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RIORDAN TREES AND THE HOMOTOPY sl2 WEIGHT

SYSTEM

JEAN-BAPTISTE MEILHAN AND SAKIE SUZUKI

Abstract. The purpose of this paper is twofold. On one hand, we intro-
duce a modification of the dual canonical basis for invariant tensors of the
3-dimensional irreducible representation of Uq(sl2), given in terms of Jacobi
diagrams, a central tool in quantum topology. On the other hand, we use this
modified basis to study the so-called homotopy sl2 weight system, which is its
restriction to the space of Jacobi diagrams labeled by distinct integers. Noting

that the sl2 weight system is completely determined by its values on trees, we
compute the image of the homotopy part on connected trees in all degrees; the
kernel of this map is also discussed.

1. Introduction

The sl2 weight system W is a Q-algebra homomorphism from the space B(n)
of Jacobi diagrams labeled by {1, . . . , n} to the algebra Inv (S(sl2)

⊗n) of invariant
tensors of the symmetric algebra S(sl2). The relevance of this construction lies in
low dimensional topology. Jacobi diagrams form the target space for the Kontse-
vich integral Z, which is universal among finite type and quantum invariants of
knotted objects : in particular, by postcomposing Z with the sl2 weight system
and specializing each factor at some finite-dimensional representation of quantum
group Uq(sl2), one recovers the colored Jones polynomial. Hence, while the results
of this paper are purely algebraic, we will see that they are motivated by, and have
applications to, quantum topology – see Remark 1.4 at the end of this introduction.

An easy preliminary observation on the sl2 weight system is the following.

Lemma 1.1. The sl2 weight system is determined by its values on connected trees,
i.e. connected and simply connected Jacobi diagrams.

(Although this result might be well-known, a proof is given in Section 2.4.)
In this paper, we focus on the homotopy part Bh(n), which is generated by

diagrams labeled by distinct elements in {1, . . . , n}. Here, the terminology alludes
to the link-homotopy relation on (string) links, which is generated by self crossing
changes. It was shown by Habegger and Masbaum [4] that the restriction of the
Kontsevich integral to Bh(n) is a link-homotopy invariant, and is deeply related
to Milnor link-homotopy invariants, which are classical invariants generalizing the
linking number.

Let us state our main results on the homotopy sl2 weight system, that is, the
restriction of the sl2 weight system to Bh(n). Owing to Lemma 1.1, we can fully
understand this map by studying the restrictions

Wh
n : Cn → Inv(sl⊗n

2 )

of the sl2 weight system to the space Cn of connected trees with n univalent vertices
labeled by distinct elements in {1, . . . , n}. Here, the target space Inv(sl⊗n

2 ) is
the invariant part of the n-fold tensor power of the adjoint representation (the 3-
dimensional irreducible representation) of sl2. Recall that the dimension of Cn
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is given by (n − 2)!, while the dimension of Inv(sl⊗n
2 ) is known to be the so-

called [1] Riordan numbers Rn which can be defined by R2 = R3 = 1 and Rn =
(n− 1)(2Rn−1 +3Rn−2)/(n+1). These numbers are also found under the name of
Motzkin sums, or ring numbers in the literature.

More generally, we have:

Theorem 1.2. (i) The weight system map Wh
n is injective if and only if n ≤ 5.

(ii) For n odd and n = 2, the weight system map Wh
n is surjective.

(iii) For n ≥ 4 even, Wh
n has a 1-dimensional cokernel, spanned by c⊗n, where

c = 1
2h⊗ h+ e⊗ f + f ⊗ e ∈ Inv(sl⊗2

2 ).

The dimensions of Cn, Inv(sl
⊗n
2 ) and KerWh

n are given in Table 1.

n 2 3 4 5 6 7 8 9 k
dim Cn 1 1 2 6 24 120 720 5040 (k − 2)!

dim Inv(sl⊗n
2 ) 1 1 3 6 15 36 91 232 Rk

dimKerWh
n 0 0 0 0 10 84 630 4808 (k − 2)!−Rk +

1+(−1)k

2

Table 1. The dimensions of Cn, Inv(sl
⊗n
2 ) and KerWh

n .

Let Sn be the symmetric group in n elements. The spaces Cn and Inv(sl⊗n
2 )

have Sn-module structures, such that Sn acts on Cn by permuting the labels,
and acts on Inv(sl⊗n

2 ) by permuting the factors. The sl2 weight system is a Sn-
module homomorphism, and the characters χCn and χInv(sl⊗n

2 ) are already known

(see Lemma 3.7 and Proposition 3.8). Thus, by Theorem 1.2, we can determine the
character χker(Wh

n ) of the kernel of Wh
n as follows.

Corollary 1.3. (i) For n = 2 or n > 2 odd, we have

χker(Wh
n ) = χCn − χInv(sl⊗n

2 ) and χIm(Wh
n ) = χInv(sl⊗n

2 ).

(ii) For n ≥ 4 even, we have

χker(Wh
n ) = χCn − χInv(sl⊗n

2 ) + χU and χIm(Wh
n ) = χInv(sl⊗n

2 ) − χU ,

where U is the trivial representation.

Although the proof of Theorem 1.2 is mainly combinatorial, it heavily relies on
the following algebraic result.

Theorem (Theorem 3.2). The set

In := {W (T ) ; T is a Riordan tree of order n}

forms a basis for Inv(sl⊗n
2 ).

Here, Riordan trees of order n are a special class of elements of Bh(n) ; roughly
speaking, a Riordan tree is a disjoint union of linear tree diagrams (i.e. of the
shape of Figure 2.2), whose label sets comprise a Riordan partition of {1, . . . , n} –
see Definition 3.1.

