the diagonal dominance condition introduced in Proposi-

tion 4 proof becomes: N−3
Bf

<
[
C0i −

s0i
B0

]
fεi(ri) +

1
B0
F̄εi(ri)

[
2−

∑
j6=i F̄εj(rj)

]
.

ri = 0 is a solution to Program 6. Under the diagonal dominance condition, Wi
has a unique maximum in R+. Therefore either it is reached in rNEi = 0 or in rNEi > 0
such that ∂Wi

∂ri
|ri=rNEi

= 0.
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As in Proposition 4, we note that if there are no more than three interacting demand
markets, the sufficient condition of Proposition 5 is trivial to check, provided s0i <
B0C0i .

3.2 Centralized organization of Market Coupling
In this subsection, a supervisor is introduced. He optimizes the suppliers’ (resp. the
market operators’) reserves in Subsection 3.2.1 (resp. 3.2.2).

3.2.1 Minimization of the sum of the suppliers’ total costs

A supervisor determines theNmarket reserves (ri)i=1,...,N minimizing the sum of the
suppliers’ total costs over the N demand markets:

min
(ri)i=1,...,N

U = E
[ ∑
i=1,...,N

TCi

]
s.t. ri ≥ 0, ∀i = 1, ...,N (7)

Proposition 6. There exists a unique global optimum solution of Program 7 if the
number of interacting demand markets, N, is such that:

2(N− 2)

Bf
<

[
C0i +

∑
j=1,...,N,j6=i

E[(εj − rj|εj > rj)]
B0

]
fεi(ri)

+
2

B0
F̄εi(ri)

[
1−

∑
j=1,...,N,j6=i

F̄εj(rj)
]

Proof of Proposition 6. The Lagrangian function associated with Program 7 is:
LU
(
(ri)i, µ̃

)
= U −

∑
i=1,...,N µ̃iri where µ̃ = (µ̃i)i=1,...,N ∈ RN+ are Lagrange

multipliers. According to KKT conditions, at the optimum in (ri)i:
∂LU

(
(ri)i,µ̃

)
∂rj

=

0, ∀j = 1, ...,N, ri = 0 or µ̃i = 0, ∀i = 1, ...,N.
Going back to the definition of U: U = E

[ ∑
i=1,...,N

TCi

]
=

∑
i=1,...,N

E
[
TCi

]
=∑

i=1,...,N

Ui. The differentiation of U with respect to ri gives:

∂U

∂ri
=

1

Bf

(
di − ŵi + ri

)
+

∑
j=1,...,N

dj − ŵj + rj
Bf

+ Cfi

− F̄εi(ri)
∑

j=1,...,N,j6=i

E
[ (εj − rj)

B0
|εj ≥ rj

]
+
(2ri
B0

− C0i

)
F̄εi(ri)

−
2

B0
E
[
εi|εi ≥ ri

]

13



Differentiating twice U with respect to ri we obtain:

∂2U

∂r2i
=
2

Bf
+
[
C0i +

∑
j=1,...,N,j6=i

E[(εj − rj)|εj ≥ rj]
B0

]
fεi(ri) +

2

B0
F̄εi(ri) > 0

and for any j = 1, ...,N, j 6= i: ∂2U
∂ri∂rj

= 2
Bf

+ 2
B0
F̄εi(ri)F̄εj(rj) > 0. Hence, the

Hessian matrix associated with U is non-negative. This implies that function U is
convex with respect to each of its components.

The diagonal dominance condition, introduced by Bertsekas in [2], becomes:∑
j 6=i

|
∂2U

∂ri∂rj
| < |

∂2U

∂r2i
|, ∀i = 1, ...,N

⇔ 2(N− 2)

Bf
<
[
C0i +

∑
j=1,...,N,j6=i

E[(εj − rj|εj > rj)]
B0

]
︸ ︷︷ ︸

>0

fεi(ri)︸ ︷︷ ︸
>0

+
2

B0
F̄εi(ri)︸ ︷︷ ︸
>0

[
1−

∑
j=1,...,N,j6=i

F̄εj(rj)
]
,∀i = 1, ...,N (8)

