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e-mail: a62055@alunos.uminho.pt,{clain,gjm}@math.uminho.pt

bInstitute for Polymers and Composites/I3N, University of Minho, Campus de Azurém, 4800-058
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Abstract

Thermoplastic extrusion processes use a dry calibration/cooling system, composed by
one or several calibrators in series. One of the major difficulties in the modelling is to
prescribe adequate values for the heat transfer coefficients between the polymer and the
cooler or the air. We present an optimization procedure coupled with a finite volume
method to evaluate such coefficients from experimental data. The tecnhique is based in
a new conservative second-order finite volume scheme using a cell-to-vertex interpolation
to solve the thermal problem involving a specific method to take the discontinuities
(temperature, velocity, and thermal conductivity) into account. We have also performed
a sensitive analysis of the different parameters of the problem to evaluate the variation
of the thermal transfer coefficient with respect to parameters such as velocity or inflow
temperature.

Keywords: Interface heat transfer coefficient, Extrusion, Calibration, Finite volume
method, Cellvertex interpolation

1. Introduction

Extrusion plays an important role in the thermoplastics industry due to its wide
range of applications. Any extrusion line aims to increase the rate of production and
the quality of the produced profiles. However, these two goals are antagonist since
the increase of production speed leads to a decreasing of product quality. The low
thermal diffusivity of polymers is one of the major responsibles for that behavior since
thermal gradients during the cooling stage develop internal stresses which diminish the
performance on duty. Consequently, the calibration/cooling stage has a crucial role in
the entire extrusion process since it controls the production rate. The cooling process
should be faster to solidify the outer layers and, at the same time, to provide a uniform
temperature as far as possible to minimize the internal thermal induced stresses.

In order to provide a correct evaluation of the heat transfers, one has to develop a nu-
merical model that fully describes the cooler, and particular attention should be paid on
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the boundary and interface conditions. The present study consider an aluminium calibra-
tor in contact with the polymer (Polystyrene) where the main goal is the determination
of an equivalent heat transfer coefficient hint at the interface between the calibrator and
the polymer in function of data collected by an experimental set-up. Such a coefficient
highly depends on several conditions such as the contact resistance at the interface, the
roughness of the material as it is shown in Figure 1 while temperature is assumed to be
discontinuous at the interface to take into account the large gradient at a microscopic
level. Due to the sensitivity of the cooling process with respect to the thermal transfer

Figure 1: Interface between the calibrator and the polymer.

coefficient, an accurate model and numerical scheme are mandatory to provide approxi-
mations leading to a correct evaluation of the transfer coefficient [1] that ranges between
10 and 10000 W/(m2K) according to its location in the calibration system [4].

The strategy relies on the numerical determination of the value of hint that matches
the values of temperature for numerical and experimental results. To solve the thermal
problem we will consider a finite volume scheme, which guarantees the local conser-
vation of the energy and enable to treat situtations with discontinuous temperature.
Although the finite element method is still the most popular method for convection dif-
fusion problem, second-order finite volume schemes become more attractive. Simplicity,
versatility, mostly independent of the cell shape, easy to code, many practical prob-
lems in physics and engineering are now discretized with de FV method on unstructured
meshes and recent progress enables to consider a wide range of applications for two or
three dimensional geometries. In [2], a generic second-order finite volume scheme for the
convection-diffusion-reaction equation based on the cell to vertex technology turns to be
very efficient and robust and the method was experimented for non-homogeneous and
anisotropic problems [3]. The specificity of this work consists in extending the method
for the discontinuous situations, both for the solution and the coefficients.
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2. Model and optimization

2.1. The thermal problem

A two-dimensional convection diffusion model of the calibrator together with a portion
of polymer is considered. Figure 2 displays the geometry of the cooler where Ωc and Ωp

stands for the sub-domains of the calibrator and the polymer (the subscripts c and p
refer to the calibrator and polymer, respectively) while the boundary are defined as:

• calibrator: Γc “ Γsup Y Γlat Y Λ,

• polymer: Γp “ Γair Y Γin Y Γout Y Λ.

Ωc

Ωp

Γsup

Γair

ΓlatΓlat

Γin

ΓairΓair

Γout
Up

Λ

Lin LoutLc

t p
t c

Ucx1

x2

Figure 2: Two-dimensional model used to describe the heat transfer between the calibrator and the
polymer.

The energy conservation equations for the two domains write

∇ ¨ pCαUαTα ´ kα∇Tαq “ fα in Ωα α P tc,pu, (1)

where k is the thermal conductivity, C “ ρcp is the volumetric heat capacity with specific
heat, cp, and density, ρ, T is the temperature distribution, U is the velocity vector, and
f is the source term which, in this case, is null in either domain. For the particular
problem we are dealing with, we assume the referential associated to Ωc to be fixe and
Uc “

`

0
0

˘

whereas Up “
`

u
0

˘

with u the polymer velocity.
The heat transfer between the calibrator and the polymer is defined as a thermal

contact resistance which originates a discontinuity in temperature and the flux of energy
across the interface is assumed to be linear with respect to the temperature differential.
Energy conservation then writes

kc
BTc

Bnc
“ ´kp

BTp

Bnp
“ hintpTp ´ Tcq on Λ, (2)

where n denotes the unit vector normal to the boundary outward to the domain.
We prescribe a polynomial temperature distribution given by eq. (3) for the upper

surface of the calibrator which depends on the variable x1.Real values a1, a2, a3, a4, a5
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and a6 are the polynomial coefficients and will be set experimentaly using thermocouples
embedded in the calibrator block

Tsup “ a1x
5
1 ` a2x

4
1 ` a3x

3
1 ` a4x

2
1 ` a5x1 ` a6 on Γsup (3)

Once the lateral calibrator sides, direct contact with the air, natural convection is as-
sumed and we have

´ kc
BTc

Bnc
“ hairpTc ´ Tairq on Γlat, (4)

where Tair is the temperature of the air in the room assumed to be constant and hair is
the convection heat transfer coefficient of the air.