Theorem 3.2 is proved using the work of Frenkel and Khovanov [3], who stud-
ied graphical calculus for the dual canonical basis of tensor products of finite-
dimensional irreducible representations of Uq(sl2). More precisely, we define a new
basis for InvUq (V

⊗n
2 ), the space of Uq(sl2)-invariants of tensor products of the 3-

dimensional irreducible representation V2, by inserting copies of the Jones-Wenzl
projector in the dual canonical basis studied in [3]. This basis is actually unitri-
angular to the Frenkel-Khovanov basis, see Theorem 4.3. The result is a graphical
description of invariant tensors in terms of Jacobi diagrams ; see e.g. [7, 9, 11] for
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related graphical approaches to invariant tensors. We expect that this result and its
possible generalizations could also be interesting from an algebraic point of view.

Remark 1.4. Consider the projection Zh of the Kontsevich integral Z onto the
space Bt,h(n) of tree Jacobi diagrams labeled by distinct elements of {1, . . . , n}.
In Proposition 10.6 of [4], Habegger and Masbaum show that, for string links, the
leading term of Zh determines (and is determined by) the first non-vanishing Milnor
link-homotopy invariants. The non-injectivity of the map Wh

n for n ≥ 5 tells us
that, expectedly, this is in general no longer the case for quantum invariant W ◦Z
– yet, it is remarkable that it still determines the first non-vanishing Milnor link-
homotopy invariants of length up to 5. On the other hand, since Z extends to a
graded isomorphism on the free abelian group generated by string links, surjectivity
of the map Wh

n readily implies surjectivity of the linear extension of Wh
n ◦ Z (see

also Remark 3.3). By Theorem 1.2, the surjectivity defect is given by c⊗n; it is not
hard to check that, for a 2n-component string link, the coefficient of c⊗n in W ◦ Z
is given by a product of linking numbers (this follows from a similar result at the
level of the Kontsevich integral Z), and is in particular zero for string links with
vanishing linking numbers.
Similar observations can be made for the universal sl2 invariant, using Theorem 5.5
of [8].

The rest of this paper is organized in three sections. In Section 2 we recall the
definitions of Jacobi diagrams and the sl2 weight system, and give a result which in
particular implies Lemma 1.1. Section 3 introduces Riordan trees and the tree basis
of Inv(sl⊗n

2 ), which are used to prove Theorem 1.2. Finally, in Section 4 we recall a
few elements from the graphical calculus developed by Frenkel and Khovanov, and
use it to prove Theorem 3.2.

Acknowledgments. The authors are indepted to Daniel Tubbenhauer for insightful
comments and stimulating discussions. They thank Naoya Enomoto for discus-
sions concerning the content of Section 3.3, and Raphaël Rossignol for writing the
code used in Section 3.4. They also thank Kazuo Habiro, Tomotada Ohtsuki and
Louis-Hadrien Robert for valuable comments. The first author is supported by the
French ANR research project “VasKho” ANR-11-JS01-00201. The second author
is supported by JSPS KAKENHI Grant Number 15K17539.

2. Jacobi diagrams and the sl2 weight system

In this section we give the definitions of the sl2 weight system W and proof of
Lemma 1.1.

2.1. The Lie algebra sl2 and its symmetric algebra. Recall that the Lie al-
gebra sl2 is the 3-dimensional Lie algebra over Q generated by h, e, and f with Lie
bracket

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

Let S = S(sl2) be the symmetric algebra of sl2. The adjoint action, acting as a
derivation, endows S, and more generally S⊗n for any n ≥ 1, with a structure of
sl2-modules. Note that sl⊗n

2 , the n-fold tensor power of sl2, is isomorphic to the
subspace of S⊗n having degree one in each factor.

We denote by Inv(S⊗n) and Inv(sl⊗n
2 ) the set of invariant tensors of S⊗n and

sl⊗n
2 , respectively (that is, elements that are mapped to zero when acted on by h, e,

and f).
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2.2. Jacobi diagrams. A Jacobi diagram is a finite unitrivalent graph, such that
each trivalent vertex is equipped with a cyclic ordering of its three incident half-
edges. Each connected component is required to have at least one univalent vertex.
An internal edge of a Jacobi diagram is an edge connecting two trivalent vertices.
The degree of a Jacobi diagram is half its number of vertices.

In this paper we call a simply connected (not necessary connected) Jacobi dia-
gram a tree. A tree consisting of a single edge is called a strut.

Let B(n) be the completed Q-space spanned by Jacobi diagrams whose univalent
vertices are labeled by elements of {1, ..., n}, subject to the AS and IHX relations
shown in Figure 2.1. Here completion is given by the degree. Note that B(n) has

= −

IHX

+

AS

= 0

Figure 2.1. The AS and IHX relations.

an algebra structure with multiplication given by disjoint union.
Let Bh(n) ⊂ B(n) denote the subspace generated by Jacobi diagrams labeled by

distinct1 elements in {1, . . . , n}. Note that Bh(n) is the polynomial algebra on the
space Ch(n) of connected diagrams labeled by distinct elements in {1, . . . , n}

As is customary, for each of the spaces defined above we use a subscript k to
denote the corresponding subspaces spanned by degree k elements.

