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RIORDAN TREES AND THE HOMOTOPY sl 2 WEIGHT SYSTEM

The purpose of this paper is twofold. On one hand, we introduce a modification of the dual canonical basis for invariant tensors of the 3-dimensional irreducible representation of Uq(sl 2 ), given in terms of Jacobi diagrams, a central tool in quantum topology. On the other hand, we use this modified basis to study the so-called homotopy sl 2 weight system, which is its restriction to the space of Jacobi diagrams labeled by distinct integers. Noting that the sl 2 weight system is completely determined by its values on trees, we compute the image of the homotopy part on connected trees in all degrees; the kernel of this map is also discussed.

Introduction

The sl 2 weight system W is a Q-algebra homomorphism from the space B(n) of Jacobi diagrams labeled by {1, . . . , n} to the algebra Inv (S(sl 2 ) ⊗n ) of invariant tensors of the symmetric algebra S(sl 2 ). The relevance of this construction lies in low dimensional topology. Jacobi diagrams form the target space for the Kontsevich integral Z, which is universal among finite type and quantum invariants of knotted objects : in particular, by postcomposing Z with the sl 2 weight system and specializing each factor at some finite-dimensional representation of quantum group U q (sl 2 ), one recovers the colored Jones polynomial. Hence, while the results of this paper are purely algebraic, we will see that they are motivated by, and have applications to, quantum topology -see Remark 1.4 at the end of this introduction.

An easy preliminary observation on the sl 2 weight system is the following.

Lemma 1.1. The sl 2 weight system is determined by its values on connected trees, i.e. connected and simply connected Jacobi diagrams.

(Although this result might be well-known, a proof is given in Section 2.4.)

In this paper, we focus on the homotopy part B h (n), which is generated by diagrams labeled by distinct elements in {1, . . . , n}. Here, the terminology alludes to the link-homotopy relation on (string) links, which is generated by self crossing changes. It was shown by Habegger and Masbaum [START_REF] Habegger | The Kontsevich integral and Milnor's invariants[END_REF] that the restriction of the Kontsevich integral to B h (n) is a link-homotopy invariant, and is deeply related to Milnor link-homotopy invariants, which are classical invariants generalizing the linking number.

Let us state our main results on the homotopy sl 2 weight system, that is, the restriction of the sl 2 weight system to B h (n). Owing to Lemma 1.1, we can fully understand this map by studying the restrictions W h n : C n → Inv(sl ⊗n 2 ) of the sl 2 weight system to the space C n of connected trees with n univalent vertices labeled by distinct elements in {1, . . . , n}. Here, the target space Inv(sl ⊗n 2 ) is the invariant part of the n-fold tensor power of the adjoint representation (the 3dimensional irreducible representation) of sl 2 . Recall that the dimension of C n 1 is given by (n -2)!, while the dimension of Inv(sl ⊗n 2 ) is known to be the socalled [START_REF] Frank | Catalan, Motzkin, and Riordan numbers[END_REF] Riordan numbers R n which can be defined by R 2 = R 3 = 1 and R n = (n -1)(2R n-1 + 3R n-2 )/(n + 1). These numbers are also found under the name of Motzkin sums, or ring numbers in the literature.

More generally, we have:

Theorem 1.2.

(i) The weight system map W h n is injective if and only if n ≤ 5. (ii) For n odd and n = 2, the weight system map W h n is surjective. (iii) For n ≥ 4 even, W h n has a 1-dimensional cokernel, spanned by c ⊗n , where c = 1 2 h ⊗ h + e ⊗ f + f ⊗ e ∈ Inv(sl ⊗2 2 ). The dimensions of C n , Inv(sl ⊗n 2 ) and Ker W h n are given in Table 1. 

n
χ ker(W h n ) = χ Cn -χ Inv(sl ⊗n 2 ) + χ U and χ Im(W h n ) = χ Inv(sl ⊗n 2 ) -χ U , where U is the trivial representation.
Although the proof of Theorem 1.2 is mainly combinatorial, it heavily relies on the following algebraic result.

Theorem (Theorem 3.2). The set I n := {W (T ) ; T is a Riordan tree of order n} forms a basis for Inv(sl ⊗n 2 ). Here, Riordan trees of order n are a special class of elements of B h (n) ; roughly speaking, a Riordan tree is a disjoint union of linear tree diagrams (i.e. of the shape of Figure 2.2), whose label sets comprise a Riordan partition of {1, . . . , n}see Definition 3.1.

Theorem 3.2 is proved using the work of Frenkel and Khovanov [START_REF] Frenkel | Canonical bases in tensor products and graphical calculus for Uq(sl 2 )[END_REF], who studied graphical calculus for the dual canonical basis of tensor products of finitedimensional irreducible representations of U q (sl 2 ). More precisely, we define a new basis for Inv Uq (V ⊗n 2 ), the space of U q (sl 2 )-invariants of tensor products of the 3dimensional irreducible representation V 2 , by inserting copies of the Jones-Wenzl projector in the dual canonical basis studied in [START_REF] Frenkel | Canonical bases in tensor products and graphical calculus for Uq(sl 2 )[END_REF]. This basis is actually unitriangular to the Frenkel-Khovanov basis, see Theorem 4.3. The result is a graphical description of invariant tensors in terms of Jacobi diagrams ; see e.g. [START_REF] Kuperberg | Spiders for rank 2 Lie algebras[END_REF][START_REF] Nachtergaele | Ferromagnetic ordering of energy levels for Uq(sl 2 ) symmetric spin chains[END_REF][START_REF] Westbury | Invariant tensors and diagrams[END_REF] for related graphical approaches to invariant tensors. We expect that this result and its possible generalizations could also be interesting from an algebraic point of view.