As regards to the polymer, the bottom and the upper surfaces is also in direct contact
with the air and natural convection is assumed:

´ kp
BTp

Bnp
“ hairpTp ´ Tairq on Γair. (5)

The left boundary of the polymer, where it is feeded to the system, is defined by a
constant prescribed temperature, as

T “ Tin on Γin. (6)

Lastly, on the right side, the polymer flows out flux is prescribed by

kp
BTp

Bnp
“ gN on Γout. (7)

In our application we shall assume the adiabatic condition, gN “ 0.

3. Numerical scheme

To provide a generic expression for the discretization of the numerical scheme, we
consider the governing equation given by (1) on an open bounded polygonal domain Ω
of R2 with boundary Γ (we skip the index α for the sake of simplicity). We seek the
temperature distribution T ” T px1, x2q as a solution of the steady-state convection-
diffusion equation

∇ ¨ pV T ´ k∇T q “ f in Ω, (8)

where V T is the convective term with V “ CU , k∇T is the diffusive term and f is the
the source term. All the parameters in the equation were already described in section
2. Boundaries, Γc and Γp are partitioned into four subsets ΓD, ΓN, ΓR and Λ where we
prescribe different types of boundary conditions, namely:

• Dirichlet: T “ TD, on ΓD [Eq. (3) and (6)];

• Neumann: ´k∇T ¨ n “ gN, on ΓN [Eq. (7)];

• Transference (Robin): pV T ´ k∇T q ¨ n “ hpT ´ TRq, on ΓR [Eq. (4) and (5)].

• Interface: kc∇Tc ¨ nc “ ´kp∇Tp ¨ np “ hpTp ´ Tcq, on Λ [Eq. (2)]

where TD ” TDpx1, x2q, gN ” gNpx1, x2q, and TR ” TRpx1, x2q are given regular func-
tions.
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3.1. Mesh

We denote by T a mesh consisting of I non-overlapping convex polygonal cells ci,
i “ 1, . . . , I, and K vertices vk, k “ 1, . . . ,K. We highlight that T is constituted by two
sub-meshes Tc and Tp for the subdomains Ωc and Ωp, respectively and are conformed
with Λ such that if e̊ X Λ ‰ ∅ then e Ă Λ. We adopt the following conventions (see
Figure 3) we detail hereafter:

• the mesh Tc consists of Ic non-overlapping convex polygonal cells cic , ic “ 1, . . . , Ic,
and Kc vertices vkc , kc “ 1, . . . ,Kc;

• the mesh Tp consists of Ip non-overlapping convex polygonal cells cip , ip “ Ic `
1, . . . , Ic ` Ip, and Kp vertices vkp , kp “ Kc ` 1, . . . ,Kc `Kp;

• for any cell ci, Bci represents its boundary and |ci| its area; we denote by mi the
mass centre of ci;

• two cells ci and cj share a common edge eij whose length is |eij | and the midpoint
is mij ; nij is the unit normal vector to eij outward to ci, i.e. nij “ ´nji; if an
edge of ci belongs to the boundary Γ, we replace the index j by D, N, R, or Λ if
eij belongs to ΓD, ΓN, ΓR, or Λ, respectively;

• for any cell ci belonging to Ωc or Ωp we associate the index set νpicq Ă t1, . . . , IcuY
tD,N,R,Λu or νpipq Ă tIc ` 1, . . . , Ic ` Ipu Y tD,N,R,Λu, respectively, such that
j P νpiq if eij is a common edge of ci and cj or with the boundary Γj if j “ tD,N,Ru
or with the interface Λ;

• for any vertex vk belonging to Ωc or Ωp we associate the index set µpkcq Ă

t1, . . . , Icu or µpkpq Ă tIc ` 1, . . . , Ic ` Ipu, respectively, such that i P µpkq if
vk is a vertex belonging to the cell ci.

Remark 3.1. If vk is a vertex at the intersection of ΓD and ΓN, ΓD and ΓR, or ΓD and
Λ, we assume that vk belongs to ΓD and will be treated as a Dirichlet point.

Remark 3.2. On the interface Λ, each node considers two vertices, vkc and vkp , which
share the same position but they are evaluated separately.

3.2. Generic finite volume scheme

To provide the finite volume scheme, equation (8) is integrated over cell ci
ż

ci

∇ ¨ pV T ´ k∇T qdx “
ż

ci

fdx, (9)

and applying the divergence theorem we get an integral over the surface

ż

Bci

pV T ´ k∇T q ¨ nds “

ż

ci

fdx, (10)

and, then,
ÿ

jPνpiq

ż

eij

pV ¨ nijT ´ k∇T ¨ nijqds´

ż

ci

fdx “ 0. (11)
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Figure 3: Mesh notation.

The numerical integration of equation (11), based on a quadrature method, introduces
consistancy second-order errors and provides the following approximation

ÿ

jPνpiq

|eij | pV pmijq ¨ nijT pmijq ´ kpmijq∇T pmijq ¨ nijq ´ |ci|fi « 0. (12)

Let Ti be an approximation of T at mi. We gather all the approximations in two
vectors Tc “ pTiqi“1,...,Ic and Tp “ pTiqi“Ic`1,...,Ic`Ip and also consider the global vector
T “ pTc,Tpq

T . On the other hand, we define the residual as a function of the vector T

Gi “
ÿ

jPνpiq

|eij |Fij ´ |ci|fi, (13)

where Fij is an approximation of the convective and diffusive fluxes through the edge eij
presented in equation (12), and fi “ fpmiq is a second-order approximation of the mean
value of f over ci.