We denote by Cn the space of connected trees where each of the labels 1, . . . , n
appears exactly once. It is a well-known fact, easily checked using the AS and
IHX relations, that a basis for Cn is given by linear trees, i.e. connected trees
of the form shown in Figure 2.2, where the labels i1 and in are two arbitrarily
chosen elements of {1, . . . , n}, and where i2, . . . , in−1 are running over all (pairwise
distinct) elements of {1, . . . , n} \ {i1, in}. This shows that dim Cn = (n − 2)!, as

. . .

i3 in−1

ini1

i2

Figure 2.2. A linear tree Jacobi diagram.

recalled in the introduction.

2.3. The sl2 weight system. We now define the sl2 weight system, which is a
Q-algebra homomorphism

W : B(n) → Inv(S⊗n).

Recalling that B(n) is (the completion of) the commutative polynomial algebra on
the space of connected diagrams, it is enough to define it on the latter. We closely
follow [8, §4.3].

We will use the non-degenerate symmetric bilinear form

κ : sl2 ⊗ sl2 → Q

given by

κ(h, h) = 2, κ(e, f) = 1, κ(h, e) = κ(h, f) = κ(e, e) = κ(f, f) = 0.

1The superscript h stands for ‘homotopy’ since, as noted in the introduction, Bh(n) is the
relevant space for link-homotopy invariants of (string) links.
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The bilinear form κ identifies sl2 with the dual Lie algebra sl∗2 . Note that, under this
identification, κ ∈ (sl⊗2

2 )∗ ≃ sl∗2 ⊗ sl∗2 itself corresponds to the quadratic Casimir
tensor

c =
1

2
h⊗ h+ f ⊗ e+ e⊗ f ∈ Inv(sl⊗2

2 ),(2.1)

while the Lie bracket [−,−] ∈ sl∗2 ⊗ sl∗2 ⊗ sl2 corresponds to the invariant tensor

b =
∑

σ∈S3

(−1)|σ|σ(h⊗ e⊗ f)

= h⊗ e⊗ f + e⊗ f ⊗ h+ f ⊗ h⊗ e− h⊗ f ⊗ e− f ⊗ e⊗ h− e⊗ h⊗ f.

(2.2)

where σ acts by permutation of the factors.
Let Dij be a strut with vertices labeled by 1 ≤ i, j ≤ n. Rewriting formally (2.1)

as c =
∑

c1 ⊗ c2, we set

W (Dij) =
∑

1⊗ · · · ⊗ c1 ⊗ · · · ⊗ c2 ⊗ · · · ⊗ 1 ∈ Inv(S⊗n),

where c1 and c2 are at the ith and jth position, respectively.
Now, let m ≥ 2. For a diagram connected diagram D ∈ Bm(n), attach a copy of

b ∈ Inv(sl⊗3
2 ) to each trivalent vertex of D, a copy of sl2 being associated to each of

the 3 half-edges at the trivalent vertex following the cyclic ordering. Each internal
edge ofD is divided into to half-edges, and we contract the two corresponding copies
of sl2 by κ. Fixing an arbitrary total order on the set of univalent vertices of D, we
get in this way an element xD =

∑

x1 ⊗ · · · ⊗ xm+1 of Inv(sl⊗m+1
2 ), the ith factor

corresponding to the ith univalent vertex of D. We then define W (D) ∈ Inv(S⊗n)
by

W (D) =
∑

y1 ⊗ · · · ⊗ yn,(2.3)

where yj is the product of all xi ∈ sl2 such that the ith vertex is labeled by j.
It is known that W is well-defined, i.e. is invariant under the AS and IHX

relations. The next lemma, due to Chmutov and Varchenko [2], gives another
relation satisfied by the sl2 weight system.

Lemma 2.1. The sl2 weight system W factors through the CV relation below

= 22 −

CV

Note that the CV relation is not degree-preserving. Note also that this rela-
tion might involve diagrams with a circular component : the value of W on such
component is set to W (©) = 3 = dim sl2.

Remark 2.2. It is worth noting here that the restriction of the sl2 weight system
to Cn takes values in Inv(sl⊗n

2 ). Likewise, the homotopy sl2 weight system, i.e. its
restriction to Bh(n), takes values in Inv(〈sl2〉

⊗n), where 〈sl2〉
⊗n = (Q ⊕ sl2)

⊗n ⊂
S(sl2)

⊗n is the subspace of tensors having degree at most one in each factor.

2.4. The space Bsl2(n) of sl2-Jacobi diagrams. In view of Lemma 2.1, it is
natural to consider the following space.

Definition 2.3. The space of sl2-Jacobi diagrams is the quotient space

Bsl2(n) = B(n)/CV,©3

of B(n) by the ideal generated by the CV relation and the relation ©3 that maps
a circular component to a factor 3.
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Note that the algebra structure on B(n) descends to Bsl2(n). This is however no
longer a graded algebra (although one could impose such a structure by considering
the number of univalent vertices).

Since the sl2 weight system factors through Bsl2(n), it is useful to for our study
to get some insight in this space.

Proposition 2.4. As an algebra, Bsl2(n) is generated by (connected) trees.

This in particular implies Lemma 1.1 stated in the introduction.

Proof. It suffices to prove that any connected Jacobi diagram in Bsl2(n) can be
expressed as a combination of trees. The proof is by a double induction, on the
number of cycles in the diagrams and on the minimal length of the cycles (the
length of a cycle is the number of internal edges contained in it).
Consider a connected diagram C with k cycles, and pick a cycle of minimal length
l. If the cycle has length l = 0, then the diagram C is a loop, which can be replaced
by a coefficient 3 by the ©3 relation. If l = 1, then it follows from the AS relation
that C is zero. Now, if l ≥ 2, we can apply the CV relation at some internal edge
of the cycle, which gives

(2.4)

−
. . . . . . . . . 