Remark 1.4. Consider the projection Z h of the Kontsevich integral Z onto the space B t,h (n) of tree Jacobi diagrams labeled by distinct elements of {1, . . . , n}. In Proposition 10.6 of [START_REF] Habegger | The Kontsevich integral and Milnor's invariants[END_REF], Habegger and Masbaum show that, for string links, the leading term of Z h determines (and is determined by) the first non-vanishing Milnor link-homotopy invariants. The non-injectivity of the map W h n for n ≥ 5 tells us that, expectedly, this is in general no longer the case for quantum invariant W • Z -yet, it is remarkable that it still determines the first non-vanishing Milnor linkhomotopy invariants of length up to 5. On the other hand, since Z extends to a graded isomorphism on the free abelian group generated by string links, surjectivity of the map W h n readily implies surjectivity of the linear extension of W h n • Z (see also Remark 3.3). By Theorem 1.2, the surjectivity defect is given by c ⊗n ; it is not hard to check that, for a 2n-component string link, the coefficient of c ⊗n in W • Z is given by a product of linking numbers (this follows from a similar result at the level of the Kontsevich integral Z), and is in particular zero for string links with vanishing linking numbers. Similar observations can be made for the universal sl 2 invariant, using Theorem 5.5 of [START_REF] Meilhan | The universal sl 2 invariant and Milnor invariants[END_REF].

The rest of this paper is organized in three sections. In Section 2 we recall the definitions of Jacobi diagrams and the sl 2 weight system, and give a result which in particular implies Lemma 1.1. Section 3 introduces Riordan trees and the tree basis of Inv(sl ⊗n 2 ), which are used to prove Theorem 1.2. Finally, in Section 4 we recall a few elements from the graphical calculus developed by Frenkel and Khovanov, and use it to prove Theorem 3.2.
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Jacobi diagrams and the sl 2 weight system

In this section we give the definitions of the sl 2 weight system W and proof of Lemma 1.1.

2.1. The Lie algebra sl 2 and its symmetric algebra. Recall that the Lie algebra sl 2 is the 3-dimensional Lie algebra over Q generated by h, e, and f with Lie bracket

[h, e] = 2e, [h, f ] = -2f, [e, f ] = h.
Let S = S(sl 2 ) be the symmetric algebra of sl 2 . The adjoint action, acting as a derivation, endows S, and more generally S ⊗n for any n ≥ 1, with a structure of sl 2 -modules. Note that sl ⊗n 2 , the n-fold tensor power of sl 2 , is isomorphic to the subspace of S ⊗n having degree one in each factor.

We denote by Inv(S ⊗n ) and Inv(sl ⊗n 2 ) the set of invariant tensors of S ⊗n and sl ⊗n 2 , respectively (that is, elements that are mapped to zero when acted on by h, e, and f ).

Jacobi diagrams.

A Jacobi diagram is a finite unitrivalent graph, such that each trivalent vertex is equipped with a cyclic ordering of its three incident halfedges. Each connected component is required to have at least one univalent vertex. An internal edge of a Jacobi diagram is an edge connecting two trivalent vertices. The degree of a Jacobi diagram is half its number of vertices.

In this paper we call a simply connected (not necessary connected) Jacobi diagram a tree. A tree consisting of a single edge is called a strut.

Let B(n) be the completed Q-space spanned by Jacobi diagrams whose univalent vertices are labeled by elements of {1, ..., n}, subject to the AS and IHX relations shown in Figure 2 an algebra structure with multiplication given by disjoint union. Let B h (n) ⊂ B(n) denote the subspace generated by Jacobi diagrams labeled by distinct 1 elements in {1, . . . , n}. Note that B h (n) is the polynomial algebra on the space C h (n) of connected diagrams labeled by distinct elements in {1, . . . , n}

As is customary, for each of the spaces defined above we use a subscript k to denote the corresponding subspaces spanned by degree k elements.

We denote by C n the space of connected trees where each of the labels 1, . . . , n appears exactly once. It is a well-known fact, easily checked using the AS and IHX relations, that a basis for C n is given by linear trees, i.e. connected trees of the form shown in Figure 2.2, where the labels i 1 and i n are two arbitrarily chosen elements of {1, . . . , n}, and where i 2 , . . . , i n-1 are running over all (pairwise distinct) elements of {1, . . . , n} \ {i 1 , i n }. This shows that dim C n = (n -2)!, as . . .

i 3 i n-1 in i 1 i 2 Figure 2.2. A linear tree Jacobi diagram.
recalled in the introduction.

2.3.

The sl 2 weight system. We now define the sl 2 weight system, which is a Q-algebra homomorphism

W : B(n) → Inv(S ⊗n ).
Recalling that B(n) is (the completion of) the commutative polynomial algebra on the space of connected diagrams, it is enough to define it on the latter. We closely follow [8, §4.3].