3.3. Vertices interpolation

One of the keys of the method is the computation of diffusive flux across the edges.
To this end, we use both approximations at the cell points and at the vertices to provide
a good approximation of the temperature gradient. Since the unknowns are only located
in the cells, we have to introduce a mechanism linking the cell values with the vertex
values and provides an accurate evaluation of the vertices temperature based on the
cells temperature. Let θkc and θkp be an approximation of T at vertex vkc and vkp ,
respectively, and let us gather all the approximations in two vectors Θc “ pθkcqkc“1,...,Kc

and Θp “ pθkpqkp“Kc`1,...,Kc`Kp
while Θ “ pΘc,Θpq

T stands for the global vector.
We introduce the generic linear mapping T Ñ ΘpTq

θk “
ÿ

iPµpkq

βkiTi (14)
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where βki are the interpolation coefficients for vertex k and we recall that µpkq is the
index set of the cells having the vertex vk. For vk P Λ, one has to considertwo different
temperatures, θkc and θkp , whether the temperature is associated to the calibrator or to
the polymer. Two different stencils for the same location are introduced to estimate the
temperature where we use the node vkc for the informations belonging to Ωc, and the
node vkp for the informations coming from Ωp (see Figure 4).

vkc b
vkp

b
b

b

b

b

b

mic

mip

b bb

Ωc

Ωp

Figure 4: Schematic representation of the stencil used to interpolate the temperature at vertex on Λ, for
point in the calibrator (blue) and in the polymer (red).

Consistency of the mapping with linear functions implies that coefficients βki have to
fulfill the following restrictions

ÿ

iPµpkq

βki “ 1, (15)

ÿ

iPµpkq

βkimi “ vk, (16)

except the case when the vertex vk belongs to a boundary where the temperature is
prescribed (Dirichlet condition)

θk “ TDpvkq on ΓD. (17)

For the Neumann condition, vertex interpolation can be preformed in two way; we intro-
duce ghost cells where the temperature is evaluated using the Neumann condition; or we
consider a stencil for the interpolation gathering cells around the the vertex. We refer to
[2] for further details of the method.

3.4. Polynomial reconstructions

Based on the data stored in the two vectors T and Θ, we carry out the computation
of several linear functions for the flux evaluations. For each cell ci (resp.edge eij), we
associate an index set Si (resp. Sij) of verticesand we consider linear functions on the
cells and edges based on the information of vectors T and the Θ associated to the
appropriated stencils.
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3.4.1. Polynomial reconstructions in the cells

For each cell ci we define the affine function

Tipx1, x2q “ Ti ` Ci,1 px1 ´mi,1q ` Ci,2 px2 ´mi,2q , (18)

where Ci,1 and Ci,2 are the coefficients to be determined. For a given stencil Si we consider
the quadratic functional

rEipCi,1, Ci,2q “
ÿ

kPSi

pTipvkq ´ θkq
2

(19)

and we denote by rCi,1 and rCi,2 the unique coefficients that minimize the quadratic func-

tional (19) with rTipx1, x2q the associated polynomial function which corresponds to the
best approximation in the least squares sense of the data of the stencil.

3.4.2. Polynomial reconstructions at inner edges and dirichlet boundary

For a given inner edge eij , we must define two different polynomials, one with infor-
mation of ci, and another with cj . The polynomial of degree 1 is given by

Tijpx1, x2q “ Ti ` Cij,1px1 ´mi,1q ` Cij,2px2 ´mi,2q, (20)

where Cij,1 and Cij,2 are the coefficients to be determined. We denote by rCij,1 and rCij,2 the

unique coefficients such that the associated polynomial function rTijpx1, x2q interpolates
Ti, defined at mi, and θk, defined at vk, k P Sij . Notice that we also define the polynomial
rTjipx1, x2q using the reference cell point mj and the associated value Tj . For an edge

eiD Ă ΓD, we proceed in the same way to provide polynomial rTiDpx1, x2q.

3.5. Second-order scheme

Based on local affine reconstruction for T based on vectors T and Θ we compute the
numerical approximations Fij we detail in the following subsections.

3.5.1. Numerical fluxes

For an inner edge eij , there are two different polynomials rTij and rTji and define the
resultant polynomial

qTij “ qTji “ σij rTij ` σji rTji, (21)

where σij “
|ci|

|ci|`|cj |
and σji “

|cj |
|ci|`|cj |

. Notice that interface corresponding to discon-

tinuous diffusion coefficients or discontinuous function requires a specific reconstruction.
Therefore, five situations are identified:

• for an inner edge eij , the numerical flux at the midpoint mij writes

Fij “ rV pmijq ¨ nijs
`
rTipmijq ` rV pmijq ¨ nijs

´
rTjpmijq ´ kpmijq∇ qTijpmijq ¨ nij ;

• for a Dirichlet boundary edge eiD, the numerical flux at the midpoint miD writes

FiD “ rV pmiDq ¨ niDs
`
rTipmiDq`rV pmiDq ¨ niDs

´
TDpmiDq´kpmiDq∇ rTiDpmiDq¨niD;
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• for a Neumann boundary edge eiN, the numerical flux at the midpoint miN writes

FiP “ V pmiNq ¨ niN rTipmiNq ` gNpmiNq;

• for a transference (Robin) boundary edge eiR, the numerical flux at the midpoint
miR writes

FiR “ h
´

rTipmiRq ´ TRpmiRq

¯

;

• for an interface edge e we have to distinguish two cases regarding to the side where
the flux come from. If we consider the calibrator side such e “ eicΛ, the numerical
flux at the midpoint micΛ writes

FicΛ “ h
´

rTicpmicΛq ´ rTippmipΛq

¯

;

and, for the polymer side, a similar expression can be derived;

with the notations rΦs` “ maxp0,Φq and rΦs´ “ minp0,Φq, Φ P R.

3.5.2. Residual scheme

Since Fij , and fi linearly depend on vector T, we define the affine operator T Ñ GipTq
for each cell ci, i “ 1, . . . , I, as

GipTq “
ÿ

jPνpiq

|eij |FijpTq ´ |ci|fi. (22)

Gathering all the components GipTq of the residual in vector GpTq, we seek the solution
vector T‹ such that GpT‹q “ 0I . We obtain a matrix-free scheme and the affine problem
is solved by applying a GMRES procedure as explained in [5].