= 2 2

,

where the rightmost term is a diagram with n − 1 cycles, and where the middle
term has a cycle of length l− 2. We can thus apply (2.4) recursively to reduce the
length of this cycle, until we obtain a cycle of length either 1 or 0, as above. Then
C writes as a combination of diagrams with less than k cycles. This concludes the
proof. �

3. Invariant tensors and the homotopy sl2 weight system

In this section we give a basis for Inv(sl⊗n
2 ) in terms of Riordan trees, and use

this basis to prove Theorem 1.2. The kernel of the homotopy sl2 weight system is
briefly discussed at the end of the section.

3.1. Tree basis of Inv(sl⊗n
2 ). We now construct a basis for Inv(sl⊗n

2 ), as the image
by the sl2 weight system of a certain class of connected tree Jacobi diagrams. For
this, we need a couple extra definitions.

On one hand, we call a linear tree ordered if, in the notation of Figure 2.2, its
labels i1, . . . , in satisfy i1 < i2 < . . . < in.

On the other hand, a Riordan partition is a partition of {1, . . . , n} into parts that
contains at least two elements, and whose convex hulls are disjoint when the points
are arranged on a circle. For example, {{1, 4, 5, 9, 10}, {2, 3}, {6, 7, 8}} is a Riordan
partition, as illustrated in Figure 3.1, while {{1, 4, 6}, {2, 3}, {5, 7, 8}} is not.2 The
number of Riordan partitions of {1, . . . , n} is given by the Riordan number Rn –
see [1, §3.2].

This leads to the following

Definition 3.1. A Riordan tree of order n is an element of Bh(n) such that

• each connected component is an ordered linear tree,
• the partition of {1, . . . , n} induced by its connected components is a Riordan

partition.

2A partition satisfying only the second condition is often called non-crossing.
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Figure 3.1. The Riordan tree associated to the Riordan partition
{{1, 4, 5, 9, 10}, {2, 3}, {6, 7, 8}}.

See the right-hand side of Figure 3.1 for an example. Note that a Riordan
partition uniquely determines a Riordan tree ; the number of Riordan trees of
order n is thus given by Rn.

Theorem 3.2. The set

In := {W (T ) ; T is a Riordan tree of order n}

forms a basis for Inv(sl⊗n
2 ).

We call this basis the tree-basis of Inv(sl⊗n
2 ). The proof of Theorem 3.2 is

postponed to Section 4, and is somewhat indirect. It uses the graphical calculus
for the dual canonical basis for Inv(V ⊗n

2 ) given by Frenkel and Khovanov in [3].
Although a more direct proof may exist, we hope that the one given in this paper
could be interesting from the representation theory point of view.

Remark 3.3. Theorem 3.2 implies immediately that the homotopy sl2 weight system
W : Bh(n) → Inv(〈sl2〉

⊗n) is surjective, and Theorem 1.2 can be regarded as a
refinement of this observation. (Recall that 〈sl2〉

⊗n was defined in Remark 2.2.)

3.2. Proof of Theorem 1.2. The proof of Theorem 1.2 (i) is straightforward using
Theorem 3.2: pick a basis for Cn in terms of linear trees, as outlined at the end
of Section 2.2, and write each basis element, using the CV relation, as the linear
combination of basis Riordan trees of order n. It then suffices to check that, for
n ≤ 5, the matrix obtained in this transformation has rank (n−2)!. Non-injectivity
for n ≥ 6 is obvious since the dimension of the target space Inv(sl⊗n

2 ) is smaller
than that of the domain Cn.

We now turn to the surjectivity results (ii) and (iii). Let Bh
Y (n) ⊂ Bh(n) be the

subspace of Jacobi diagrams with at least one trivalent vertex, and let Bh
U (n) =

Bh(n) \ Bh
Y (n). Set

I
Y
n := {W (T ) ; T is a Riordan tree in Bh

Y (n)},

I
U
n := {W (T ) ; T is a Riordan tree in Bh

U (n)}.

Note that In = I
Y
n for n odd, while In = I

Y
n ∪ I

U
n for n even.

Based on Theorem 3.2 and this observation, points (ii) and (iii) of Theorem 1.2
follow from the following two lemmas.

Lemma 3.4. If T ∈ Bh
Y (n), then W (T ) ∈ W (Cn). In particular, IYn ⊂ W (Cn).

For n ≥ 2 even, let ∪⊗n =
∐n/2

i=1 D2i−1,2i denote the tree diagram made of n
struts labeled by i and i+ 1 (1 ≤ i ≤ n/2). Note that W (∪⊗n) = c⊗n ∈ I

U
n .

Lemma 3.5. (i) We have W (∪⊗n) 6≡ 0 modulo W (Cn).
(ii) If T ∈ Bh

U (n) with n ≥ 4 even, then W (T ) ≡ W (∪⊗n) modulo W (Cn).

Proof of Lemma 3.4. Let T ∈ Bh(n), containing at least one trivalent vertex, and
let k denote the number of connected components of T . If k > 1, the equality
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*4 = − −* *

.

Figure 3.2. Relation in Bsl2(n), given by applying the CV rela-
tion at each of the ∗-marked edges on the right-hand side.

depicted in Figure 3.2 shows how T can be expressed as a combination of tree
diagrams with k − 1 components in Bh

sl2
(n). Since each of these trees contains at

least one trivalent vertex, the proof follows by an easy induction on k. �

Remark 3.6. Note that the proof applies more generally to the whole space Bsl2(n).
More precisely, any Jacobi diagram with at least one trivalent vertex decomposes as
a combination of connected diagrams in Bsl2(n). Combining this with Proposition
2.4, we have that Bsl2(2k + 1) is generated, as a vector space, by connected tree
Jacobi diagrams and that Bsl2(2k) is generated by connected trees and the disjoint
union of n struts ⊔k

i=1D2i−1,2i.