We will use the non-degenerate symmetric bilinear form

κ : sl 2 ⊗ sl 2 → Q given by κ(h, h) = 2, κ(e, f ) = 1, κ(h, e) = κ(h, f ) = κ(e, e) = κ(f, f ) = 0.
1 The superscript h stands for 'homotopy' since, as noted in the introduction, B h (n) is the relevant space for link-homotopy invariants of (string) links.

The bilinear form κ identifies sl 2 with the dual Lie algebra sl * 2 . Note that, under this identification, κ ∈ (sl ⊗2

2 ) * ≃ sl * 2 ⊗ sl * 2 itself corresponds to the quadratic Casimir tensor

c = 1 2 h ⊗ h + f ⊗ e + e ⊗ f ∈ Inv(sl ⊗2 2 ), (2.1) while the Lie bracket [-, -] ∈ sl * 2 ⊗ sl * 2 ⊗ sl 2 corresponds to the invariant tensor b = σ∈S3 (-1) |σ| σ(h ⊗ e ⊗ f ) = h ⊗ e ⊗ f + e ⊗ f ⊗ h + f ⊗ h ⊗ e -h ⊗ f ⊗ e -f ⊗ e ⊗ h -e ⊗ h ⊗ f. (2.2)
where σ acts by permutation of the factors.

Let D ij be a strut with vertices labeled by 1 ≤ i, j ≤ n. Rewriting formally (2.1)

as c = c 1 ⊗ c 2 , we set W (D ij ) = 1 ⊗ • • • ⊗ c 1 ⊗ • • • ⊗ c 2 ⊗ • • • ⊗ 1 ∈ Inv(S ⊗n ),
where c 1 and c 2 are at the ith and jth position, respectively.

Now, let m ≥ 2. For a diagram connected diagram D ∈ B m (n), attach a copy of b ∈ Inv(sl ⊗3
2 ) to each trivalent vertex of D, a copy of sl 2 being associated to each of the 3 half-edges at the trivalent vertex following the cyclic ordering. Each internal edge of D is divided into to half-edges, and we contract the two corresponding copies of sl 2 by κ. Fixing an arbitrary total order on the set of univalent vertices of D, we get in this way an element

x D = x 1 ⊗ • • • ⊗ x m+1 of Inv(sl ⊗m+1 2
), the ith factor corresponding to the ith univalent vertex of D. We then define W (D) ∈ Inv(S ⊗n ) by

W (D) = y 1 ⊗ • • • ⊗ y n , (2.3) 
where y j is the product of all x i ∈ sl 2 such that the ith vertex is labeled by j.

It is known that W is well-defined, i.e. is invariant under the AS and IHX relations. The next lemma, due to Chmutov and Varchenko [START_REF] Chmutov | Remarks on the Vassiliev knot invariants coming from sl 2[END_REF], gives another relation satisfied by the sl 2 weight system. 

CV

Note that the CV relation is not degree-preserving. Note also that this relation might involve diagrams with a circular component : the value of W on such component is set to

W ( ) = 3 = dim sl 2 .
Remark 2.2. It is worth noting here that the restriction of the sl 2 weight system to C n takes values in Inv(sl ⊗n 2 ). Likewise, the homotopy sl 2 weight system, i.e. its restriction to B h (n), takes values in Inv( sl 2 ⊗n ), where sl 2 ⊗n = (Q ⊕ sl 2 ) ⊗n ⊂ S(sl 2 ) ⊗n is the subspace of tensors having degree at most one in each factor.

2.4.

The space B sl2 (n) of sl 2 -Jacobi diagrams. In view of Lemma 2.1, it is natural to consider the following space.

Definition 2.3. The space of sl 2 -Jacobi diagrams is the quotient space

B sl2 (n) = B(n)/CV, 3
of B(n) by the ideal generated by the CV relation and the relation 3 that maps a circular component to a factor 3.

Note that the algebra structure on B(n) descends to B sl2 (n). This is however no longer a graded algebra (although one could impose such a structure by considering the number of univalent vertices).

Since the sl 2 weight system factors through B sl2 (n), it is useful to for our study to get some insight in this space. , where the rightmost term is a diagram with n -1 cycles, and where the middle term has a cycle of length l -2. We can thus apply (2.4) recursively to reduce the length of this cycle, until we obtain a cycle of length either 1 or 0, as above. Then C writes as a combination of diagrams with less than k cycles. This concludes the proof.

Invariant tensors and the homotopy sl 2 weight system

In this section we give a basis for Inv(sl ⊗n 2 ) in terms of Riordan trees, and use this basis to prove Theorem 1.2. The kernel of the homotopy sl 2 weight system is briefly discussed at the end of the section.

Tree basis of Inv(sl ⊗n

2 ). We now construct a basis for Inv(sl ⊗n 2 ), as the image by the sl 2 weight system of a certain class of connected tree Jacobi diagrams. For this, we need a couple extra definitions.

On one hand, we call a linear tree ordered if, in the notation of Figure 2.2, its labels i 1 , . . . , i n satisfy i 1 < i 2 < . . . < i n .

On the other hand, a Riordan partition is a partition of {1, . . . , n} into parts that contains at least two elements, and whose convex hulls are disjoint when the points are arranged on a circle. For example, {{1, 4, 5, 9, 10}, {2, 3}, {6, 7, 8}} is a Riordan partition, as illustrated in Figure 3.1, while {{1, 4, 6}, {2, 3}, {5, 7, 8}} is not. 2 The number of Riordan partitions of {1, . . . , n} is given by the Riordan number R nsee [1, §3.2].