4. Numerical tests

In this section, there will be presented several numerical tests from manufactured
solutions in order to assess the robustness and accuracy of the implemented numerical
scheme. Firstly, smooth solutions were tested for pure diffusion and convection-diffusion
problems with low and high Péclet number, and different types of boundary conditions.
Heat transfer problems with discontinuous diffusion coefficients is then tackled in the
context of convection-diffusion problem. On the other hand, preconditioning the operator
G is of paramount importance, since it provokes the decreasing of computational effort,
and, in some cases, enabling the convergence of the method. Taking into account that we
use a matrix-free scheme, the idea is to consider a simple approximated matrix that we
will use to design the preconditioning matrix. In this sense, it was used the Patankar-like
matrix which is discussed in [5].

To measure the accuracy of the obtained solution for a single mesh, two error esti-
mators are introduced

E1pT q “
I
ÿ

i“1

|ci||T
‹
i ´ Ti|

|Ω|
, E8pT q “

I
max
i“1

|T ‹i ´ Ti|.
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The first norm gives the average evaluation of the error in all the domain, while the second
norm indicates the highest local error. These error estimators can also be applied to the
values interpolated on the vertices of the mesh. To study the convergence order, there are
considered successive finer unstructured triangular Delaunay meshes. The convergence
order between two different meshes T1 and T2 with I1 and I2 cells, respectively, is also
analyzed recurring to the following expression

OpT1, T2q “ 2
| logp|EpT1q{EpT2qq

| logpI1{I2q|
. (23)

4.1. Smooth solutions case

4.1.1. Pure diffusive problems with Dirichlet boundary conditions

We consider pure diffusive problem in the unit square with homogeneous Dirichlet
boundary conditions where diffusion coefficient is set to k “ 1. Figure 5 presents the
normalized solution T px, yq “ sinp2πxq sinp2πyq solution of the diffusion problem with
the right-hand side fpx, yq “ 8π2 sinp2πxq sinp2πyq. Table 1 shows the errors and order of
convergences. Second-order is achieved and the preconditioning matrix has no influence
in the accuracy of the results but significantly affect the computational time.

Figure 5: Representation of T px, yq “ sinp2πxq sinp2πyq

We now perform tests on a smooth solution with nonhomogeneous Dirichlet boundary
condition. Function T px, yq “ cosp2πxq cosp2πyq is the solution of the diffusion problem
with the right-hand side fpx, yq “ 8π2 cosp2πxq cosp2πyq displayed in Figure 6. Table 2
reports that we get a second-order of convergence in the non-homogeneous case.
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Table 1: Errors and convergence rates for T px, yq “ sinp2πxq sinp2πyq with Dirichlet condition for all
the boundary

I Iter Time [s]
Cells Vertices
E1 O1 E8 O8 E1 O1 E8 O8

Id

1054 102 0.38 1.53e-03 NA 6.04e-03 NA 5.10e-03 NA 1.87e-02 NA
4262 190 3.24 4.25e-04 1.84 2.10e-03 1.51 1.21e-03 2.06 4.43e-03 2.06
16778 352 29.19 1.15e-04 1.91 5.36e-04 1.99 3.06e-04 2.01 1.25e-03 1.85
67862 650 344.59 2.79e-05 2.02 1.44e-04 1.88 7.61e-05 1.99 3.28e-04 1.92

Pat

1054 47 0.18 1.53e-03 NA 6.04e-03 NA 5.10e-03 NA 1.87e-02 NA
4262 92 1.54 4.25e-04 1.84 2.10e-03 1.51 1.21e-03 2.06 4.43e-03 2.06
16778 181 14.47 1.15e-04 1.91 5.37e-04 1.99 3.06e-04 2.01 1.25e-03 1.84
67862 356 139.73 2.79e-05 2.02 1.44e-04 1.88 7.61e-05 1.99 3.28e-04 1.92

Figure 6: Representation of T px, yq “ cosp2πxq cosp2πyq

4.1.2. Pure Diffusive Problems with Neumann Boundary Conditions

In the present test, we prescribe Dirichlet boundary conditions for the upper and lower
borders while Neumann boundary conditions are given on the lateral edges. Two different
methods to evaluate the temparature at the node corresponding to a Neumann condition
are assessed: with or without ghost cells; the first one including the information of the
Neumann condition. Tables 4 and 3 present the results with and without ghost cells,
respectively and observe that the introduction of ghost cells for the Neumann vertices
interpolation has little influence in the accuracy of the approximations.

In the previous case, the results for a homogeneous Dirichlet condition were presented,
while the following results express the case nonhomogeneous Dirichlet condition. For the
solution presented in Fig. 6, Neumann boundary conditions were considered and the

11



Table 2: Errors and convergence rates for T px, yq “ cosp2πxq cosp2πyq with Dirichlet condition for all
the boundary

I Iter Time [s]
Cells Vertices
E1 O1 E8 O8 E1 O1 E8 O8

Id

1054 106 0.38 3.76e-03 NA 1.01e-02 NA 6.52e-03 NA 1.98e-02 NA
4262 196 3.32 9.89e-04 1.91 2.71e-03 1.89 1.81e-03 1.83 6.91e-03 1.51
16778 308 24.57 2.62e-04 1.94 8.18e-04 1.75 4.87e-04 1.92 1.85e-03 1.92
67862 601 270.22 5.98e-05 2.12 2.01e-04 2.01 1.19e-04 2.02 4.86e-04 1.91

Pat

1054 59 0.21 3.76e-03 NA 1.01e-02 NA 6.52e-03 NA 1.98e-02 NA
4262 111 1.80 9.89e-04 1.91 2.71e-03 1.89 1.81e-03 1.83 6.91e-03 1.51
16778 218 16.70 2.62e-04 1.94 8.18e-04 1.75 4.87e-04 1.92 1.85e-03 1.92
67862 394 153.50 5.98e-05 2.12 2.02e-04 2.00 1.19e-04 2.02 4.86e-04 1.91

Table 3: Errors and convergence rates for T px, yq “ sinp2πxq sinp2πyq with Neumann boundary condi-
tions for the lateral boundary (without ghost cells)