Proof of Lemma 3.5. To show (ii), note that any T ∈ Bh
U (n) is obtained from ∪⊗n

by exchanging some labels, which implies that W (T )−W (∪⊗n) ∈ W
(

Bh
Y (n)

)

by
Lemma 2.1. Combining this with Lemma 3.4, we have the assertion.

We now prove (i). Consider the C-linear map φ : Inv(sl⊗n
2 ) → C defined (using

Theorem 3.2) by

φ(t) =

{

0 for t ∈ I
Y
n ,

1 for t ∈ I
∪
n .

We prove that W (Cn) ⊂ Ker(φ), which implies the assertion. It suffices to prove
that W (T ) ∈ Ker(φ) for a connected tree diagram T ∈ Cn ; actually, as observed
at the end of Section 2.2, we may further assume that T is linear3. Notice that the
number vT of trivalent vertices of T is its degree minus 1, and that applying the
CV relation yields diagrams with (vT − 2) trivalent vertices. If the degree of T is
odd, then by applying the CV relation repeatedly we obtain

T = 2vT /2
2vT /2
∑

i=1

(−1)iUi,

where Ui ∈ Bh
U (n). Although this expression is not unique, this always yields

φ(T ) = 0. Now, in the case where T has even degree, successive applications of the
CV relation give

T = 2(vT−1)/2
2(vT −1)/2

∑

i=1

(−1)iYi,

where Yi has a single trivalent vertex (and vT−1
2 = n

2 − 1 struts). We thus obtain
φ(T ) = 0, as desired. �

3.3. Sn-module structure. For a partition λ of n, let Vλ denote the irreducible
representation of Sn associated to λ. Note that the adjoint representation of sl2
corresponds to the vector representation V of SO(3), and the invariant part of
sl⊗n

2 corresponds to the invariant part of V ⊗n. The tensor powers of the vector
representation of GL(3) and its restriction to SO(3) are well-studied classically,
using e.g. Schur-Weyl duality or Peter-Weyl Theorem. In particular, we have the
following.

3This extra assumption is not necessary for the proof, but makes the arguments simpler to
verify.
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Lemma 3.7. As Sn-modules, we have

Inv(sl⊗n
2 ) ≃

⊕

Vλ,

where the summation is over partitions λ = (λ1, λ2, λ3) of n such that each λi is
odd or each λi is even, i.e., such that λ1 − λ2, λ2 − λ3 ∈ 2Z.

Corollary 1.3 follows from Theorem 1.2 and Lemma 3.7 as follows.

Proof of Corollary 1.3. The fact that χker(Wh
n ) = χCn − χInv(sl⊗n

2 ) and χIm(Wh
n ) =

χInv(sl⊗n
2 ) for n = 2 or n > 2 odd immediately follows from Theorem 1.2. By Lemma

3.7, the one dimensional representation appearing in the irreducible decomposition
of Inv(sl⊗n

2 ) is the trivial representation U . Thus we have that χker(Wh
n ) = χCn −

χInv(sl⊗n
2 ) + χU and χIm(Wh

n ) = χInv(sl⊗n
2 ) − χU for n ≥ 4 even. �

The character χCn is known as follows.

Proposition 3.8 (Kontsevich [6, Theorem 3.2]). As a Sn-module, the character
of Cn is

χCn(1
n) = (n− 2)!, χCn(1

1
a
b) = (b− 1)!ab−1

µ(a), χCn(a
b) = −(b− 1)!ab−1

µ(a),

and χCn(∗) = 0 for other conjugacy classes. Here, µ is the Möbius function.

Thus by Corollary 1.3 we can calculate the character χker(Wh
n ) explicitly. See

Figure 3.3 for the low degree cases.

n = 2 :

n = 3 :

n = 4 :

n = 5 :

n = 6 : ⊕ ⊕

n = 7 : ⊕ ⊕ ⊕ ⊕

n = 8 : ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Figure 3.3. Irreducible decompositions of Cn, 2 ≤ n ≤ 8, as Sn-
modules. The red components are in the kernel of Wh

n .

3.4. Generating the kernel. It follows from Theorem 1.2 that the dimension of

the kernel of the weight system map Wk is given by k! − Rk + 1+(−1)k

2 . In this
short section, we investigate some typical elements of this kernel. More precisely,
we consider 1-loop relators of degree k, which are linear combinations of elements
of Ck+1 of the form

L1 − L2 −R1 +R2,

where L1, L2, R1, R2 are degree k tree Jacobi diagrams as shown in Figure 3.4.
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b1 l2t1l1 bnr1 r2
. . . . . .

tm

L2

b1 l1t1 bnr1 r2
. . . . . .

tm

L1

l2

t1 r2b1 tml2bnr1 l1

. . .

. . .
r2

r1

l1

l2

t1 tm

bnb1

rl O

. . . . . .

R2

. . . . . .

R1

t1 r1b1 tml2bnr2 l1

.

Figure 3.4. The diagrams L1, L2, R1, R2 and O ; here m,n ≥ 0
are such that k = (m+ n+ 2)/2.

