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THE MODAL SUBSTRUCTURING METHOD: AN
EFFICIENT TECHNIQUE FOR LARGE-SIZE
NUMERICAL SIMULATIONS

P. O. Laffay, O. Quéméner, A. Neveu, and B. Elhajjar
Laboratoire de Mécanique et d’Energétique d’Evry, Courcouronnes,
Evry Cédex, France

This article presents an extension of the branch Eigenmodes reduction method (BERM) to

substructuring models. One of the method’s interests lies in its capacity to build a reduced

modal model for complex geometries which are characterized by very large matrix sizes.

This article treats a 3-D nonlinear application. Such a substructuring reduced model permits

us to obtain precise results over the whole domain, with an important gain of CPU time. In

the case considered, a global reduced branch model can also be built. A comparison between

the two reduced models shows the interest of the substructuring technique.

1. INTRODUCTION

This work concerns modal reduction methods for thermal conduction
problems, which permits us to decrease the CPU time significantly but with good
precision over the whole simulated domain. Among the different techniques, such
as the classical thermal modes computation [1, 2], the modal identification Method
(MIM) [3, 4], and proper orthogonal decomposition (POD) [5, 6], a recent one is the
branch eigenmodes reduction method (BERM), which uses particular eigenmodes
called branch modes [7–9]. The origin of the branch modes is that the branch eigen-
values problem uses an unusual boundary condition that depends on the eigenvalue,
therefore the branch modes possess the distinctive feature of forming a basis for
nonlinear thermal problems in the domain and on the boundary. The projection
of a thermal problem on a reduced basis resulting from such branch eigenmodes
yields a reduced problem called the state model, where the unknowns are the
excitation states of the modes. Since the modal superposition technique is inherently
linear, the difficulty of the nonlinearity is treated in the state equations, via a
nonlinear coupling between the excitation states of the modes. Solving this system
permits rebuilding the thermal field over the whole domain.

Although it is successful, there are some limitations to this method. One limi-
tation is in obtaining the branch basis, because this calculation is made on the whole
domain; in the case of a very complex mesh corresponding to a realistically physical
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problem, the order of the discretized model is important, and the memory
requirements can exceed the machine’s capacity. Thus, in the case for which this
method is particularly justified, it is difficult to use it!

For such configurations, we propose using a substructuring method, in which
the domain is separated into several adjacent subdomains, and where a set of eigen-
modes is computed for each subdomain. We obtain different states models which are
linked to each other by internal boundary conditions, and which can be solved
before rebuilding the thermal field.

Initially developed for mechanical problems [10–12], analogous techniques have
been used for numerical thermal problems [13]. Concerning themodal reduction meth-
ods, the substructuring technique has also been tested: The MIM method [14], for
which the modal formulation is used without eigenvectors computation, uses the sub-
structuring technique to link the MIM formulation with another model. For methods
for which eigenvectors are computed, some articles use a classical thermal basis limited
to linear problems: El Biyaali [15] proposes a numerical approach corresponding to a
new diagonalization of the coupling system. Another technique is modal synthesis
[16], in which specific coupling modes are added to each local basis, yielding a new
basis in the full domain. This work uses a temperature jump and flux jump function
to control these jumps on the internal boundaries between the different subdomains.

Concerning the BERM method, a first use of the substructuring technique was
made to resolve a problem with a thermal contact resistance [17]. Indeed, in a such
configuration, a substructuring model is the only way to use a reduced model. The
application was constituted of two subdomains in a 2-D configuration. The size of
the different matrices obtained after spatial discretization was not very important.
The substructuring method’s principle leads to a double value of temperature on the
internal boundaries between the different subdomains. Thus a temperature jump func-
tion appears for which the weight coefficient is naturally linked to the thermal contact
resistance of the treated application. In this configuration the modal substructuring
technique allows one to obtain an important gain of CPU time, with precise results.

Nevertheless, this method has never been used for a more classical problem in
which there is no thermal contact resistance, but where the size of the discretized
geometry is large. For such configurations, several questions have to be asked:

1. Is it possible to use this method for a problem without thermal contact resistance?
2. How then is one to choose the parameters of the temperature jump?

NOMENCLATURE

c volumic capacity

h convective exchange coefficient

k thermal conductivity

TCR thermal contact resistance

T(M, t) temperature field

V(M) branch eigenmode

x excitation state

z eigenvalue

emax maximum error

emean averaged in space error

f Steklov number

u surface heat flux

p volume heat source

s time constant

Superscript

� reduced notation

� substructuring reduced notation
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3. When it is possible to compute a branch basis on the whole domain, and then use
the classical global BERM method, is the substructuring method more efficient?

These are the questions we propose to answer in this article. After a first
part, in which we review the technique used, a second part presents a 3-D nonlinear
application, constituted of three subdomains, without thermal contact resistance.