I Iter Time [s]
Cells Vertices
E1 O1 E8 O8 E1 O1 E8 O8

Id

1054 161 0.61 1.67e-03 NA 6.45e-03 NA 5.16e-03 NA 1.90e-02 NA
4260 298 5.86 4.16e-04 1.99 2.08e-03 1.62 1.24e-03 2.04 4.45e-03 2.08
16806 555 61.39 1.20e-04 1.81 5.21e-04 2.02 3.01e-04 2.06 1.24e-03 1.86
67814 834 464.16 2.82e-05 2.08 1.49e-04 1.80 7.60e-05 1.98 3.37e-04 1.87

Pat

1054 87 0.33 1.67e-03 NA 6.45e-03 NA 5.16e-03 NA 1.90e-02 NA
4260 171 3.16 4.16e-04 1.99 2.08e-03 1.62 1.24e-03 2.04 4.45e-03 2.08
16806 329 28.53 1.20e-04 1.81 5.21e-04 2.02 3.01e-04 2.06 1.24e-03 1.86
67814 654 372.37 2.82e-05 2.08 1.49e-04 1.79 7.60e-05 1.98 3.37e-04 1.87

Table 4: Errors and convergence rates for T px, yq “ sinp2πxq sinp2πyq with Neumann boundary condi-
tions for the lateral boundary (with ghost cells)

I Iter Time [s]
Cells Vertices
E1 O1 E8 O8 E1 O1 E8 O8

Id

1054 160 0.67 1.62e-03 NA 6.38e-03 NA 5.13e-03 NA 1.91e-02 NA
4260 299 5.77 4.14e-04 1.95 2.08e-03 1.61 1.23e-03 2.04 4.45e-03 2.08
16806 522 58.03 1.16e-04 1.85 5.16e-04 2.03 3.04e-04 2.04 1.25e-03 1.85
67814 870 488.05 2.78e-05 2.05 1.48e-04 1.79 7.62e-05 1.98 3.38e-04 1.87

Pat

1054 87 0.40 1.62e-03 NA 6.38e-03 NA 5.13e-03 NA 1.91e-02 NA
4260 171 3.82 4.14e-04 1.95 2.08e-03 1.61 1.23e-03 2.04 4.45e-03 2.08
16806 329 38.06 1.16e-04 1.85 5.16e-04 2.03 3.04e-04 2.04 1.25e-03 1.85
67814 653 390.36 2.78e-05 2.05 1.49e-04 1.78 7.62e-05 1.98 3.38e-04 1.87

errors and convergence rates are displayed in Tables 5 and 6 without and with the
using of ghost cells for vertex interpolation, respectively. These results show that using
ghost cells we are able to eliminate a local higher error for the vertices which affect the
convergence of E8. It should be referred that the using preconditioning matrix implies
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an higher computational effort unlike the previous examples.

Table 5: Errors and convergence rates for T px, yq “ cosp2πxq cosp2πyq with Neumann boundary condi-
tions for the lateral boundary (without ghost cells)

I Iter Time [s]
Cells Vertices
E1 O1 E8 O8 E1 O1 E8 O8

Id

1054 142 0.53 2.43e-03 NA 1.00e-02 NA 5.77e-03 NA 2.11e-02 NA
4260 254 4.54 6.67e-04 1.85 2.44e-03 2.03 1.55e-03 1.88 6.73e-03 1.64
16806 274 22.20 1.69e-04 2.00 6.74e-04 1.87 4.02e-04 1.97 3.37e-03 1.01
67814 388 181.55 4.13e-05 2.02 1.78e-04 1.91 1.00e-04 1.99 9.72e-04 1.78

Pat

1054 87 0.43 2.43e-03 NA 1.00e-02 NA 5.77e-03 NA 2.11e-02 NA
4260 162 3.83 6.67e-04 1.85 2.44e-03 2.02 1.55e-03 1.88 6.73e-03 1.64
16806 302 32.57 1.69e-04 2.00 6.74e-04 1.87 4.02e-04 1.97 3.37e-03 1.01
67814 564 338.78 4.15e-05 2.01 1.79e-04 1.91 1.00e-04 1.99 9.67e-04 1.79

Table 6: Errors and convergence rates for T px, yq “ cosp2πxq cosp2πyq with Neumann boundary condi-
tions for the lateral boundary (with ghost cells)

I Iter Time [s]
Cells Vertices
E1 O1 E8 O8 E1 O1 E8 O8

Id

1054 142 0.57 2.37e-03 NA 1.00e-02 NA 5.81e-03 NA 2.41e-02 NA
4260 253 4.73 6.66e-04 1.82 2.44e-03 2.03 1.56e-03 1.89 6.73e-03 1.83
16806 265 21.59 1.69e-04 2.00 6.74e-04 1.87 4.02e-04 1.97 1.84e-03 1.89
67814 386 152.54 4.13e-05 2.02 1.78e-04 1.91 1.00e-04 1.99 5.00e-04 1.87

Pat

1054 87 0.46 2.37e-03 NA 1.00e-02 NA 5.81e-03 NA 2.41e-02 NA
4260 162 3.84 6.66e-04 1.82 2.44e-03 2.03 1.56e-03 1.89 6.73e-03 1.83
16806 302 32.63 1.69e-04 2.00 6.74e-04 1.87 4.02e-04 1.97 1.84e-03 1.89
67814 564 333.25 4.14e-05 2.01 1.79e-04 1.91 1.00e-04 1.99 5.00e-04 1.87

4.1.3. Convection-Diffusion Problem

We now deal with the full convection diffusion process and assess the capability of
the scheme to compute an accurate solution for low and large Péclet numbers. Assuming
constant diffusion coefficient k “ 1 and velocity V “ pu, vq, we consider a solution of the
form T px, yq “ Cαpxqβpyq, C P R and

αpxq “
1

u

ˆ

x´
eux ´ 1

eu ´ 1

˙

, βpyq “
1

v

ˆ

y ´
evy ´ 1

ev ´ 1

˙

with homogeneous Dirichlet boundary condition while the source term writes fpx, yq “
C pαpxq ` βpyqq.

We take V “ p3, 3q for the low Péclet number case, and V “ p10, 10q for the large
Péclet number case and C is calculated in such a way that the solution is normalized,
that is C “ 80 for low Péclet (Figure 7), and C “ 223 for large Péclet (Figure 8).