Let us explain why these are indeed mapped to zero by Wk. Denote by O the
element of Bh

k+1(k+1) represented in Figure 3.4. We call such an element a 2-forked
wheel. Now, by applying the CV relation at the internal edge l of O (see the figure),
we have that

Wk(O) = 2Wk(L1)− 2Wk(L2),

while applying CV at internal edge r yields

Wk(O) = 2Wk(R1)− 2Wk(R2),

thus showing that L1 − L2 −R1 +R2 is in the kernel of Wk.
Notice that, in degree ≤ 5, all 1-loop relators are trivial, which agrees with the

fact that the weight system map is injective. Computations performed using a
code in Scilab allowed us to check that, up to degree k = 8, the kernel of the
weight system map Wk is generated by 1-loop relators of degree k.4 It would be
interesting to see up to what degree this statement still holds, and what are the
additional kernel elements when it doesn’t.

4. The dual canonical basis and the sl2 weight system

In this section, we review the graphical calculus used by Frenkel and Khovanov
in [3] to describe tensor products of finite-dimensional irreducible representations
of quantum group Uq(sl2). This graphical calculus for invariant tensors appeared
originally in the work of Rumer, Teller and Weyl [10], and was later adapted to the
quantum setting in [3].

More precisely, we first recall in Section 4.1 some basic facts on Uq(sl2) and its
representations, in Section 4.2 we recall the graphical calculus for the dual canonical
basis for invariant tensors of 3-dimensional irreducible representations of sl2, and
in Section 4.3 we show that a simple modification of this basis is well-behaved with
respect to the universal sl2 weight system.

4The authors are indebted to Raphaël Rossignol for writing this code.
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4.1. Quantum group Uq(sl2) and finite-dimensional irreducible represen-

tations. Let Uq = Uq(sl2) be the algebra over C(q) with generators K,K−1, E, F
and relations

KK−1 = K−1K = 1, KE = q2EK, KF = q−2FK, EF − FE =
K −K−1

q − q−1
,

for q a non-zero complex indeterminate.
For n ≥ 0, denote by Vn the fundamental (n+ 1)-dimensional irreducible repre-

sentation of Uq, with basis

{vi ; −n ≤ i ≤ n, i = n (mod 2)}

such that the action of Uq is given by

Evi =

[

n+ i+ 2

2

]

vi+2, Fvi =

[

n− i+ 2

2

]

vi−2, K±1vi = q±1vi

where [m] = (qm − q−m)/(q − q−1) and vn+2 = v−n−2 = 0.
Let 〈 , 〉 : Vn ⊗ Vn → C(q) be the symmetric bilinear pairing defined by

〈vn−2k, vn−2l〉 =
[n]!

[k]![n− k]!
δk,l ; 0 ≤ k, l ≤ n,

where [k]! :=
∏

i≤k[i], and let {vi ; −n ≤ i ≤ n, i = n (mod 2)} be the dual basis
with respect to this pairing. In particular, for n = 1, the dual basis is simply given
by vi = vi (i = ±1), while for n = 2, we have v2 = v2, v

0 = 1
[2]v0 and v−2 = v−2.

We also define the bilinear pairing 〈 , 〉 of Vn1⊗. . .⊗Vnm and (Vn1⊗. . .⊗Vnm)∗ =
Vnm ⊗ . . .⊗ Vn1 by5

〈vk1 ⊗ . . .⊗ vkm , vk
′
m ⊗ . . .⊗ vk

′
1〉 =

m
∏

i=1

δki,k′
i
.

We refer the reader to Chapters 2 and 3 of the book [5] for a much more detailed
treatment of this subject.

4.2. Graphical representations of the dual canonical basis for invariants

tensor products. In what follows, we will only deal with 1 and 2-dimensional
representations, which is sufficient for the purpose of this paper. We thus only give
a very partial overview of the work in [3], where we refer the reader for further
reading. We will mostly follow the notation of [3].

Let δ1 : C → V1 ⊗ V1 denote the map defined by

δ1(1) = v1 ⊗ v−1 − q−1v−1 ⊗ v1.

In [3, Thm. 1.9], Frenkel and Khovanov showed that the intersection of the dual
canonical basis of V ⊗2m

1 and the space InvUq (V
⊗2m
1 ) of invariant tensors forms a

basis of InvUq (V
⊗2m
1 ):

{(δ1)
2(m−1)
im−1

(δ1)
2(m−2)
im−2

· · · (δ1)
2
i1(δ1).1 ; 0 ≤ ij ≤ j for each index 1 ≤ j ≤ m− 1},

where (δ1)
k
l : V ⊗k

1 → V ⊗k+2
1 is defined by (δ1)

k
l = 1⊗l ⊗ δ1 ⊗ 1⊗(k−l) (0 ≤ l ≤ k).

Graphically, V ⊗2m
1 is represented by 2m fixed points on the x-axis of the real

plane, and an element of the dual canonical basis of InvUq (V
⊗2m
1 ) is represented by

a union of m non-intersecting arcs embedded in the lower half-plane and connecting
these points, each arc corresponding to a copy of the map δ1. For example, the dual

5 The action of Uq on tensor powers of irreducible representations is defined via the comul-
tiplication map ∆ in the Hopf algebra structure of Uq ; the dual action with respect to 〈 , 〉 is
likewise given by u(x⊗ y) = ∆̄(u)(x ⊗ y), where ∆̄(u) = (σ ⊗ σ)∆(σ(u)) with the bar involution
σ : Uq → Uq. See e.g. [5, Chap. 3] or [3, § 1] for the details.
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canonical basis of InvUq (V
⊗4
1 ) consists of two elements (δ1)

2
0.(δ1).1 and (δ1)

2
1.(δ1).1,

which are represented by the two diagrams D1 and D2 in Figure 4.1, respectively.