Assuming Equation (8) is checked, the Hessian matrix associated with U is a Her-
mitian (since real-valued and symmetric) strictly diagonally dominant matrix with real
positive diagonal entries. As a result it is positive definite. This implies in turn that
U is striclty convex [3]. To sum up: if the diagonal dominance condition defined by
Equation (8) is checked, the minimization of U over RN+ admits a unique global opti-
mum.
ri = 0 is a solution to Program 7, regarding the i-th direction. The strict convexity

of U under the conditions mentioned aboved implies that it admits a unique minimum
in RN+ . Therefore in the i-th direction, either it is reached in r∗i = 0 or in r∗i > 0 such
that ∂U

∂ri
|ri=r∗i = 0.

In a centralized Market Coupling organization, we note that if there are no more
than two interacting demand markets, the sufficient condition of Proposition 6 is checked.
This is less than in the decentralized organization where the diagonal dominance con-
dition was checked for less then three interacting demand markets.

3.2.2 Maximization of the social welfare

A supervisor determines theNmarket reserves (ri)i maximizing the sum of the market
welfares i.e., the social welfare:

max
(ri)i

W =
∑

i=1,...,N

Wi

s.t. ri ≥ 0, ∀i = 1, ...,N (9)

Proposition 7. There exists a global optimum solution of Program 9 if the total conven-
tional supply in the real-time is strictly smaller than B0

(
C0i +

∑
j 6=i E[(εj − rj)|εj ≥

14



rj]
)

. It is unique if the number of interacting demand markets, N, is such that:

2N

Bf
<

[
C0i +

1

B0

∑
j 6=i

E[(εj − rj)|εj ≥ rj] −
∑
j=1,...,N s

0
j

B0

]
fεi(ri)

+
2

B0
F̄εi(ri)

[
1−

∑
j6=i

F̄εj(rj)
]

Proof of Proposition 7. If the reserves are positive, to solve Program 9, we need to
determine the zeros of the differentiate ofW with respect to ri,∀i = 1, ...,N:

∂W

∂ri
= −

∂U

∂ri
+

∑
j=1,...,N

sfj

Bf
−

∑
j=1,...,N

s0j

B0
F̄εi(ri),∀i = 1, ...,N (10)

Differentiating twiceW with respect to ri we obtain:

∂2W

∂r2i
= −

∂2U

∂r2i
+

∑
j=1,...,N

s0j

B0
fεi(ri)

= −
2

Bf
−
[
C0i +

∑
j=1,...,N,j6=i

E[(εj − rj)|εj ≥ rj]
B0

−

∑
j=1,...,N s

0
j

B0

]
fεi(ri) −

2

B0
F̄εi(ri)

and for any j = 1, ...,N, j 6= i: ∂2W
∂ri∂rj

= − ∂2U
∂ri∂rj

< 0. If
∑

j=1,...,N

s0j < B0
(
C0i +∑

j=1,...,N,j6=i

E[(εj − rj)|εj ≥ rj]
B0

)
then ∂2W

∂ri
< 0. Hence the Hessian matrix associ-

ated with W is non-positive. This implies that function W is concave with respect to
each of its components. Since ∂2W

∂ri∂rj
= − 2

Bf
− 2
B0
F̄εi(ri)F̄εj(rj) and under the as-

sumption that
∑

j=1,...,N

s0j < B
0
(
C0i +

∑
j=1,...,N,j6=i

E[(εj − rj)|εj ≥ rj]
B0

)
, the diagonal

dominance condition introduced in Proposition 6 proof becomes: 2
Bf

(N− 2) <
[
C0i +

1
B0

∑
j6=i E[(εj−rj)|εj ≥ rj]−

∑
j=1,...,N s

0
j

B0

]
fεi(ri)+

2
B0

[
1−

∑
j6=i F̄εj(rj)F̄εi(ri)

]
.

ri = 0 is a solution to Program 9, regarding the i-th direction. The strict concavity
of W under the conditions mentioned above implies that it admits a unique maximum
in RN+ . Therefore in the i-th direction, either it is reached in r∗i = 0 or in r∗i > 0 such
that ∂W

∂ri
|ri=r∗i = 0.