Tables 7 and 8 give the errors and convergence rates for the low and large Péclet,
respectively. Second-order of convergence for different Péclet numbers is obtained. No
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oscilations are reported while the maximum principle is preserved, i.e. the solution ranges
between 0 and 1, which highlight the robustness of the method.

Figure 7: Representation of low Péclet function

Figure 8: Representation of large Péclet function
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Table 7: Errors and convergence rates for low Péclet number case

I Iter Time [s]
Cells Vertices
E1 O1 E8 O8 E1 O1 E8 O8

Id

1054 131 0.59 5.30e-04 NA 3.82e-03 NA 1.93e-03 NA 6.62e-03 NA
4262 261 5.23 1.43e-04 1.88 1.14e-03 1.73 4.65e-04 2.03 1.53e-03 2.10
16778 485 48.70 3.69e-05 1.98 3.19e-04 1.86 1.18e-04 2.00 4.18e-04 1.89
67862 1116 701.17 9.27e-06 1.98 8.83e-05 1.84 2.90e-05 2.01 1.10e-04 1.91

Pat

1054 62 0.28 5.30e-04 NA 3.82e-03 NA 1.93e-03 NA 6.62e-03 NA
4262 127 2.96 1.43e-04 1.88 1.14e-03 1.73 4.65e-04 2.03 1.53e-03 2.10
16778 255 28.41 3.69e-05 1.98 3.19e-04 1.86 1.18e-04 2.00 4.18e-04 1.89
67862 509 286.67 9.27e-06 1.98 8.83e-05 1.84 2.90e-05 2.01 1.10e-04 1.91

Table 8: Errors and convergence rates for large Péclet number case

I Iter Time [s]
Cells Vertices
E1 O1 E8 O8 E1 O1 E8 O8

Id

1054 121 0.55 3.65e-04 NA 4.79e-03 NA 1.14e-03 NA 9.61e-03 NA
4262 237 4.87 1.03e-04 1.81 1.61e-03 1.56 2.98e-04 1.92 2.53e-03 1.91
16778 454 45.71 2.91e-05 1.85 4.91e-04 1.73 8.11e-05 1.90 6.86e-04 1.90
67862 1024 640.49 7.64e-06 1.91 1.36e-04 1.83 2.06e-05 1.96 1.99e-04 1.77

Pat

1054 59 0.26 3.65e-04 NA 4.79e-03 NA 1.14e-03 NA 9.61e-03 NA
4262 115 2.28 1.03e-04 1.81 1.61e-03 1.56 2.98e-04 1.92 2.53e-03 1.91
16778 229 20.00 2.91e-05 1.85 4.91e-04 1.73 8.11e-05 1.90 6.86e-04 1.90
67862 448 227.00 7.64e-06 1.91 1.36e-04 1.83 2.06e-05 1.96 1.99e-04 1.77

4.2. Study of Problems with Interface Discontinuity

The section is dedicated to the critical part of the problem. Discontinuities of material
property or discontinuity of the solution require a specific treatment to preserve the
optimal order. Such a point in crucial since a degradation of the flux evaluation across
the interface Γ leads to a rough evaluation of the heat transfer. We present several
numerical tests to prove that the new technique correctly handle such discontinuities
and provide accurate approximations.

4.2.1. Pure Diffusive Case

We consider two domains Ω1 “s0, 1rˆs0,
1
2 r and Ω2 “s0, 1rˆs

1
2 , 1r which share a

common interface Λ “s0, 1rˆt 1
2u where a linear heat transfer condition is prescribed

k1∇T1 ¨ nΛ “ k2∇T2 ¨ nΛ “ hpT2 ´ T1q (24)

with k1 and k2 the constant diffusion coefficients. We first tackle the case where the
convective contribution is null for both domains. Adiabatic condition k∇T ¨ n “ 0 is
assumed on the lateral side while we set constant Dirichlet conditions T “ T1 on y “ 0
and T “ T2 on y “ 1. The exact solution is constituted of two functions,

T1px, yq “
A

k1

ˆ

1

π

˙2

sinpπyq`
a

k1
y`T1, T2px, yq “

A

k2

ˆ

1

π

˙2

sinpπyq`
a

k2
py´1q`T2,
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with

a “
h

1` h
2k1

` h
2k2

˜

A

ˆ

1

π

˙2 ˆ
1

k2
´

1

k1

˙

` T2 ´ T1

¸

with A a free parameter associated to the source term fpx, yq “ A sinpπyq.
The simulations of this problem were carried out with A “ 10, k1 “ 1, k2 “ 0.1,

T1 “ 1, T2 “ 10 and h “ 1 while the solution is displayed in Figure 9. The errors
and convergence rates are presented in Tables 9 and 10 for reconstruction of Neumann
vertices without or with recurring to ghost cells, respectively. It should be highlighted
the paramount importance of using a preconditioning matrix in this case. Beyond it
decreases the computational time, it enables the convergence of some solutions. The
main difference of using ghost cells for vertex reconstruction is recovering second-order
of convergence for the error E8 at the vertices. Thus, the scheme showed an effective
second order of convergence for the presented problem.

Figure 9: Solution for pure diffusive problem with discontinuous coefficients

4.2.2. Convection-Diffusion

We considered a problem where both velocity and diffusion coefficient are discontin-
uous across the interface Λ. where the continuity of normal velocity is required for sake
of conservativeness. In the present test, null velocity is set in domain Ω2, and a constant
velocity V1 “ pu, 0q is used in domain Ω1. The exact solution is given by

T1px, yq “ A1e
u
k1
xy`a1y`T1, T2px, yq “ e

u
k1
xy

“

A2py ´ 1q `B2py ´ 1q2
‰

`a2py´1q`T2.