This leads to the following Definition 3.1. A Riordan tree of order n is an element of B h (n) such that • each connected component is an ordered linear tree,

• the partition of {1, . . . , n} induced by its connected components is a Riordan partition. 2 ). We call this basis the tree-basis of Inv(sl ⊗n 2 ). The proof of Theorem 3.2 is postponed to Section 4, and is somewhat indirect. It uses the graphical calculus for the dual canonical basis for Inv(V ⊗n 2 ) given by Frenkel and Khovanov in [START_REF] Frenkel | Canonical bases in tensor products and graphical calculus for Uq(sl 2 )[END_REF]. Although a more direct proof may exist, we hope that the one given in this paper could be interesting from the representation theory point of view.

Remark 3.3. Theorem 3.2 implies immediately that the homotopy sl 2 weight system

W : B h (n) → Inv( sl 2 ⊗n
) is surjective, and Theorem 1.2 can be regarded as a refinement of this observation. (Recall that sl 2 ⊗n was defined in Remark 2.2.) 3.2. Proof of Theorem 1.2. The proof of Theorem 1.2 (i) is straightforward using Theorem 3.2: pick a basis for C n in terms of linear trees, as outlined at the end of Section 2.2, and write each basis element, using the CV relation, as the linear combination of basis Riordan trees of order n. It then suffices to check that, for n ≤ 5, the matrix obtained in this transformation has rank (n -2)!. Non-injectivity for n ≥ 6 is obvious since the dimension of the target space Inv(sl ⊗n 2 ) is smaller than that of the domain C n .

We now turn to the surjectivity results (ii) and (iii). Let B h Y (n) ⊂ B h (n) be the subspace of Jacobi diagrams with at least one trivalent vertex, and let

B h U (n) = B h (n) \ B h Y (n). Set I Y n := {W (T ) ; T is a Riordan tree in B h Y (n)}, I U n := {W (T ) ; T is a Riordan tree in B h U (n)}. Note that I n = I Y n for n odd, while I n = I Y n ∪ I U n
for n even. Based on Theorem 3.2 and this observation, points (ii) and (iii) of Theorem 1.2 follow from the following two lemmas.

Lemma 3.4. If T ∈ B h Y (n), then W (T ) ∈ W (C n ). In particular, I Y n ⊂ W (C n ).
For n ≥ 2 even, let ∪ ⊗n = n/2 i=1 D 2i-1,2i denote the tree diagram made of n struts labeled by i and i depicted in Figure 3.2 shows how T can be expressed as a combination of tree diagrams with k -1 components in B h sl2 (n). Since each of these trees contains at least one trivalent vertex, the proof follows by an easy induction on k.

+ 1 (1 ≤ i ≤ n/2). Note that W (∪ ⊗n ) = c ⊗n ∈ I U n . Lemma 3.5. (i) We have W (∪ ⊗n ) ≡ 0 modulo W (C n ). (ii) If T ∈ B h U (n) with n ≥ 4 even, then W (T ) ≡ W (∪ ⊗n ) modulo W (C n ). Proof of Lemma 3.4. Let T ∈ B h (n),
Remark 3.6. Note that the proof applies more generally to the whole space B sl2 (n). More precisely, any Jacobi diagram with at least one trivalent vertex decomposes as a combination of connected diagrams in B sl2 (n). Combining this with Proposition 2.4, we have that B sl2 (2k + 1) is generated, as a vector space, by connected tree Jacobi diagrams and that B sl2 (2k) is generated by connected trees and the disjoint union of n struts ⊔ k i=1 D 2i-1,2i . Proof of Lemma 3.5. To show (ii), note that any T ∈ B h U (n) is obtained from ∪ ⊗n by exchanging some labels, which implies that W (T ) -W (∪ ⊗n ) ∈ W B h Y (n) by Lemma 2.1. Combining this with Lemma 3.4, we have the assertion.

We now prove (i). Consider the C-linear map φ : Inv(sl ⊗n 2 ) → C defined (using Theorem 3.2) by

φ(t) = 0 for t ∈ I Y n , 1 for t ∈ I ∪
n . We prove that W (C n ) ⊂ Ker(φ), which implies the assertion. It suffices to prove that W (T ) ∈ Ker(φ) for a connected tree diagram T ∈ C n ; actually, as observed at the end of Section 2.2, we may further assume that T is linear 3 . Notice that the number v T of trivalent vertices of T is its degree minus 1, and that applying the CV relation yields diagrams with (v T -2) trivalent vertices. If the degree of T is odd, then by applying the CV relation repeatedly we obtain

T = 2 vT /2 2 v T /2 i=1 (-1) i U i , where U i ∈ B h U (n).
Although this expression is not unique, this always yields φ(T ) = 0. Now, in the case where T has even degree, successive applications of the CV relation give

T = 2 (vT -1)/2 2 (v T -1)/2 i=1 (-1) i Y i ,
where Y i has a single trivalent vertex (and vT -1 2 = n 2 -1 struts). We thus obtain φ(T ) = 0, as desired.

