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Acoustic beamforming through a thin plate using vibration
measurements

Quentin Leclèrea)

Laboratoire Vibrations Acoustique, INSA Lyon F-69621, France

Christophe Picard
MicrodB, Ecully 69130, France

(Dated: June 23, 2015)

The aim of this paper is to propose a methodology to localize acoustic sources from the measurement
of airborne induced vibrations of a thin structure. Targeted applications are the identification of
acoustic sources through a thin wall, with a potential filtration of the incident field, which may be of
practical interest for instance when identifying exterior acoustic sources from the inside of a moving
vehicle. Two methods are coupled here to achieve this purpose: the Force Analysis Technique (FAT),
used to identify the parietal pressure field exciting the thin structure from vibration measurements,
and beamforming, used for the localization of acoustic sources from the (FAT-)identified parietal
pressure. The coupling of the two methods is studied first from a theoretical point of view, and
an experimental proof of concept is then presented, showing the feasibility and relevance of the
proposed approach.

PACS numbers: 4360Fg,4340Sk

I. INTRODUCTION

In many situations, one may be interested in the
possibility of localizing acoustic sources from vibration
measurements. This is typically the case if we want
to localize an acoustic source through a wall: the
vibration of the wall can be measured using an array of
accelerometers, or using nearfield acoustic measurements
on one side of the wall. The incident acoustic pressure
field exciting the wall from the other side can then be
identified, and used as an input for an acoustic source
localization method. This is also the case if the structure
is used as a filter: in cases when the incident acoustic
pressure is disturbed by a turbulent boundary layer, the
plate will act as a low-pass filter in the wavenumber
domain, offering a tunable possibility of separating
acoustic and aerodynamic fields. These situations are
both encountered, for instance, in the issue of identifying
exterior acoustic sources from the inside of a moving
vehicle.

The aim of this paper is to propose a methodology
coupling two methods to achieve this purpose. The first
method, known as Force Analysis Technique (FAT)1,
utilizes measurements of plate displacement to estimate
the load field which is exciting the plate. It has been
first developed for beams and plates, and later has
been extended to shells2 and finite elements3. Some
improvements have been proposed recently4, extend-
ing the frequency range of application. The second
method is beamforming, an acoustic source localization
method based on acoustic array measurements. Initially
developed for underwater acoustics5, the method has

a)Electronic address: quentin.leclere@insa-lyon.fr

been later extended to acoustics in air by Billingsley
and Kinns’s6 (the acoustic telescope). In the proposed
methodology, acoustic array measurements are replaced
by the pressure field estimated using the FAT.

The idea to use vibration sensors through a thin struc-
ture for beamforming applications has been inspected in
several papers for underwater ultrasound applications7

or broadband sonar processing8. In these two papers, an
analysis of the response of vibration based beamforming
is provided in either space or wavenumber domains.
More recently, vibration based beamforming has been
studied to localize acoustic sources inside a cylindrical
shell filled with heavy fluid9. The first contribution of
the present work is the use of the FAT, usually imple-
mented for the localization of structure borne sources,
for the identification of an acoustic pressure field exciting
a wall. Recent efforts in that domain might however be
cited, concerning the identification of a diffuse field10

or a turbulent boundary layer11,12. In these last works,
the ability of the FAT to operate a filtering in the
wavenumber domain has been observed experimentally.
A second original aspect is to consider the issue of using
FAT results for beamforming, from the theoretical point
of view, considering the wavenumber behavior of both
methods, and also pointing out some practical issues.
This issue has, at the authors’s knowledge, not yet been
investigated in the literature.

The first part of the paper is dedicated to theoreti-
cal aspects. In sections II.A and II.B, basic principles
of beamforming and FAT are recalled. Section II.C con-
cerns the issue of coupling beamforming and FAT, con-
sidering their respective wavenumber domain responses,
and the consequences on the useful frequency range. The
second part of this work describes an experimental imple-
mentation of the proposed methodology, with a demon-
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stration of the feasibility and reliability of the method.