As in Proposition 6, we note that if there are no more than two interacting de-
mand markets, the sufficient condition of Proposition 7 is trivial to check, provided∑
j=1,...,N

s0j < B
0
(
C0i +

∑
j6=i

E[(εj − rj)|εj ≥ rj]
)

.
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3.3 Simulations
We consider two interacting demand markets (N = 2). This choice is justified by
the fact that, according to the results derived in Subsections 3.1 and 3.2, there exists
a unique Nash equilibrium and a unique optimum solutions of Programs 4, 6, 7 and
9. The parameters are set so that: α1 = α2 = 1, afi = 1

N
, bfi = 10−2 afi , a

0
i =

10 afi , b
0
i = a

f
i , ∀i = 1, 2 and di = 100, ∀i = 1, 2.

Comparing Market Coupling organizations: We compare the impact of the num-
ber of wind farms deployed in each demand market, with the sum of the suppliers’ total
costs evaluated at the optimum in a centralized organization in Figure 1 (a) and at the
Nash equilibrium in a decentralized organization in Figure 2 (a). The centralized op-
timization is performed using the SciPy L-BFGS-B algorithm for bound constrained
optimization [4], [24], [28] while the decentralized optimization is performed using
the SciPy multidimensional root finding function [24]. For these simulations, the other
parameters are set so that θ1 = θ2 = 0.65, σ̃1 = σ̃2 = 1.1. In both organizations, the
more wind farms deployed in both demand markets, the smaller the sum of the suppli-
ers’ total costs. We observe that the sum of the suppliers’ total costs is generally smaller
in a centralized organization than in a decentralized organization. In Figures 1 (b) and
2 (b), we test the impact of the wind farm concentration on the sum of the suppliers’
total costs evaluated at the optimum (resp. at the Nash equilibrium) in a centralized
(resp. decentralized) organization. For these simulations, the other parameters are set
so that γ1 = γ2 = 20 and σ̃1 = σ̃2 = 1.1. In both organizations, the result is minimal
when the wind farms are independent in both demand markets i.e., θi = 1

2
,∀i = 1, 2.

In a decentralized organization, the sum of the suppliers’ total costs reaches high val-
ues when wind farms are co-located in one demand market and almost independent
in the other. In Figure 1 (c) and 2 (c), we compare the impact of the forecast uncer-
tainty on the sum of the suppliers’ total costs evaluated at the optimum in a centralized
organization and at the Nash equilibrium in a decentralized organization. For these
simulations, the other parameters are set so that γ1 = γ2 = 20 and θ1 = θ2 = 0.65.
We observe that the range of values are similar in both organizations and that the sum
of the suppliers’ total costs increases linearly in the forecast uncertainty.

Replacing the sum of the suppliers’ total cost minimization by the social welfare
maximization gives rise to the same interpretations when characterzing the impact of
the parameters in both market organizations.

For the reserves, we observe that they are larger in a decentralized organization
than in a centralized organization. This is due to the fact that in a decentralized or-
ganization each supplier selfishly optimizes its reserve so as to minimize its total cost
whereas in a centralized organization a supervisor minimizes the joint reserves in all
the demand markets. Furthermore, at the optimum, reserves are larger for welfare max-
imization than for the sum of the suppliers’ total cost minimization. This is due to the
fact that the generators contribute to market welfare and tend to increase their reserves
to avoid costly real-time generation ; the real-time price is presumed to be higher than
the day-ahead. Both prices are represented in Figure 2 (d) as functions of the forecast
uncertainty. As expected, they increase with the uncertainty ; the slope of the real-time
price being higher than the day-ahead price.

16



(a) (b)

(c)

Figure 1: The Market Coupling organization is centralized. In (a) we represent the sum of
the suppliers’ total costs at the optimum U∗ as a function of the number of wind farms in each
demand market. In (b) U∗ is represented as a function of the concentration of the wind farms in
each demand market. In (c) U∗ is represented as a function of the forecast uncertainty for each
demand market.