2. REVIEW OF THE BERM METHOD

We consider a classical conduction problem on the domain X, receiving a
volume flux p and characterized by the thermal conductivity k and the volume
capacity c. This domain is defined by two external boundaries: Ca, which is
adiabatic, and Ce, characterized by a convective condition (exchange coefficient h
and ambient temperature Te). All the parameters can be functions of temperature
and are time-dependent. The equations are the following:

8M 2 X c
qT
qt

¼ divðk ~rrTÞ þ p ð1Þ

8M 2 Ce k ~rrT �~nn ¼ hðTe � TÞ ð2Þ

8M 2 Ca ~rrT �~nn ¼ 0 ð3Þ

8M 2 X; t ¼ 0 T ¼ Te ð4Þ

The usual weak formulation of such a problem is, with f the test function,Z
X

c
qT
qt

f qX ¼ �
Z
X

k ~rrf � ~rrT qX�
Z
Ce

hTf qCþ
Z
X

pf qXþ
Z
Ce

hTef qC ð5Þ

The discrete formulation corresponding to this equation after the spatial
discretization is presented in the Appendix, where appear the principal discrete
mathematical relations used in this article.

If a basis (zi, Vi) of the space of the solution is known, it is possible to project
the thermal field on this basis.

TðM; tÞ ¼
X1
j¼1

xjðtÞ VjðMÞ ð6Þ

Here zi is the eigenvalue and Vi is the eigenvector for the ith element of the base, and
xi is the time-dependent amplitude, called the excitation state.

From this modal formulation, it is possible to reduce the number of unknowns
of the problem, by substituting in Eq. (6) for the infinite sum by a finite sum of
predominant terms.

At this stage, we still have to:

1. Describe and calculate the base
2. Build the state equation
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3. Define a reduction method which selects the predominant modes, according to a
criterion to be specified

2.1. The Branch Basis

Among the different possible bases, the branch basis is particularly adapted
to the thermal problem characterized by nonlinear and time-dependent boundary
conditions. This basis is defined by the following equations:

8M 2 X k0 DVi ¼ zi c0 Vi ð7Þ

8M 2 Ce k0 ~rrVi �~nn ¼ zi fVi ð8Þ

8M 2 Ca k0 ~rrVi �~nn ¼ 0 ð9Þ

where k0 and c0 are constant values of the thermal conductivity and the volume
capacity.

The originality of the problem is the Steklov boundary condition [Eq. (8)],
which depends on the eigenvalue zi, and which is independent of the boundary
conditions of the real thermal problem. In this way, the branch modes form a
basisfor any thermal problem, including those characterized by parameters that
are functions of time or of temperature. This is not true of the ‘‘classical’’ modes,
such as the Dirichlet basis (the eigenfunction value is set to zero on the boundary),
or the Fourier basis (the ratio between the eigenfunction and its gradient on the
boundary is fixed). f is the Steklov coefficient, which ensures that the eigenvalue zi
has the same dimension in Eqs. (7) and (8). The last relation defining the problem
[Eq. (9)] is a particular condition which imposes for the modes a null gradient for
adiabatic boundaries.

Using the weak formulation, Eqs. (7)–(9) lead to

Z
X
k0 ~rrf � ~rrVi qX ¼ �zi

Z
X

c0 f Vi qXþ
Z
Ce

f f Vi qC
� �

ð10Þ

To obtain the same order of magnitude for the two terms
R
X c0 f Vi qX

and
R
Ce f f Vi qC in Eq. (10), an appropriate choice of the Steklov coefficient f is

given by

f ¼
R
Ce qCR
X c0qX

ð11Þ

As previously mentioned, the discrete formulation of Eq. (10) is presented in
the Appendix. The most effective method for solving it when the matrix are large
is the Lanczos method [18]. This technique calculates a limited number of eigenva-
lues by projecting the problem on a subspace, then solving it by the QR method
[19]. So it is possible to obtain the eigenmodes, subset by subset, in the direction
of decreasing eigenvalues (with zi< 0). The current version is the implicit restart
technique [20], implemented in ARPACK since 1998 [21].
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This technique calculates the modes sequentially by blocks, in decreasing order
of the eigenvalues associated with them. Since the eigenvalue zi is related directly to
the time constant si of the eigenmode by

si ¼ � 1

zi
ð12Þ

the first modes which are computed correspond to the predominant modes, accord-
ing to a purely temporal criterion. Even if in theory we can obtain Nmesh eigenmodes,
in practice a truncation is performed and the technique computes the N0 branch
modes corresponding to the first more important eigenmodes (with zi< 0).