II. THEORY

A. Acoustic beamforming

Acoustic beamforming is a source localization tech-
nique based on acoustic array measurements, introduced
in the seventies by Billingley and Kins6. The idea is
to delay and sum time signals from a set of micro-
phones in order to estimate the arrival angle of farfield
sources. Beamforming does not belong to the class of
identification methods for acoustic source localization,
like Nearfield Acoustic Holography13, Equivalent source
methods14 or Inverse BEM15: with beamforming, the
strength of each is identified independently from the
others, while a global inversion (requiring regularization)
is used by aforementioned approaches. It makes beam-
forming a remarkably robust approach, the limitations
being a poor resolution in the low frequency range and a
limited quantitative capability. Beamforming is choosen
in this work for the sake of simplicity, it is however
noteworthy that more sophisticated acoustic imaging
techniques could also be coupled with the FAT.

In the frequency domain, the output of beamforming
is the scalar product between the measured pressure and
the pressure shape that would have been obtained if the
waves were coming from angle θ. For a 1D uniformly
spaced array of microphones, without any spatial weight-
ing, the beamforming result is given by:

r(ω, θ) =
M∑

m=1

p(m,ω)e−jm∆kx , (1)

where p(m,ω) stands for the acoustic pressure measured
at microphone m (Pa), ∆ is the distance between
two consecutive microphones , M is the total number
of microphones, kx = k sin(θ) (rad/m), k = ω/c the
acoustic wavenumber (rad/m), and c the sound speed
(m/s).

The response of the antenna for the case of a plane
wave of unitary amplitude and incidence Θ (Kx =
k sin(Θ)) is thus given by:

r(ω, θ,Θ) =

M∑
m=1

ejm∆(Kx−kx). (2)

This response has of course a maximum for θ = Θ, al-
lowing the localization of the actual source position. A
second maximum can occur for |kx − Kx| = 2π/∆, if
Shannon’s criterion has not been met; this is called a
grating lobe. This brings the maximum frequency limi-
tation for an array of regular spatial sampling ∆:

∆ <
λ

2
, or ω <

πc

∆
, (3)

where λ = c/f is the acoustic wavelength, f the fre-
quency. The low frequency limit depends on the spatial

dimensions of the array. Indeed, it can be stated that
the low frequency limit is the minimum frequency above
which the beamforming output has at least one totally
destructive interference (null) within θ ∈ [−π/2, π/2], for
Θ = 0. These considerations bring out the low frequency
limit of an array of length N∆:

ω >
2πc

N∆
, or f >

c

L
, (4)

where L = N∆ is the array length.

B. Estimation of acoustic pressures from vibration
measurements

The Force Analysis Technique1,4 (FAT) is an experi-
mental approach aiming at the inverse identification of
the load field exciting a thin structure from vibration
measurements. The basic principle is to directly solve
the local equation of motion of a structure to identify lo-
cally the forcing term. For flexural beams and plates, this
involves the estimation of fourth order spatial derivatives
of the vibration field on a measurement mesh. For the
flexural beam case, the actual (analytic) and identified
forces per unit of length, noted p and p̃, respectively, are
given by (cf. Refs.1,16):

p(x)= EI
∂4w

∂x4
(x)− ρSω2w(x), (5)

p̃(x)= EIµ4δ4x∆ (x)− ρSω2w(x), (6)

where E, I, ρ, S are the physical parameters of the beam
(Young’s modulus, area moment of inertia, density and
cross section area, respectively), w(x) the transverse dis-
placement of the beam, and with

δ4x∆ (x) =
w−2 − 4w−1 + 6w0 − 4w+1 + w+2

∆4
, (7)

where w±l(x) = w(x± l∆) is the measured displacement
at 5 points surrounding the load identification point.
Eq.(5) is simply the equation of motion of the flexural
beam, establishing the local equilibrium between load,
stiffness and inertia. In Eq. (6), δ4x∆ (x) (developed in
Eq. (7)) is a standard finite difference estimation of the
fourth order spatial derivative of the displacement field
∂4w
∂x4 (x), on which rely the FAT. This estimation is ob-
tained at the center of the finite difference scheme (point
x) from the displacement at 5 points around this position
on a measurement mesh with a regular spacing ∆. The
finite difference scheme is then slided along the measure-
ment mesh (point x + ∆, x + 2∆ ...), so as to recover
the load field with a spatial sampling ∆. µ4 is an cor-
rective factor, equal to unity when using the standard
FAT1, that has been introduced recently in a corrected
version of the FAT4 (called CFAT) to correct the bias ef-
fect caused by the finite difference approximation. This
parameter is equal to:

µ4 =
∆4k4N

(2− 2 cos(kN∆))2
, (8)
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where kN is the natural wavenumber at the frequency ω
(cf. Refs.1,16):

k4N =
ρS

EI
ω2. (9)

The effect of the correction in CFAT has been studied in
Ref.4, its advantage is to improve the wavenumber do-
main response of the method when the discretization ∆
used for the finite difference scheme is coarse, i.e. less
than 4 points by structural wavelength. The effective-
ness of the CFAT in the wavenumber domain is analyzed
through the ratio between the actual pressure p and its
CFAT estimate p̃:

E(α) =
p̃(α)

p(α)
=

(
sin(απ/n)
sin(π/n)

)4

− 1

α4 − 1
, (10)

where n corresponds to the number of measurement
points by natural wavelength n = 2π/(kN∆) and α =
k/kN the normalized wavenumber. This wavenumber
response, that can be interpreted as a spatial filter, is
drawn in Fig. 1 for different values of n. As can be seen
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FIG. 1. (color online) Response of the CFAT filter in the
wavenumber domain for different values of n (number of
points by structural wavelength)

in Fig. 1, the response of CFAT is not perfect (i.e. equal
to 0dB) in the whole wavenumber domain. The response
to low wavenumbers is quite good, but the method is
not able to recover correctly high wavenumbers, above a
cutoff wavenumber increasing with n. For n > 2 (Fig.
1, top), high wavenumbers are simply attenuated. For
lower values of n, the response is still quite flat for the
low wavenumber domain, there is a first band-stop fil-
ter around the value n − 1, but secondary lobes in the
high wavenumber domain becoming more and more en-
ergetic when n decreases. These secondary lobes have to

be avoided, even if the excitation is known to be concen-
trated in the low wavenumber domain, because they will
lead to an strong amplification of the measurement noise
(that is spread over the whole wavenumber range). The
limitation n > 2 (at least 2 points by flexural wavelength)
leads to the following criterion:

ω <
( π
∆

)2

√
EI

ρS
. (11)

C. Simulation using CFAT results for beamforming

The CFAT, presented in the previous section, can be
used to estimate the acoustic pressure exciting a thin
structure from vibration measurements. This estimated
pressure can then be used as input data for acoustic
beamforming, notwithstanding the following points:

• for the one dimension case (the CFAT for flexu-
ral beams), the identified load is a force per unit
length. This load can be converted into a pressure
by dividing it by the beam’s width, assuming that
the acoustic pressure is constant along the beam’s
width (which is almost true if the beam’s width is
small as compared to the acoustic wavelength).

• The pressure identified by CFAT is not directly
equal to the incident field, because of the diffraction
effect of the structure used for vibration measure-
ments. This important point is discussed in section
II.E.

• the CFAT identifies without distinction the load
on both sides of the considered structure (beam or
plate). In order to assume that the identified load
is equal to the parietal pressure on the source side
only, the parietal pressure on the other side has
to be significantly lower, which can be achieved if
the structure is correctly baffled, and for frequen-
cies where the transparency of the structure is low
enough (this is generally not a limitation for the
targeted frequency range of application).

The use of the CFAT for the identification of plane waves
requires the consideration of its wavenumber response
discussed in the previous section. The wavenumbers of
any collection of farfield source signals will be concen-
trated between kx = 0 (normal incidence) and kx = k
(tangential incidence). Thus, the response of CFAT
should be almost flat in this wavenumber range. For
n > 2, the CFAT response will be considered as flat for
α < n/3 (cf. Fig. 1). The application of CFAT to plane
waves thus brings:

ω <
2πc

3∆
. (12)

It can be noted that this criterion based on the CFAT
lowpass filtering effect in the wavenumber domain
is more demanding than the Shannon’s criterion for
acoustic beamforming (Eq. 3). This means that if CFAT
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results are post processed as inputs for acoustic beam-
forming (which is the object of this work), a criterion a
bit more severe than Shannon’s has to be observed to
avoid the CFAT bias effect. This is quite important to
note, because beamforming is sometimes used above the
Shannon’s limit, that can be rightfully exceeded if it is
a priori known that the angle of incidence of incoming
plane waves is limited to a given angular range (no
tangential waves).