3.3. S n -module structure. For a partition λ of n, let V λ denote the irreducible representation of S n associated to λ. Note that the adjoint representation of sl 2 corresponds to the vector representation V of SO(3), and the invariant part of sl ⊗n 2 corresponds to the invariant part of V ⊗n . The tensor powers of the vector representation of GL(3) and its restriction to SO(3) are well-studied classically, using e.g. Schur-Weyl duality or Peter-Weyl Theorem. In particular, we have the following.

Lemma 3.7. As S n -modules, we have

Inv(sl ⊗n 2 ) ≃ V λ ,
where the summation is over partitions λ = (λ 1 , λ 2 , λ 3 ) of n such that each λ i is odd or each λ i is even, i.e., such that λ 1 -λ 2 , λ 2 -λ 3 ∈ 2Z.

Corollary 1.3 follows from Theorem 1.2 and Lemma 3.7 as follows.

Proof 

χC n (1 n ) = (n -2)!, χC n (1 1 a b ) = (b -1)!a b-1 µ(a), χC n (a b ) = -(b -1)!a b-1 µ(a),
and χ Cn ( * ) = 0 for other conjugacy classes. Here, µ is the Möbius function.

Thus by Corollary 1.3 we can calculate the character χ ker(W h n ) explicitly. See Figure 3.3 for the low degree cases. 3.4. Generating the kernel. It follows from Theorem 1.2 that the dimension of the kernel of the weight system map W k is given by k! -R k + 1+(-1) k

2

. In this short section, we investigate some typical elements of this kernel. More precisely, we consider 1-loop relators of degree k, which are linear combinations of elements of C k+1 of the form

L 1 -L 2 -R 1 + R 2 , where L 1 , L 2 , R 1 , R 2 are degree k tree Jacobi diagrams as shown in Figure 3.4. b 1 l 2 t 1 l 1 bn r 1 r 2 . . . . . . tm L 2 b 1 l 1 t 1 bn r 1 r 2 . . . . . . tm L 1 l 2 t 1 r 2 b 1 tm l 2 bn r 1 l 1 . . . . . . r 2 r 1 l 1 l 2 t 1 tm bn b 1 r l O . . . . . . R 2 . . . . . . R 1 t 1 r 1 b 1 tm l 2 bn r 2 l 1 . Figure 3.4. The diagrams L 1 , L 2 , R 1 , R 2 and O ; here m, n ≥ 0 are such that k = (m + n + 2)/2.
Let us explain why these are indeed mapped to zero by W k . Denote by O the element of B h k+1 (k +1) represented in Figure 3.4. We call such an element a 2-forked wheel. Now, by applying the CV relation at the internal edge l of O (see the figure), we have that

W k (O) = 2W k (L 1 ) -2W k (L 2 ),
while applying CV at internal edge r yields

W k (O) = 2W k (R 1 ) -2W k (R 2 ), thus showing that L 1 -L 2 -R 1 + R 2 is in the kernel of W k .
Notice that, in degree ≤ 5, all 1-loop relators are trivial, which agrees with the fact that the weight system map is injective. Computations performed using a code in Scilab allowed us to check that, up to degree k = 8, the kernel of the weight system map W k is generated by 1-loop relators of degree k. 4 It would be interesting to see up to what degree this statement still holds, and what are the additional kernel elements when it doesn't.

The dual canonical basis and the sl 2 weight system

In this section, we review the graphical calculus used by Frenkel and Khovanov in [START_REF] Frenkel | Canonical bases in tensor products and graphical calculus for Uq(sl 2 )[END_REF] to describe tensor products of finite-dimensional irreducible representations of quantum group U q (sl 2 ). This graphical calculus for invariant tensors appeared originally in the work of Rumer, Teller and Weyl [START_REF] Rumer | Eine für die Valenztheorie geeignete Basis der binären Vektorinvarianten[END_REF], and was later adapted to the quantum setting in [START_REF] Frenkel | Canonical bases in tensor products and graphical calculus for Uq(sl 2 )[END_REF].

More precisely, we first recall in Section 4.1 some basic facts on U q (sl 2 ) and its representations, in Section 4.2 we recall the graphical calculus for the dual canonical basis for invariant tensors of 3-dimensional irreducible representations of sl 2 , and in Section 4.3 we show that a simple modification of this basis is well-behaved with respect to the universal sl 2 weight system. 4.1. Quantum group U q (sl 2 ) and finite-dimensional irreducible representations. Let U q = U q (sl 2 ) be the algebra over C(q) with generators K, K -1 , E, F and relations

KK -1 = K -1 K = 1, KE = q 2 EK, KF = q -2 F K, EF -F E = K -K -1
q -q -1 , for q a non-zero complex indeterminate.

For n ≥ 0, denote by V n the fundamental (n + 1)-dimensional irreducible representation of U q , with basis

{v i ; -n ≤ i ≤ n, i = n (mod 2)}
such that the action of U q is given by

Ev i = n + i + 2 2 v i+2 , F v i = n -i + 2 2 v i-2 , K ±1 v i = q ±1 v i
where [m] = (q m -q -m )/(q -q -1 ) and

v n+2 = v -n-2 = 0. Let , : V n ⊗ V n → C(q)
be the symmetric bilinear pairing defined by

v n-2k , v n-2l = [n]! [k]![n -k]! δ k,l ; 0 ≤ k, l ≤ n,
where [k]! := i≤k [i], and let {v i ; -n ≤ i ≤ n, i = n (mod 2)} be the dual basis with respect to this pairing. In particular, for n = 1, the dual basis is simply given by v i = v i (i = ±1), while for n = 2, we have

v 2 = v 2 , v 0 = 1 [2] v 0 and v -2 = v -2 .
We also define the bilinear pairing , of V n1 ⊗. . .⊗V nm and (V n1 ⊗. . .