Conservation of the flux at the interface yields

k1A1 “ k2A2 ´ k2B2, k1a1 “ k2a2,
16



Table 9: Errors and convergence rates for pure diffusive problem with discontinuous coefficients (without
ghost cells)

I Iter Time [s]
Cells Vertices
E1 O1 E8 O8 E1 O1 E8 O8

Id

1014 318 4.68 6.83e-03 NA 2.80e-02 NA 1.23e-02 NA 7.01e-02 NA
4126 572 34.92 1.24e-03 2.43 6.58e-03 2.07 2.72e-03 2.15 2.14e-02 1.69
17020 866 226.49 3.30e-04 1.87 1.82e-03 1.81 6.88e-04 1.94 1.14e-02 0.88
67620 4002 4617.96 1.62e+00 12.32 3.92e+00 11.13 1.62e+00 11.26 3.92e+00 8.47

Pat

1014 92 0.96 6.83e-03 NA 2.80e-02 NA 1.23e-02 NA 7.01e-02 NA
4126 169 7.22 1.24e-03 2.43 6.58e-03 2.07 2.72e-03 2.15 2.14e-02 1.69
17020 306 57.57 3.29e-04 1.88 1.81e-03 1.83 6.87e-04 1.94 1.14e-02 0.89
67620 526 526.70 8.55e-05 1.95 5.08e-04 1.84 1.79e-04 1.95 2.85e-03 2.01

Table 10: Errors and convergence rates for pure diffusive problem with discontinuous coefficients (with
ghost cells)

I Iter Time [s]
Cells Vertices
E1 O1 E8 O8 E1 O1 E8 O8

Id

1014 319 4.07 6.99e-03 NA 2.81e-02 NA 1.20e-02 NA 5.38e-02 NA
4126 569 28.08 1.28e-03 2.42 6.60e-03 2.06 2.69e-03 2.13 1.29e-02 2.03
17020 878 196.36 3.27e-04 1.93 1.81e-03 1.83 6.76e-04 1.95 3.42e-03 1.87
67620 4002 4512.20 1.66e+00 12.37 4.03e+00 11.18 1.66e+00 11.31 4.03e+00 10.25

Pat

1014 93 1.06 6.99e-03 NA 2.81e-02 NA 1.20e-02 NA 5.38e-02 NA
4126 169 7.55 1.28e-03 2.42 6.60e-03 2.06 2.69e-03 2.13 1.29e-02 2.03
17020 306 58.91 3.27e-04 1.93 1.80e-03 1.84 6.77e-04 1.95 3.41e-03 1.88
67620 526 474.35 8.58e-05 1.94 5.08e-04 1.83 1.78e-04 1.93 1.02e-03 1.76

while the linear heat transfer condition (24) on Λ provides

4k1A1 “ h pB2 ´ 2 pA1 `A2qq , 2k1a1 “ h p2 pT2 ´ T1q ´ pa1 ` a2qq .

After some algebraic manipulation, we get

A2 “ ´A1

ˆ

2`
k1

k2
` 4

k1

h

˙

, B2 “
k2A2 ´ k1A1

k2
, a1 “

2pT2 ´ T1q

1` k1
k2
` 2k1h

, a2 “
k1

k2
a1,

where A1 is a free parameter which can be defined arbitrarily. From this exact solution,

we derive the source term f1px, yq “ 0 in Ω1 and f2px, yq “ ´k2e
u
k1
x

„

2B2 `

´

u
k1

¯2

py ´ 1qpA2 `B2py ´ 1qq



in Ω2. For sake of simplicity, it is used the exact solution as a Dirichlet condition on the
boundary.

On the following simulations, it was considered A1 “ 1, k1 “ 0.18, k2 “ 23, u “ 1,
T1 “ 1, T2 “ 10 and h “ 1. With these parameters, we obtain the solution presented in
Figure 10.

Table 11 shows that we obtain an effective second-order convergence. As in the
previous case, no oscillations are reported even in the vicinity of the Γ which demonstrates
the capability of the scheme to handle such discontinuities.
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Figure 10: Solution for convection-diffusion problem with discontinuous coefficients

Table 11: Errors and convergence rates for convection-diffusion problem with discontinuous coefficients

I Iter Time [s]
Cells Vertices
E1 O1 E8 O8 E1 O1 E8 O8

Id

1014 760 8.38 1.38e-01 NA 1.08e+00 NA 8.66e-02 NA 1.46e+00 NA
4126 1621 80.49 3.01e-02 2.17 3.28e-01 1.70 2.19e-02 1.96 1.69e+00 0.21
17026 4002 1063.93 2.20e+00 6.06 1.17e+01 5.05 2.19e+00 6.50 1.17e+01 2.73
67718 4001 4840.22 5.07e+00 1.21 4.20e+01 1.85 5.07e+00 1.21 4.19e+01 1.85

Pat

1014 73 1.00 1.38e-01 NA 1.08e+00 NA 8.65e-02 NA 1.46e+00 NA
4126 140 7.87 3.10e-02 2.13 3.28e-01 1.70 2.13e-02 2.00 1.69e+00 0.21
17026 264 64.59 7.37e-03 2.03 8.81e-02 1.85 4.91e-03 2.07 1.56e-01 3.37
67718 503 612.25 1.88e-03 1.98 2.22e-02 1.99 1.26e-03 1.97 4.41e-02 1.83

5. Application to the Polymer/Calibrator Heat Transfer

We consider a polymer ribbon cooling by a unique calibrator. Figure 11 displays
the quadrangular mesh geometry, and Np, Nc and Nh denotes the number of elements
on polymer and calibrator vertical direction and the number of elements on horizontal
direction on calibrator, respectively. The sizes of the model are defined according to
Figure 2 with Lin “ 0.17 m, Lc “ 0.3 m, Lout “ 0.13 m, tp “ 1.45 ˆ 10´3 m, and
tc “ 0.012 m.