To illustrate these considerations, the response of a
microphone array based on the CFAT identification of
the acoustic pressure is numerically studied. A linear ar-
ray of 10 acoustic measurement points regularly spaced
is considered. The structural CFAT criterion (eq. 11) is
fulfilled (n = 2.5 points by structural wavelength). The
response of the antenna is given in Fig. 2 for ω = 2πc

3∆
(upper frequency for the acoustical CFAT criterion) and
ω = πc

∆ (Shannon’s limit for beamforming). Note that
the estimation of the pressure by CFAT at extreme posi-
tions of the antenna requires 2 additional vibration mea-
surement points on both sides, because of the finite dif-
ference scheme used for the estimation of the fourth order
derivative (see eq. 7). The results obtained for conven-
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FIG. 2. (color online) Left: conventional beamforming re-
sponse (function of θ) as a function of the actual incidence Θ.
Right: CFAT-based beamforming response. Top: ω = 2πc

3∆
(3

points by acoustic wavelength). Bottom : ω = πc
∆

(2 points
by acoustic wavelength). dB scale, 20dB range.

tional beamforming and CFAT-based beamforming are
very similar for the first frequency (ω = 2πc

3∆ , satisfy-
ing 3 points by acoustic wavelength). The main lobe
is centered on the actual angle of incidence, its width
broadening when the angle of incidence θ exceeds π/4.
CFAT-based results are however slightly underestimated
for incoming waves with an incidence angle around π/2
(near-tangential waves), because of the low response of
the CFAT-based beamformer at higher wavenumbers or
larger incident angles. This effect is much more pro-
nounced for the second studied frequency, corresponding
to the Shannon’s limit for the spatial sampling (ω = πc

∆ ,

2 points by acoustic wavelength). A secondary lobe at
ϕ = θ ∓ π/2 (due to aliasing) is observed for values of θ
around ±π/2 for conventional beamforming. This grat-
ing lobe is not observed on the CFAT-based beamform-
ing, because of the CFAT filtering effect, that also filters
out the main lobe for values of θ close to π/2.

D. Extension to two dimensions

The basic principles of beamforming and CFAT, and
their interactions, have been presented in previous sec-
tions for the one dimensional case, for the sake of sim-
plicity. However, the experimental implementation of the
1D case is not easy, because of the necessity to baffle the
beam, in order to expose only one side of the structure to
the acoustic load. Another point is that the beam’s width
has to be small as compared to the acoustic wavelength,
which adds another frequency limitation to the method.
These two problems are not encountered when dealing
with the two dimensions version of CFAT-based beam-
forming. For the flexural plate case, the actual and iden-
tified forces per unit of area are given by (cf. Refs.16,18):

p(x, y) = D∇4(w(x, y))− ρhω2w(x, y), (13)

p̃(x, y) = DΦ∆(x, y)− ρhω2w(x, y), (14)

with Φ∆(x, y) = µ4δ4x∆ + µ4δ4y∆ + 2ν4δ2x2y∆ ,

where D = Eh3/12/(1 − ν2), h is the plate’s thikness,

ν the Poisson’s ratio, ρ the density, δ4x∆ , δ4y∆ , and µ4 are
obtained as for the 1D case (Eq. 7 and 8), with kN the
natural wavelength of the plate:

k4N =
ρh

D
ω2. (15)

The term δ2x2y∆ is equal to:

δ2x2y∆ =
1

∆4

1∑
p=−1

1∑
q=−1

ψpqw(x+ p∆, y + q∆), (16)

with ψ00 = 4,

ψ−10 = ψ10 = ψ0−1 = ψ01 = −2,

ψ−1−1 = ψ11 = ψ1−1 = ψ−11 = 1,

(17)

and the correcting factor ν4 is defined by:

ν4 =
∆4k4N

8
[
1− cos(kN∆√

2
)
]2 − µ4. (18)

It can be noted that if 5 points surrounding the
load identification point are needed for the 1D case,
the 2D case requires 13 points to assess the load at
one point. When dealing with measurements on a
regular grid, it means that the load will be assessable
on the whole grid except a 2 point wide band at the edge.