⊗V nm ) * = V nm ⊗ . . . ⊗ V n1 by 5 v k1 ⊗ . . . ⊗ v km , v k ′ m ⊗ . . . ⊗ v k ′ 1 = m i=1 δ ki,k ′ i .
We refer the reader to Chapters 2 and 3 of the book [START_REF] Carsten | Lectures on quantum groups[END_REF] for a much more detailed treatment of this subject.

Graphical representations of the dual canonical basis for invariants tensor products.

In what follows, we will only deal with 1 and 2-dimensional representations, which is sufficient for the purpose of this paper. We thus only give a very partial overview of the work in [START_REF] Frenkel | Canonical bases in tensor products and graphical calculus for Uq(sl 2 )[END_REF], where we refer the reader for further reading. We will mostly follow the notation of [START_REF] Frenkel | Canonical bases in tensor products and graphical calculus for Uq(sl 2 )[END_REF].

Let

δ 1 : C → V 1 ⊗ V 1 denote the map defined by δ 1 (1) = v 1 ⊗ v -1 -q -1 v -1 ⊗ v 1 .
In [3, Thm. 1.9], Frenkel and Khovanov showed that the intersection of the dual canonical basis of V ⊗2m 1 and the space Inv Uq (V ⊗2m

1

) of invariant tensors forms a basis of Inv Uq (V ⊗2m ):

{(δ 1 ) 2(m-1) im-1 (δ 1 ) 2(m-2) im-2 • • • (δ 1 ) 2 i1 (δ 1 ).1 ; 0 ≤ i j ≤ j for each index 1 ≤ j ≤ m -1}, where (δ 1 ) k l : V ⊗k 1 → V ⊗k+2 1 is defined by (δ 1 ) k l = 1 ⊗l ⊗ δ 1 ⊗ 1 ⊗(k-l) (0 ≤ l ≤ k). Graphically, V ⊗2m
1 is represented by 2m fixed points on the x-axis of the real plane, and an element of the dual canonical basis of Inv Uq (V ⊗2m ) is represented by a union of m non-intersecting arcs embedded in the lower half-plane and connecting these points, each arc corresponding to a copy of the map δ 1 . For example, the dual 5 The action of Uq on tensor powers of irreducible representations is defined via the comultiplication map ∆ in the Hopf algebra structure of Uq ; the dual action with respect to , is likewise given by u(x ⊗ y) = ∆(u)(x ⊗ y), where ∆(u) = (σ ⊗ σ)∆(σ(u)) with the bar involution σ : Uq → Uq. See e.g. [START_REF] Carsten | Lectures on quantum groups[END_REF]Chap. 3] or [3, § 1] for the details. ), by taking their image under π ⊗m 2 , where

π 2 : V 1 ⊗ V 1 → V 2 is defined by π 2 (v 1 ⊗ v 1 ) = v 2 , π 2 (v -1 ⊗ v -1 ) = v -2 , π 2 (v 1 ⊗ v -1 ) = q -1 v 0 , π 2 (v -1 ⊗ v 1 ) = v 0 .
The map π 2 is graphically represented by a box with two incident points (corresponding to the two copies of V 1 ) on its lower horizontal edge, see Figure 4.2. Since π 2 •δ 1 = 0, a diagram containing a box whose incident points are connected by an arc is equal to zero. If there is no such box, then this defines a non-trivial element of Inv Uq (V ⊗m 2 ). In summary, an element of the dual canonical basis B 0 m of Inv Uq (V ⊗m

2

) is graphically incarnated by m horizontally aligned boxes, whose incident edges are connected by m non-intersecting arcs, such that each arc is incident to two distinct boxes. 

: = (π 2 ⊗ π 2 )(δ 1 ) 2 1 .(δ 1 ).1 = (π 2 ⊗ π 2 ) v 1 ⊗ v 1 ⊗ v -1 ⊗ v -1 -q -1 v -1 ⊗ v 1 ⊗ v -1 ⊗ v 1 -q -1 v 1 ⊗ v -1 ⊗ v 1 ⊗ v -1 + q -2 v -1 ⊗ v -1 ⊗ v 1 ⊗ v 1 = v 2 ⊗ v -2 -(q -1 + q -3 )v 0 ⊗ v 0 + q -2 v -2 ⊗ v 2 . b D D c
:= v 2 ⊗ v 0 ⊗ v -2 + q -2 v 0 ⊗ v -2 ⊗ v 2 + q -2 v -2 ⊗ v 2 ⊗ v 0 + q -5 v 0 ⊗ v 0 ⊗ v 0 -q -2 v 2 ⊗ v -2 ⊗ v 0 -q -2 v 0 ⊗ v 2 ⊗ v -2 -q -2 v -2 ⊗ v 0 ⊗ v 2 -q -1 v 0 ⊗ v 0 ⊗ v 0 .
In the rest of this paper, we will use the term FK diagrams to refer to this graphical calculus of Frenkel and Khovanov, and we will consider such diagrams up to planar isotopy (fixing only the m boundary boxes corresponding to the m copies of V 2 in Inv(V ⊗m 2 )). We will also often blur the distinction between an invariant tensor and the FK diagram representing it. 4.3. The tree basis of Inv Uq (V ⊗n 2 ). In this section, we modify the dual canonical basis B 0 m of Inv Uq (V ⊗n 2 ) recalled above and prove that, at q = 1, this new basis corresponds to the tree basis of Inv(sl ⊗n 2 ) defined in Section 3.1. The only new ingredient is the Jones-Wenzl projector