Numerical simulations are carried out with kp “ 0.17 W/(m K), kc “ 123 W/(m K),
ρp “ 1040 kg/m3, cpp “ 2050 J/(kg K), Up “ p0.0175, 0q m/s, Uc “ p0, 0q, hair “ 50
W/(m2K), Tair “ 18˝C and Tin “ 229.5˝C. The temperature distribution on Γsup was
approximated by a polynomial based on the temperature measured on seven points with
thermocouples. The polynomial approximation is represented on Figure 12 along with
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Nh
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Np

Figure 11: Schematic mesh for the polymer/calibrator model.

the experimental data, and it is given by

Tsup “ 26399x5
1 ´ 29434x4

1 ` 11403x3
1 ´ 1848.9x2

1 ` 100.99x1 ` 39.581 on Γsup (25)

5.1. Mesh analysis

To obtain an accurate solution with a reduced computational time, one has to size
the mesh we require to obtain a satisfactory solution. To this end, several tests were
performed to check the sensibility of the approximation with respect to mesh. We assume
that h “ 500 W/(m2K) and we experiment different mesh parameters. To visualize
the impact of the mesh, we plot the temperature along the polymer ribbon since it
corresponds to the critical location where the heat transfer acts.
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Figure 12: Polynomial approximation of temperature on the calibrator

Figure 13 shows the influence of the number of elements on the horizontal direction.
All the curves present a small oscillation at the beginning and the ending of the contact
interface but the default is mitigated with the increasing in the number of elements.
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Figure 13: Comparison between meshes with different number of elements on the horizontal direction
(Nc “ 30 and Np “ 10)

We test the sensitivity with respect to the number of elements on the vertical direction
in the polymer. Figure 14 shows that with the increasing of number of elements the
solution converges to limit solution.
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Figure 14: Comparison between meshes with different number of elements on polymer vertical direction
(Nc “ 30 and Nh “ 100)

The influence of the number of elements on the vertical direction of the calibrator
was also analyzed, and the results are shown on Figure 15. We conclude that this last
parameter has a small influence on the temperature figure hence a coarse mesh can be
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used for the calibrator.
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Figure 15: Comparison between meshes with different number of elements on calibrator vertical direction
(Np “ 10 and Nh “ 100)

5.2. Optimization

In most of the application, the hint value is unknown and should be determined with
experimental data. To do so, we consider the function h Ñ Th where we substitute (2)
by

kc
BThc
Bnc

“ ´kp

BThp
Bnp

“ hpThp ´ T
h
c q. (26)

To compute an approximation of hint, the least squares method is carried out where the
optimal solution is found through the minimization of functional

F phq “
ÿ

`

1

2

“

Thp pq`q ´ Tp`

‰2
. (27)

Here, Thp pq`q is the temperature of the polymer on the point ` located in q` obtained
by the numerical simulation while Tp`

is the temperature of the polymer on the point `
measured experimentally.

The nonlinear problem is solved with the Newton-Raphson iterative method where
the condition dF

dh “ 0 should be verified. Hence the updated value for heat transfer
coefficient is calculated as it follows

hn`1 “ hn ´
F 1phnq

F 2phnq
, (28)

using the following approximations for the first and second derivatives

F 1phnq «
F phn ` εq ´ F phn ´ εq

2ε
, F 2phnq «

F phn ` εq ` F phn ´ εq ´ 2F phnq

ε2
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with ε ą 0 a parameter adjusted according to the simulation.
A determination of the heat transfer coefficient has been performed using the tem-

perature measured on the polymer surface after the contact interface.
The Newton-Raphson method converges in few steps and gives h “ 390.5 W/(m2K)

while temparature of at the upper side of the ribbon is presented on Figure 16.

0 0.1 0.2 0.3 0.4 0.5 0.6

50

100

150

200

Position [m]

T
em

p
er

a
tu

re
[˝

C
]

Numeric
Experimental

Figure 16: Comparison between numeric and experimental data (h “ 390.5 W/(m2K))

In table 12, there are presented the temperature measured experimentally which
were the input data in the optimization process, and the temperature calculated from
the numeric approximation in the same places. From its analysis, we can conclude that
the approximation reveals a good fit since the difference between both temperatures is
relatively small.

Table 12: Comparison between the temperature from experimental measurements and the numeric
approximation.

Coordinate [m] Experimental [˝C] Numeric [˝C] Error [%]
0.485 58.53 58.69 0.27
0.527 59.75 59.57 0.30

5.3. Parameters Sensibility

The presented results are directly related to the input data for the simulation which
has a certain error associated. Bearing that in mind, there is of paramount importance
to analyze the sensibility of results to the variation of some input data.

The analyzed parameters were divided into two groups, namely, the parameters that
have a direct influence on the energy of the system, as the velocity of the polymer and
input temperature, u and Tin, respectively. The remaining parameters are the convection
heat transfer coefficient of the air and the room temperature, hair and Tair, respectively.
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5.3.1. Direct Parameters

The influence of small variations of velocity and input temperature on the results for
heat transfer coefficient are displayed in Figures 17 and 18. We can see that the velocity
of the polymer has a huge influence on the heat transfer coefficient but its dependence
is nonlinear. Although, the input temperature seems to have a linear impact.
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Figure 17: Sensibility of h to u
´

dh
du
“ 6.18ˆ 104

¯

5.3.2. Indirect Parameters

There were also tested the convection heat transfer coefficient of the air and the room
temperature. In equations (4) and (5), we considered the same convection coefficient for
the heat transfer with calibrator and with the polymer. However, for this analysis, there
are considered two different coefficients, namely hair,c and hair,p.

From the analysis of Figures 19 and 20, we can see that the convection coefficient for
the calibrator has almost no influence in the results. In contrast to that, the convection
coefficient for the polymer produces significant variations on the heat transfer coefficient.

The room temperature influence in the heat transfer coefficient is shown in Figure
21. This parameter present a linear relation and significant impact in the results.

6. Conclusion

We have presented a new second-order finite volume method for discontinuous so-
lution and discontinuous material properties. The scheme is based in a cell-to-vertex
reconstruction, being the vertex values computed via linear combinations of the closest
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cell values where the coefficients are determined by a functional minimization. The ob-
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tained results demonstrates the robustness and effectiveness of the procedure. Based on
the solver, an optimization algorithm has been developed to compute the heat transfer
coefficient at the interface between the calibrator and the polymer. Influence of the input
data such as the velocity, the energy transfer to air or the environmental temperature
has been assessed very accurately to highlight the most impactful parameter.
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