From these simulations, run for two interacting demand markets, we conclude that
the decentralized organization of Market Coupling gives a very similar performance
to that of centralized organization. As seen in Propositions 4 and 6, the uniqueness
of the Nash equilibrium and the global optimum relies on the number of interacting
demand markets and the choice of the game parameters. The uniqueness property is
important because multiple equilibria/optima might cause system instability. Therefore
Market Coupling organization should be designed taking into account the number of
interacting demand markets and the game parameters.

Quantifying the renewable penetration rate: For these simulations, all the de-
mand markets have the same parameters σ̃1 = σ̃2 = 1.1, γ1 = γ2 = 20, θ1 =
θ2 = 0.65. We define the renewable penetration rate ρ as the ratio between the wind
generation over the total generation ; total generation being defined as the sum of
conventional supplies on the day ahead and in real time and renewable generation:

ρ ,

∑
i=1,...,N

wi∑
i=1,...,N

(q0i + q
f
i +wi)

.We let: ŵtot ,
∑
i ŵi and dtot ,

∑
i di.We assume

q0i > 0 i.e., conventional supply is activated in the real-time for demand market i. The

expression of ρ then becomes: ρ =

∑
i=1,...,N

(ŵi − εi)∑
i=1,...,N

di
. Its expectation with respect to
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(a) (b)

(c) (d)

Figure 2: The Market Coupling organization is decentralized. In (a) we represent the sum of the
suppliers’ total costs evaluated in the Nash equilibriumU1(rNE1 , rNE2 )+U2(r

NE
1 , rNE2 ) as a func-

tion of the number of wind farms in each demand market. In (b) U1(rNE1 , rNE2 ) +U2(r
NE
1 , rNE2 )

is represented as a function of the concentration of the wind farms in each demand market. In
(c) U1(rNE1 , rNE2 ) + U2(r

NE
1 , rNE2 ) is represented as a function of the forecast uncertainty for

each demand market. In (d) we compare the market clearing prices as functions of the forecast
uncertainty.

(εi)i is: E[ρ] = 1∑
i=1,...,N

di
E
[ ∑
i=1,...,N

(ŵi − εi)
]
=

∑
i=1,...,N

ŵi∑
i=1,...,N

di
=
ŵtot

dtot
since the

expectation operator is linear and since by assumption E[εi] = 0, ∀i. The variance of ρ

is: Var(ρ) = Var
( ∑
i=1,...,N

ŵi∑
i=1,...,N

di
−

∑
i=1,...,N

εi∑
i=1,...,N

di

)
=

∑
i=1,...,N

Var(εi)( ∑
i=1,...,N

di

)2 =
Nσ2i
d2tot

using the

fact that the (εi)i are idependent from one another, uncorrelated and that the variance
operator is quadratic. We infer that the standard deviation of ρ equals either −

√
Nσi
dtot

or
√
Nσi
dtot

. In Figures 3 (a) (resp. (b) and (c)), we represent ρ as a function of γ (resp.
of θ and σ̃), (εi)i sampled independently. The results are similar for suppliers’ total
cost minimization and for market welfare maximization. We infer that: increasing the
number of wind farms θ makes the expectation of the wind penetration rate increase
linearly in θ ; increasing the standard deviation of a single farm forecast error σ̃ (resp.
the wind farm concentration θ) makes the variance of the wind penetration rate increase
quadratically in σ̃ (resp. exponentially in θ).
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(a) (b)

(c)

Figure 3: We simulate the renewable penetration rate ρ for different values of γ in (a), θ in (b)
and σ̃ in (c). The reserves are optimized centrally so as to minimize the suppliers’ total costs.
ρ is bounded by its standard-deviation values and its expectation is a good approximation of its
mean value.