p 2 : V 1 ⊗ V 1 → V 1 ⊗ V 1 defined by p 2 (v 1 ⊗ v 1 ) = v 1 ⊗ v 1 , p 2 (v 1 ⊗ v -1 ) = 1 [2] q -1 v 1 ⊗ v -1 + v -1 ⊗ v 1 , p 2 (v -1 ⊗ v -1 ) = v -1 ⊗ v -1 , p 2 (v -1 ⊗ v 1 ) = 1 [2] v 1 ⊗ v -1 + qv -1 ⊗ v 1 .
See Figure 4.3 for a graphical definition.

[2]

1

p 2 + = Figure 4.3. The Jones-Wenzl projector p 2 ∈ End(V ⊗2 1 ).
Let T be a Riordan tree of order n. We now define two elements f 0 (T ) and f (T ) of Inv Uq (V ⊗n 2 ) using the graphical calculus introduced in the previous section. Consider a proper embedding i(T ) of T in the lower-half plane, such that the jlabeled vertex is sent to the point (j; 0) and such that the cyclic ordering at each trivalent vertex agrees with the orientation of the plane. An example is given in Figure 4.4. Note that the Riordan property ensures that such an embedding exists. We first describe the diagram defining f 0 (T ) ∈ Inv Uq (V ⊗n 2 ). First, replace each point (j; 0) by a box representing a copy of V 2 (1 ≤ j ≤ n). Next, consider an annular neighborhood of i(T ) in the lower-half plane ; the boundary of this neighborhood is a collection of disjoint arcs connecting the n boxes, thus providing an FK diagram for f 0 (T ). See following the cyclic ordering. For each internal edge of i(T ), we contract the two corresponding copies of V 2 by the map ε 2 : V 2 ⊗ V 2 → C defined by

i(T)

ε 2 (v 2 ⊗ v -2 ) = q 2 , ε 2 (v 0 ⊗ v 0 ) = - 1 q -1 + q -3 , ε 2 (v -2 ⊗ v 2 ) = 1, ε 2 (v i ⊗ v j ) = 0, if i + j = 0.
As observed in [START_REF] Frenkel | Canonical bases in tensor products and graphical calculus for Uq(sl 2 )[END_REF], we have the identity

ε 2 • (π 2 ⊗ π 2 ) = ε 1 • (1 ⊗ ε 1 ⊗ 1) • (p 2 ⊗ p 2 ),
where

ε 1 : V 1 ⊗ V 1 → V 0 is defined by ε 1 (v 1 ⊗ v -1 ) = -q ; ε 1 (v -1 ⊗ v 1 ) = 1 ; ε 1 (v 1 ⊗ v 1 ) = ε 1 (v -1 ⊗ v -1 ) = 0.
This formula, as illustrated in So applying ε 2 in this way yields precisely the FK diagram for f (T ), where the box corresponding to the i-labeled vertex represents the ith copy of V 2 . This is illustrated on an example in Notice in particular that the 1 2 tri(T ) coefficient in the statement comes from the application of (4.2) at each trivalent vertex, while the sign (-1) deg(T ) is given by applying (4.1) at each strut component (which has degree 1), and (4.3) at each internal edge (since the degree of a linear tree is the number of internal edges plus 2). This concludes the proof.
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  canonical basis of Inv Uq (V ⊗4 1 ) consists of two elements (δ 1 ) 2 0 .(δ 1 ).1 and (δ 1 ) 2 1 .(δ 1 ).1, which are represented by the two diagrams D 1 and D 2 in Figure4.1, respectively.
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 41 Figure 4.1. FK diagrams representing the dual canonical basis of Inv Uq (V ⊗2 1 ).
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 412 Arranging the n boxes on a circle, FK diagrams for elements of B 0 m naturally appear to be in one-to-one correspondence with (convex hulls of) Riordan partitions of {1, . . . , n}. This agrees with the fact that the dimension of Inv(V ⊗m is given by the Riordan number R m . Example 4.2. We conclude with a couple of examples. For m = 2, Inv Uq (V ⊗2 2 ) is spanned by D c in Figure 4.2, which represents the element c
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 42 Figure 4.2. FK diagrams representing the dual canonical bases for Inv Uq (V ⊗22 ) and Inv Uq (V ⊗3 2 ).
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 44 Figure 4.4. The embedding i(T ) for the Riordan partition {{1, 2, 6, 7, 8}; {3, 4, 5}}.
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 4545 Figure 4.5. The FK diagrams for f 0 (T ) and f (T ), for the Riordan partition {{1, 2, 6, 7, 8}; {3, 4, 5}}.
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 42246 Figure 4.6. Graphical definition of the contraction map ε 2 .
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 447 Figure 4.7. Reformulating f (T ), for the Riordan partition {{1, 2, 6, 7, 8}; {3, 4, 5}}. Now, it remains to observe that the elements c and b, defined in Example 4.2 and represented by the diagrams D c and D b respectively, correspond to the elements c and b of Equations (2.1) and (2.2) via the map ρ as follows: (4.1) ρ(c) = -c and (4.2) ρ( b) = 1 2 b, and that the contraction maps κ and ε 2 , used in the definitions of W (T ) and f (T ) respectively, are related by (4.3) (ε 2 ) |q=1 = -κ • ρ.