The 2D implementation of CFAT has a low-pass filter-
ing effect in the wavenumber domain, as is the case for the
1D implementation, see Ref.4 for theoretical details. The
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consequence on the identification of plane waves is simi-
lar in 2D as in 1D : incoming waves with high incidence
angles will be underestimated if the number of points by
acoustic wavelength is lower than 3 (cf. Eq. 12). The
limitation concerning the sampling of the vibration field
is the same as for the 1D case, i.e. 2 points by flexural
wavelength. This brings the following HF limitation:

ω <
( π
∆

)2

√
D

ρh
. (19)

Concerning beamforming, the extension of the 1D for-
mula (1) to 2D, for an angle of incidence θ over x and φ
for y is simply:

s(ω, θ, φ) =
N∑

n=1

M∑
m=1

p(n,m, ω)e−jn∆kxe−jm∆ky , (20)

where p(n,m, ω) stands for the acoustic pressure at point
(x, y) = (n∆,m∆), ∆ is the distance between two consec-
utive microphones, N ×M is the total number of micro-
phones, kx = k sin(θ) cos(φ) and ky = k sin(φ) (rad/m).

E. Intrusivity of the measurement device

The acoustic pressure that is identified by CFAT
is the parietal pressure on the instrumented structure
(beam or plate). Of course, this pressure is not equal to
the acoustic pressure at the same positions without the
structure, because of diffraction effects. In other words,
the CFAT-based beamforming is an intrusive approach,
contrary to standard microphone array beamforming,
whose intrusivity is generally negligible. This intrusivity
can be partly corrected by an experimental or numerical
study of the diffraction effects, that can then be taken
into account in Eq. (1) or (20). Another possibility
is simply to consider that the measured structure is
inserted in an infinite rigid baffle. In this case, assuming
that the transmission loss of the instrumented structure
is high enough, ensuring a quasi-total reflection of
incident waves, the parietal pressure is almost equal to
twice the incident pressure.

These corrections are however somewhat limited by
the fact that the incident pressure can also be modified
by the measurement device if the reflected waves are
once again reflected by another rigid body that is not
taken into account, or the source’s body itself. However,
these effects can be assumed to be negligible in many
situations, if the surface of the structure is small as
compared to the surface of all other reflective bodies,
and when other reflective bodies are sufficiently far from
the structure.

III. EXPERIMENTAL VALIDATION

An experimental validation has been carried out for the
proposed approach. An acoustic source has been placed

in a semi-anechoic room, with a reflective floor (see Fig.
3). One wall is also reflective, in which a 40 × 60cm2

opening is made towards a second room. A 1mm thick
aluminium plate is mounted to close this window. The
source is a compression driver, fed with a white noise
signal through a power amplifier. It is placed at 1.3m
from the reflective wall, with a direction of incidence
θ = −25◦, φ = 15◦ from the normal of the plate at the
center of the plate. The presence of the reflective ground
generates an image source, with the same azimuth θ, but
with an elevation φ equal to −57◦, that takes into ac-
count the distance between the ground and the center
of the plate. The velocity of the plate is measured by�
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FIG. 3. (color online) Experimental setup. θ stands for the
azimuth and ϕ for the elevation.

a scanning laser vibrometer placed in the second room.
The scanning area is 31 × 57cm2 with a regular grid of
25 × 37 points. The grid step ∆ is equal to 16mm. The
reference signal is a microphone placed in room 1, in the
very nearfield of the plate. The transfer functions be-
tween the reference and the velocity is assessed at each
point of the measurement grid, H1-estimator (ratio be-
tween the cross spectrum and reference autospectrum, cf.
Eq. (21)), Hanning weighting, 20 averages. The velocity
is then obtained by using the transfer function and the
autospectrum of the reference averaged over all measure-
ment points, as proposed in17:

Vi = Hi
ir

√
⟨Srr⟩ =

Si
ir

Si
rr

√√√√ 1

N

N∑
j=1

Sj
rr (21)

where Hir = Sir

Srr
is the H1 estimator of the transfer

function between the velocity at point i and the pressure

5



measured at the reference microphone Vi/Pr, S
i
ir stands

for the cross-spectrum between point i and reference r
and Sj

rr for the reference autospectrum measured while
the laser is pointing on position j.