4 Dealing with forecast uncertainty in a decentralized
organization

In a decentralized organization, there is no supervisor controling the forecast errors
in each demand market. Each demand market operates selfishly and the forecast er-
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rors are generally hidden from the others. However, forecast errors are critical and
heavily impact the behavior of the electrical system, as mentioned in the Introduction.
Forecast uncertainty generally results from errors made in the decentralized process of
wind generation estimation [12], [19], [20]. This uncertainty may be amplified by the
decentralized nature of the system. Forecast uncertainty is measured by the sandard
deviations associated with the wind generation forecast errors: (σi)i=1,...,N.

The demands (di)i and the renewable generation forecasts (ŵi)i are nevertheless
presumed to be common knowledge in the day-ahead. In a decentralized Market Cou-
pling organization, to optimize its reserve, market i supplier needs to evaluate ∂Ui

∂ri
which expression was derived in Subsection 3.1.1. It is a function of ri, rj and σi, σj:

∂Ui

∂ri
=

2

Bf

(
di − ŵi + ri

)
+

(dj − ŵj + rj) +A
f

Bf
+
(2ri
B0

−
(
σj√
2π

exp(−
r2j
2σ2
j

) − rjF̄εj(rj)) +A
0

B0

)
F̄εi(ri) −

2

B0
σi√
2π

exp(−
r2i
2σ2i

)

At the optimum for market i, rNEi can be expressed as a function of rNEj , σi, σj ;
identically, for market j, rNEj can be expressed as a function of rNEi , σj, σi. Going a
step further, market i supplier’s optimal reserve depends on its own forecast uncertainty
(measured by σi) and on the other market supplier’s forecast uncertainty (σj).

We then consider two cases that depend on which information is known among the
agents ; for the sake of simplicity, here and in the next subsections, we will consider
two interacting demand markets:

(i) Information asymmetry: Market 1 knows σ1 and σ2 while market 2 knows
only σ2

(ii) Partial information: Market 1 knows only σ1 and market 2 knows only σ2

We introduce a Principal to whom the suppliers report their standard deviation i.e.,
the uncertainty associated with their forecast error. We let σ̄i, i = 1, 2 be the report
made by market i = 1, 2 supplier to the Principal. The Principal can be assimilated to
a risk certificator.

4.1 Information asymmetry
Firstly, we assume that market 1 supplier has access to its own standard deviation σ1
but needs to forecast the other market supplier’s standard deviation: σ2 while market
2 has access to the whole information. Of course, both markets’ roles can be inter-
changed. The information is asymmetric since market 2 supplier has access to all the
information while market 1 supplier possesses only partial information. We describe
the setting of the non-cooperative game with asymmetric information below:

Decentralized Reserve Optimization with Information Asymmetry

Agents: Market 1 and market 2 suppliers

20



Information:

– σ1 known by market 1 and market 2

– σ2 known by market 2 solely

– σ̄2 market 2’s reported standard deviation on its forecast error

(i) Market 1 supplier determines r1(σ1, σ̄2) as a solution of Program 4 (resp. 6) in σ1, σ̄2
assuming that market 2’s optimal reserve is r2(σ̄2, σ1) obtained as a solution of Program 4
(resp. 6) in σ̄2, σ1.

(ii) Simultaneously and independently, market 2 supplier determines r2(σ1, σ2) as a
solution of Program 4 (resp. 6) in σ1, σ2 assuming that market 1’s optimal reserve is
r1(σ1, σ̄2) obtained as a solution of Program 4 (resp. 6) in σ1, σ̄2.

Figure 4: Suppliers’ total costs as functions of market 2’s reported standard deviation.

In Figure 4, we represent the suppliers’ total costs evaluated in the Nash equilibrium
as functions of market 2 supplier’s reported standard deviation. The (true) standard
deviations associated with the forecast errors are: σ1 = 7.71 and σ2 = 9.11. We
observe that market 1 supplier has an incentive to know the true standard deviation of
market 2 since its total cost reaches a minimum in σ̄2 = σ2. At the same time, market 2
supplier has no incentive to report its true standard deviation since its total cost reaches
a maximum in σ̄2 = σ2. The simulation results therefore demonstrate that market 2
supplier will bias its reported forecast uncertainty which will cause market 1 supplier’s
total cost to increase.