Table 1 .

 1 The dimensions of C Cn and χ Inv(sl ⊗n 2 ) are already known (see Lemma 3.7 and Proposition 3.8). Thus, by Theorem 1.2, we can determine the character χ ker(W h

	2 3 4 5 6	7	8	9	k
	1 1 2 6 24 120 720 5040 2 ) 1 1 3 6 15 36 91 232 dim Inv(sl ⊗n dim C n	(k -2)! R k
	dim Ker W h				

n 0 0 0 0 10 84 630 4808 (k -2)! -R k + 1+(-1) k 2 n , Inv(sl ⊗n 2 ) and Ker W h n .

Let S n be the symmetric group in n elements. The spaces C n and Inv(sl ⊗n 2 ) have S n -module structures, such that S n acts on C n by permuting the labels, and acts on Inv(sl ⊗n 2 ) by permuting the factors. The sl 2 weight system is a S nmodule homomorphism, and the characters χ n ) of the kernel of W h n as follows. Corollary 1.3. (i) For n = 2 or n > 2 odd, we have

χ ker(W h n ) = χ Cn -χ Inv(sl

⊗n

2 ) and χ Im(W h n ) = χ Inv(sl ⊗n 2 ) . (ii) For n ≥ 4 even, we have

  of Corollary 1.3. The fact that χ ker(W h n ) = χ Cn -χ Inv(sl ⊗n 2 ) and χ Im(W h n ) = χ Inv(sl ⊗n 2 ) for n = 2 or n > 2 odd immediately follows from Theorem 1.2. By Lemma 3.7, the one dimensional representation appearing in the irreducible decomposition of Inv(sl ⊗n 2 ) is the trivial representation U . Thus we have that χ ker(W h n ) = χ Cnχ Inv(sl ⊗n 2 ) + χ U and χ Im(W h n ) = χ Inv(sl ⊗n 2 ) -χ U for n ≥ 4 even. The character χ Cn is known as follows. Proposition 3.8 (Kontsevich [6, Theorem 3.2]). As a S n -module, the character of C n is

A partition satisfying only the second condition is often called non-crossing.

This extra assumption is not necessary for the proof, but makes the arguments simpler to verify.

for the dual canonical basis of Frenkel-Khovanov: B 0 n := {f 0 (T ) ; f is a Riordan tree of order n}. Now, to obtain the diagram defining f (T ) we simply insert a copy of the Jones-Wenzl projector p 2 in the pairs of arcs of f 0 (T ) induced by each internal edge of T in the above procedure -see the example of Figure 4.5.

We have Theorem 4.3. The set

; f is a Riordan tree of order n} forms a basis for Inv Uq (V ⊗n 2 ).

Proof. Since there is a natural one-to-one correspondence between the set B JW n and the basis B 0 n , it is enough to prove the independency of the elements in B JW n . So suppose that

where the sum runs over the set Rio n of Riordan trees of order n, and where α T ∈ C. Using the formula for the Jones-Wenzl projector p 2 given by Figure 4.3, one can express each f (T ) as a linear combination

where the sum runs over all subtrees T ′ obtained from T by deleting internal edges, and where i t denotes the number of internal edges of a Riordan tree t ∈ Rio n . By substituting this identity in T ∈Rion α T f (T ) = 0, we have that there exists complex numbers α ′ T ∈ C such that f ∈Rion α ′ T f 0 (T ) = 0, and a lower triangular matrix A whose diagonal entries are all 1 such that (α ′ T1 , . . . , α ′ T l ) t = A(α T1 , . . . , α T l ) t for a suitably chosen order {T 1 , . . . , T l } on Rio n . Since B 0 n is a basis of Inv Uq (V ⊗n 2 ), we have (α ′ f1 , . . . , α ′ f l ) = 0, which implies that α T = 0 for all T ∈ Rio n . This concludes the proof.

It turns out that this simple modification of the dual canonical basis of Inv Uq (V ⊗n

2 ) is directly related to the tree basis introduced in Section 3.1, as we now explain.

Let ρ : Inv Uq (V ⊗n 2 ) → Inv(sl ⊗n 2 ) be the C-linear map such that It follows immediately that the tree basis of Section 3.1 indeed is a basis for Inv(sl ⊗n 2 ), as claimed in Theorem 3.2.

Proof. The assertion follows essentially from the definitions. To see this, let us slightly reformulate the definition of f (T ), still in terms of FK diagrams but in a spirit that is closer to that of W (T ). For each strut component of i(T ), pick a copy of the diagram D c of Figure 4.2, and take a copy of the diagram D b for each trivalent vertex so that a copy of V 2 is associated to each of the incident half-edges