1 D2D

Figure 4.1. FK diagrams representing the dual canonical basis of InvUq (V
⊗2
1 ).

Now, it follows from [3, Thm. 1.11] that these basis elements induce a basis
B0
m for InvUq (V

⊗m
2 ), by taking their image under π⊗m

2 , where π2 : V1 ⊗ V1 → V2 is
defined by

π2(v
1 ⊗ v1) = v2, π2(v

−1 ⊗ v−1) = v−2,

π2(v
1 ⊗ v−1) = q−1v0, π2(v

−1 ⊗ v1) = v0.

The map π2 is graphically represented by a box with two incident points (corre-
sponding to the two copies of V1) on its lower horizontal edge, see Figure 4.2.

Since π2◦δ1 = 0, a diagram containing a box whose incident points are connected
by an arc is equal to zero. If there is no such box, then this defines a non-trivial
element of InvUq (V

⊗m
2 ).

In summary, an element of the dual canonical basis B0
m of InvUq (V

⊗m
2 ) is graphically

incarnated by m horizontally aligned boxes, whose incident edges are connected by
m non-intersecting arcs, such that each arc is incident to two distinct boxes.

Remark 4.1. Arranging the n boxes on a circle, FK diagrams for elements of B0
m

naturally appear to be in one-to-one correspondence with (convex hulls of) Riordan
partitions of {1, . . . , n}. This agrees with the fact that the dimension of Inv(V ⊗m

2 )
is given by the Riordan number Rm.

Example 4.2. We conclude with a couple of examples. For m = 2, InvUq (V
⊗2
2 ) is

spanned by Dc in Figure 4.2, which represents the element

c̃ : = (π2 ⊗ π2)(δ1)
2
1.(δ1).1

= (π2 ⊗ π2)
(

v1 ⊗ v1 ⊗ v−1 ⊗ v−1 − q−1v−1 ⊗ v1 ⊗ v−1 ⊗ v1

−q−1v1 ⊗ v−1 ⊗ v1 ⊗ v−1 + q−2v−1 ⊗ v−1 ⊗ v1 ⊗ v1
)

= v2 ⊗ v−2 − (q−1 + q−3)v0 ⊗ v0 + q−2v−2 ⊗ v2.

b
D Dc

Figure 4.2. FK diagrams representing the dual canonical bases
for InvUq (V

⊗2
2 ) and InvUq (V

⊗3
2 ).

Similarly, InvUq (V
⊗3
2 ) has dimension 1 with basis given by the diagramDb repre-

sented in Figure 4.2. We leave it to the reader to verify that this diagram represents
the element

b̃ := v2 ⊗ v0 ⊗ v−2 + q−2v0 ⊗ v−2 ⊗ v2 + q−2v−2 ⊗ v2 ⊗ v0 + q−5v0 ⊗ v0 ⊗ v0

−q−2v2 ⊗ v−2 ⊗ v0 − q−2v0 ⊗ v2 ⊗ v−2 − q−2v−2 ⊗ v0 ⊗ v2 − q−1v0 ⊗ v0 ⊗ v0.
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In the rest of this paper, we will use the term FK diagrams to refer to this
graphical calculus of Frenkel and Khovanov, and we will consider such diagrams up
to planar isotopy (fixing only the m boundary boxes corresponding to the m copies
of V2 in Inv(V ⊗m

2 )). We will also often blur the distinction between an invariant
tensor and the FK diagram representing it.

4.3. The tree basis of InvUq (V
⊗n
2 ). In this section, we modify the dual canonical

basis B0
m of InvUq (V

⊗n
2 ) recalled above and prove that, at q = 1, this new basis

corresponds to the tree basis of Inv(sl⊗n
2 ) defined in Section 3.1.

The only new ingredient is the Jones-Wenzl projector

p2 : V1 ⊗ V1 → V1 ⊗ V1

defined by

p2(v
1 ⊗ v1) = v1 ⊗ v1, p2(v

1 ⊗ v−1) =
1

[2]

(

q−1v1 ⊗ v−1 + v−1 ⊗ v1
)

,

p2(v
−1 ⊗ v−1) = v−1 ⊗ v−1, p2(v

−1 ⊗ v1) =
1

[2]

(

v1 ⊗ v−1 + qv−1 ⊗ v1
)

.

See Figure 4.3 for a graphical definition.

[2]
1p

2
+ =

Figure 4.3. The Jones-Wenzl projector p2 ∈ End(V ⊗2
1 ).

Let T be a Riordan tree of order n. We now define two elements f0(T ) and
f(T ) of InvUq (V

⊗n
2 ) using the graphical calculus introduced in the previous section.

Consider a proper embedding i(T ) of T in the lower-half plane, such that the j-
labeled vertex is sent to the point (j; 0) and such that the cyclic ordering at each
trivalent vertex agrees with the orientation of the plane. An example is given in
Figure 4.4. Note that the Riordan property ensures that such an embedding exists.

i(T)

Figure 4.4. The embedding i(T ) for the Riordan partition
{{1, 2, 6, 7, 8}; {3, 4, 5}}.

We first describe the diagram defining f0(T ) ∈ InvUq (V
⊗n
2 ). First, replace each

point (j; 0) by a box representing a copy of V2 (1 ≤ j ≤ n). Next, consider an
annular neighborhood of i(T ) in the lower-half plane ; the boundary of this neigh-
borhood is a collection of disjoint arcs connecting the n boxes, thus providing an FK
diagram for f0(T ). See Figure 4.5. Note that we have the following reformulation

0f  (T) f(T)
p
22

p

Figure 4.5. The FK diagrams for f0(T ) and f(T ), for the Rior-
dan partition {{1, 2, 6, 7, 8}; {3, 4, 5}}.
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for the dual canonical basis of Frenkel–Khovanov:

B
0
n := {f0(T ) ; f is a Riordan tree of order n}.