4.2 Private information
Secondly, we assume that market 1 and 2 suppliers only know their own standard devi-
ations i.e., market 1 supplier knows σ1 but ignores σ2 while market 2 supplier knows
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σ2 but ignores σ1. This information is private since each market supplier only has
access to its own forecast uncertainty. We describe the setting of the non-cooperative
game with private information below:

Decentralized Reserve Optimization with Private Information

Agents: Market 1 and market 2 suppliers

Information:

– σ1 known by market 1 solely

– σ2 known by market 2 solely

– σ̄1 market 1’s reported standard deviation on its forecast error

– σ̄2 market 2’s reported standard deviation on its forecast error

(i) Market 1 supplier determines r1(σ1, σ̄2) as a solution of Program 4 (resp. 6) in σ1, σ̄2
assuming that market 2’s optimal reserve is r2(σ̄2, σ̄1) obtained as a solution of Program 4
(resp. 6) in σ̄2, σ̄1.

(ii) Simultaneously and independently, market 2 supplier determines r2(σ̄1, σ2) as a
solution of Program 4 (resp. 6) in σ̄1, σ2 assuming that market 1’s optimal reserve is
r1(σ̄1, σ̄2) obtained as a solution of Program 4 (resp. 6) in σ̄1, σ̄2.

In Figure 5, we represent the suppliers’ total costs evaluated in the Nash equilib-
rium as functions of the reported standard deviations. The (true) standard deviations
associated with the forecast errors are: σ1 = 7.71 and σ2 = 9.11. To minimize its total
cost within [85.5; 87], market 1 supplier should report σ̄1 ≤ −(σ̄2−5)(σ̄2−10.5)+2.
Similarly to minimize its total cost within [88; 90], market 2 supplier should report
σ̄2 ≤ −(σ̄1 − 6.05)(σ̄1 − 12) + 2. The true reports i.e., σ̄1 = σ1, σ̄2 = σ2, belong to
the frontier of both domains. If market i (i = 1, 2) supplier truthfully reports its fore-
cast uncertainty i.e., σ̄i = σi, it is highly likely that market j supplier (j 6= i, j = 1, 2)
will bias its report downwards in the hope of minimizing its total cost.

4.3 The price of uncertainty
We previously observe that the demand markets have incentives to know other demand
markets’ (true) forecast uncertainty. We now determine the price that the Principal will
charge to certify the demand markets’ forecast uncertainty.

To obtain an estimate of market j 6= i’s forecast uncertainty, the certificator needs
to perform a sequence of n observations of market j forecast errors. We introduce
the probability that the random variable ε distributed according to a Gaussian density
function centered in 0 and of standard deviation 1 belongs to the interval [−δ; +δ],
C(δ) 6= 0. By definition: C(δ) = Fε(δ) − Fε(−δ) where Fε is the cumulative distri-
bution function associated with the Gaussian distribution function centered in 0 and of
standard deviation 1.

We let σ̂j be an estimate of market j forecast error standard deviation, obtained
through a second order moment estimation. According to Agard [1], there is a proba-
bility, also called confidence level, C(δ), that when n is high enough, σ̂j = σj belongs
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Figure 5: Suppliers’ total costs as functions of the markets’ reported standard deviations.
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where Γ(a) is the
Gamma function evaluated in a ∈ R+.

It is straightforward to observe that the increase of C(δ) makes this interval increase
but that the accuracy of the forecast decreases, which implies in turn that the risk certi-
fication price should decrease. For a confidence level of C(δ), we define the uncertainty
price as: ϕ(δ, σi, σ̄j, σ̂j) ≥ 0 and ϕ(δ, σi, σ̄j, σ̂j) → 0 when δ → +∞. This is the
price that the risk certificator requires from market i to certify the forecast uncertainty
of market j 6= i. It should be designed so that market i has incentives to make such a
certification.