Considering the frequency limitations established in
the previous section, the maximum frequency related to
the flexural wavelength (Eq. 19, 2 points by flexural
wavelength) is equal to 9.5kHz, and the maximum fre-
quency related to the CFAT-Beamforming coupling (Eq.
12, 3 points by acoustic wavelength) is equal to 7kHz.
In the first instance, the acoustic pressure is estimated

using 2D CFAT (see section II.D). The identified pres-
sure spectrum is compared to the reference (parietal mi-
crophone) for validation. The spectrum measured by
the microphone and the pressure identified at the cor-
responding grid point are drawn in Fig. 4. The peri-
odicity in the frequency domain of measured and iden-
tified pressure spectra is caused by the interferences be-
tween the direct path and the reflection by the ground.
The two spectra are in very good concordance above
1.5kHz. below this frequency, the pressure identified by
CFAT is largely overestimated. This is a well known
problem of the method, for which a regularization fil-
ter is required for the low frequency range1. Several ap-
proaches can be implemented to improve FAT results in
the low frequency domain, such as spatial filtering18, or
frequency-dependent adaptation of the finite difference
scheme19. However, the frequency limit above which the
method gives reasonable results without any regulariza-
tion is about 1kHz in our case, it corresponds almost to
the low frequency limit of beamforming obtained by Eq.
(4). The method will thus be used without regularization
in this work, for the sake of simplicity.
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FIG. 4. (color online) Reference parietal microphone (solid),
identified acoustic pressure at the corresponding grid point
(dotted).

The 2D maps of the measured velocity and identified
pressure are drawn in Fig. 5 at about 2.5 and 4kHz. The
velocity maps are clearly dominated by components de-
termined by the natural flexural wavelength of the plate.
The pressure maps are dominated by wavenumbers re-

sulting from the projection of the acoustic wavevector in
the plate’s plane. Interferences are clearly seen on these
maps, corresponding to the interactions between the di-
rect field and the field diffracted by the ground.

FIG. 5. (color online) Measured velocity (m/s, left) and esti-
mated acoustic pressure (Pa, right) at 2.5kHz (top) and 4kHz
(bottom). Real parts.

The beamforming is carried out using a plane wave
assumption, as required in Eq. 20. This hypothesis is
of course not fully satisfied, the source standing at 1.3m
from the plate. This is visible in Fig. 5, on the pressure
field identified at 4kHz, for which the maximum values
of the pressure field are not forming a straight oblique
line but a slightly curved line. However, the use of
plane waves is adopted because it requires no additional
hypothesis about the distance to the source.

Beamforming results are presented in Fig. 6 integrated
by octave frequency bands from 1 to 4 kHz, for incidence
angles varying between −π/2 and π/2 in azimuth θ and
elevation φ. The maxima of the beamforming output
correspond to the actual location of the source and to
its ground reflection for each of the 3 octave band re-
sults, where resolution increases with frequency. It is
noted that the identified image source is not perfectly
symmetric to the actual source. The level is lower for
the image source because of geometrical attenuation (i.e.
spherical spreading), with the image source being further
away from the plate. The image source received signal
level is lower, simply because it is farther from the plate.
Second, the ground impedance is finite, resulting in some
attenuation of the reflected wave and therefore the image
source (a real image source would result from the contri-
bution of an infinite plane). Third, the source, whose
axis is pointed towards the plate, is expected to become
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more directional at mid and high frequencies.

FIG. 6. (color online) Beamforming results averaged by oc-
tave bands, in dB (15dB color range), 1kHz (top left), 2kHz
(top right) and 4kHz (bottom). White circles stand for the
coordinates of the source and it’s image generated by the re-
flective ground.

IV. CONCLUSION

This paper demonstrates theoretically and experimen-
tally the feasibility of coupling two methods for the local-
ization of acoustic sources from vibration measurements.
It is shown that the wavenumber response of the cor-
rected force analysis technique, identifying the parietal
pressure, is not able to recover acoustic waves with high
incident angles (high wavenumbers) when the number
of points by acoustic wavelength is less than 3. More-
over, the application of CFAT requires the considera-
tion of Shannon’s sampling criterion on the plate, i.e.
at least 2 points by flexural wavelength. The experi-
mental implementation shows that the parietal pressure
field is correctly identified and quantified from the vibra-
tion measurements, above a frequency limit below which
some regularization would have been required. The lo-
calization of the source, as well as its image through the
ground, is accurately identified on beamforming maps,
demonstrating the efficiency of the proposed approach.
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