Now, to obtain the diagram defining f(T ) we simply insert a copy of the Jones-
Wenzl projector p2 in the pairs of arcs of f0(T ) induced by each internal edge of T
in the above procedure - see the example of Figure 4.5.

We have

Theorem 4.3. The set

B
JW
n := {f(T ) ; f is a Riordan tree of order n}

forms a basis for InvUq (V
⊗n
2 ).

Proof. Since there is a natural one-to-one correspondence between the set B
JW
n

and the basis B0
n, it is enough to prove the independency of the elements in B

JW
n .

So suppose that
∑

T∈Rion

αT f(T ) = 0,

where the sum runs over the set Rion of Riordan trees of order n, and where
αT ∈ C. Using the formula for the Jones-Wenzl projector p2 given by Figure 4.3,
one can express each f(T ) as a linear combination

f(T ) = f0(T ) +
∑

T ′⊂T

1

[2]iT−iT ′
f0(T ′),

where the sum runs over all subtrees T ′ obtained from T by deleting internal edges,
and where it denotes the number of internal edges of a Riordan tree t ∈ Rion. By
substituting this identity in

∑

T∈Rion
αT f(T ) = 0, we have that there exists com-

plex numbers α′
T ∈ C such that

∑

f∈Rion
α′
T f

0(T ) = 0, and a lower triangular ma-

trix A whose diagonal entries are all 1 such that (α′
T1
, . . . , α′

Tl
)t = A(αT1 , . . . , αTl

)t

for a suitably chosen order {T1, . . . , Tl} onRion. SinceB
0
n is a basis of InvUq (V

⊗n
2 ),

we have (α′
f1
, . . . , α′

fl
) = 0, which implies that αT = 0 for all T ∈ Rion. This con-

cludes the proof. �

It turns out that this simple modification of the dual canonical basis of InvUq (V
⊗n
2 )

is directly related to the tree basis introduced in Section 3.1, as we now explain.
Let ρ : InvUq (V

⊗n
2 ) → Inv(sl⊗n

2 ) be the C-linear map such that

ρ(q) = 1, ρ(v0) =
1

2
h, ρ(v2) = −e, ρ(v−2) = f.

Proposition 4.4. Let T be a Riordan tree. If deg(T ) and tri(T ) denote the degree
and number of trivalent vertices of T respectively, then we have

ρ (f(T )) =
(−1)deg(T )

2tri(T )
W (T ).

It follows immediately that the tree basis of Section 3.1 indeed is a basis for
Inv(sl⊗n

2 ), as claimed in Theorem 3.2.

Proof. The assertion follows essentially from the definitions. To see this, let us
slightly reformulate the definition of f(T ), still in terms of FK diagrams but in a
spirit that is closer to that of W (T ). For each strut component of i(T ), pick a
copy of the diagram Dc of Figure 4.2, and take a copy of the diagram Db for each
trivalent vertex so that a copy of V2 is associated to each of the incident half-edges
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following the cyclic ordering. For each internal edge of i(T ), we contract the two
corresponding copies of V2 by the map ε2 : V2 ⊗ V2 → C defined by

ε2(v
2 ⊗ v−2) = q2, ε2(v

0 ⊗ v0) = −
1

q−1 + q−3
,

ε2(v
−2 ⊗ v2) = 1, ε2(v

i ⊗ vj) = 0, if i+ j 6= 0.

As observed in [3], we have the identity

ε2 ◦ (π2 ⊗ π2) = ε1 ◦ (1⊗ ε1 ⊗ 1) ◦ (p2 ⊗ p2),

where ε1 : V1 ⊗ V1 → V0 is defined by

ε1(v
1 ⊗ v−1) = −q ; ε1(v

−1 ⊗ v1) = 1 ; ε1(v
1 ⊗ v1) = ε1(v

−1 ⊗ v−1) = 0.

This formula, as illustrated in Figure 4.6 below, simply means that the map ε2 is
the insertion of a copy of p2 at each internal edge. (Recall that p2 is a projector,
i.e. p2 ◦ p2 = p2.)

=

ε2
p
2

Figure 4.6. Graphical definition of the contraction map ε2.

So applying ε2 in this way yields precisely the FK diagram for f(T ), where the
box corresponding to the i-labeled vertex represents the ith copy of V2. This is
illustrated on an example in Figure 4.7.

εε
f(T)

T

1 2 3 4 5 76 8
=

22

Figure 4.7. Reformulating f(T ), for the Riordan partition
{{1, 2, 6, 7, 8}; {3, 4, 5}}.

Now, it remains to observe that the elements c̃ and b̃, defined in Example 4.2 and
represented by the diagrams Dc and Db respectively, correspond to the elements c
and b of Equations (2.1) and (2.2) via the map ρ as follows:

(4.1) ρ(c̃) = −c

and

(4.2) ρ(b̃) =
1

2
b,

and that the contraction maps κ and ε2, used in the definitions of W (T ) and f(T )
respectively, are related by

(4.3) (ε2)|q=1 = −κ ◦ ρ.

Notice in particular that the
1

2tri(T )
coefficient in the statement comes from the

application of (4.2) at each trivalent vertex, while the sign (−1)deg(T ) is given by
applying (4.1) at each strut component (which has degree 1), and (4.3) at each
internal edge (since the degree of a linear tree is the number of internal edges plus
2). This concludes the proof. �
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