Proposition 8. Market j having reported σ̄j as the forecast error standard deviation
and with the confidence level set to C(δ), the uncertainty price is: ϕ(δ, σi, σ̄j, σ̂j) =

1
B0
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σi√
2π

exp(− r2i
2σ2
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) − riF̄εi(ri)
] exp(−
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2 )
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where σ̃j is defined

as follows:

• It belongs to
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]

• 1
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] exp(−
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√
2π

(
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)
=
Ui(σi,σ̂j)−Ui(σiσ̄j)

σ̂j−σ̄j

Furthermore the uncertainty price increases in σ̃j ∈
[

min{σ̄j; σ̂j};max{σ̄j; σ̂j}
]
.

Proof of Proposition 8. We introduce the opportunity cost for market i to certify the
other market’s forecast uncertainty. This is defined as the difference between the benefit
resulting from the knowledge of the private standard deviation of the other market and
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the cost of certification, depending on the required confidence level C(δ). Therefore,
the opportunity cost for market i to certify the other market’s forecast uncertainty is:
Ui(σi, σ̄j) −Ui(σi, σ̂j)︸ ︷︷ ︸

Benefit resulting from the knowledge of σj

−ϕ(δ, σi, σ̄j, σ̂j). Market i will certify the other mar-

ket’s forecast uncertainty provided its opportunity cost remains positive or null. But
the risk certificator will propose the highest admissible price so that the market i op-
portunity cost vanishes: ϕ(δ, σi, σ̄j, σ̂j) = Ui(σi, σ̄j) −Ui(σi, σ̂j).

Using the Mean Value Theorem, we infer that there exists:
σ̃j ∈

[
min{σ̄j; σ̂j};max{σ̄j; σ̂j}

]
such that ∂Ui(σj)

∂σj
|σj=σ̃j =

Ui(σi,σ̂j)−Ui(σi,σ̄j)
σ̂j−σ̄j

.
We go back toUi(σi, σj) as detailed in Equation (5) and substitute in it the analyti-

cal expressions of the conditional expectations: E[(εi−ri)|εi ≥ ri] = σi√
2π
Γ(1)P(1,

r2i
2σ2
i

)−

riF̄εi(ri) and E[(εi − ri)2|εi ≥ ri] = σ2i√
π
Γ(3
2
)P(3

2
,
r2i
2σ2
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) − 2ri
σi√
2π
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r2i
2σ2
i

) +

r2i F̄εi(ri) where P(a, x) = 1
Γ(a)

∫+∞
x

ta−1 exp(−t)dt and x ∈ R+ is the non-negative
lower bound of the integral.

We obtain:
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Derivating Ui with respect to σj, we obtain:

∂Ui
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=
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This implies that ∂Ui(σi,σj)
∂σj

|σj=σ̃j > 0 i.e., Ui(σi, σ̃j) is increasing in σ̃j.

5 Conclusion
In this article we model the interactions among a finite number of geographic demand
markets as a non-cooperative game, taking into account the forecast uncertainty result-
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ing from the increasing penetration of renewables. Price based Market Coupling, based
on implicit auction allocation, is impacted by the increasing penetration of renewables.
Currently, it can be organized in one of two ways: centralized or decentralized. To
compare these two organizations we study how the scaling of the relative concentration
of the wind farms being aggregated, their number, and the forecast uncertainty impact
the total cost of procurement, the market welfare and the ratio of renewable genera-
tion to conventional supplies. The game equilibria are then characterized depending
on the number of interacting demand markets and the game parameters. Forecast er-
rors are critical in a decentralized Market Coupling organization. We show, through
simulations, that markets have incentives to certify the other markets’ forecast uncer-
tainty. The uncertainty price at which this information should be certified is derived
analytically as a function of the required confidence level.

In [18], we extend this article by taking into account the network capacity con-
straints impacting Market Coupling and we determine the optimal wind farm concen-
tration over each geographic demand market. The increasing penetration of intermittent
energy sources whose generation may be fairly erratic, the restructuring of the energy
market, and the increasing complexity of most energetic systems, make it necessary to
couple agent-based techniques with techniques coming from Machine Learning. The
latter could enable the automation of renewable generation forecasting. One area of re-
search concerns the scaling effect of these methods, which would require parellilizing
online learning algorithms.
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