The normalization of the original eigenmodes bVVi is obtained using the relation

8i; Vi ¼
bVViffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

X c0V
2
i dXþ

R
C fV

2
i dC

q ð13Þ

and leads to the following orthogonality properties:

8i; j
Z
X
c0 ViVjdXþ

Z
C

f ViVjdC ¼ dij ð14Þ

and

8i; j
Z
X

krVirVjdX ¼ �zi dij ð15Þ

2.2. Projection of the Heat Equation on the Branch Base

The state equation is obtained by replacing in Eq. (5)

1. The thermal field T by its expression presented in Eq. (6)
2. The test functions f by all the eigenmodes of the reduced basis eVVjðMÞ

We can write:

XN0

i¼1

Z
X

cVi Vj dX

� �
dxi
dt

¼ �
XN0

i¼1

Z
X

k ~rrVi � ~rrVj dX

� �
xi

�
XN0

i¼1

Z
Ce

hViVjdC

� �
xi

þ
Z
X

pVjqXþ
Z
Ce

hTeVjqC ð16Þ

This expression is named the state problem, in which the unknows are the excitation
states xj(t) of the eigenmodes.
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When all parameters are fixed (c0, k0, h0, and p0), using the orthogonality
properties Eqs. (14) and (15), the previous relation becomes

dxj
dt

�
XN0

i¼1

Z
C

efViVjdC

� �
dxi
dt

¼ zjxj �
XN0

i¼1

Z
Ce

h0ViVjdC

� �
xi

þ
Z
X

p0VjdXþ
Z
Ce

h0TeVjdC ð17Þ

Then, even if the physical problem is linear, all states are coupled to each other. This
is the counterpart of the general aspect of the branch basis. However, this equation
underlines the particular role of the diagonal terms, which are more important than
the others for the great majority of the modes. In practice, as will be seen in the
example given, only a few eigenmodes are characterized by significant coupling.

2.3. Reduction by Amalgam Method

From the original branch basis, the goal of the modal reduction is to build a
reduced basis ~zzi; eVVi

� �
, the dimensions of which are eNN << N0, and we can approach

correctly the thermal field by the relation

TðM; tÞ �
XeNN
j¼1

~xxjðtÞ eVVjðMÞ ð18Þ

The reduction step is performed by the uncoupling amalgam reduction
method. The objective of the method is to be independent from fields of reference
temperatures, which is the most-used technique in the reduced model domain (as
in the POD and MIM). Detailsare explained in [7], and the main steps of this tech-
nique are the following.

1. We work in the modal space in which a reference model is chosen. While being
close to the real model, this reference model has to be linear and with parameters
independent of time [Eq. (17)].

2. Solving this problem is done by neglecting the terms of coupling which exist for
only a small number of modes. An analytical expression is then possible and
allows us to obtain the reference states at once.

3. The knowledge of these states then permits us to select the most influent modes
(called major modes), by a process of minimization of the error between the
complete and the reduced model, always in the modal space.

4. The remaining modes (called minor modes) are added to the major modes, and
are balanced by a coefficient. The distribution of the minor modes and the choice
of the balance coefficients are obtained by the same process of minimization of
the error as previously. After normalization [Eq. (13)], we obtain eNN reduced
modes which possess the same orthogonality properties as the branch modes
[Eqs. (14) and (15)].
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We obtain finally a reduced state problem, similar to Eq. (16), for which the
number of unknowns is eNN << N0:

XeNN
i¼1

Z
X
ceVVi

eVVjqX
� �

q~xxi
qt

¼ �
XeNN
i¼1

Z
X
k ~rreVVi � ~rreVVjqX

� �
~xxi �

XeNN
i¼1

Z
Ce
heVVi

~VVjqC
� �

~xxi

þ
Z
X
peVVjqXþ

Z
Ce
hTeeVVjqC ð19Þ

3. THE SUBSTRUCTURING METHOD

3.1. The Substructuring Finite Problem

We consider now the same geometry but dissociated into Nd subdomains X(k),
as presented in Figure 1:

X ¼
[Nd

k¼1

XðkÞ ð20Þ

In this case, for the whole domain X, there are Nc interfaces Cc(l), 1� l�Nc,
which are contiguous to two subdomains X(i) and X(j). By considering for each
subdomain X(k) a flux condition on the internal boundary Cc(k), the weak formu-
lation of the heat equation on the subdomain is

Z
XðkÞ

c
qT ðkÞ

qt
f ðkÞqX ¼ �

Z
XðkÞ

k ~rrf ðkÞ � ~rrT ðkÞqX�
Z
CeðkÞ

hT ðkÞf ðkÞqC

þ
Z
XðkÞ

pf ðkÞqXþ
Z
CeðkÞ

hTef ðkÞqCþ
Z
CcðkÞ

uðkÞf ðkÞqC ð21Þ

with uðkÞ ¼ ~uuðkÞ �~nnðkÞ the projection of the flux ~uuðkÞ which is going out of the
subdomain X(k) through the internal boundary Cc(k), along the normal ~nnðkÞ to this
boundary.

Because through each contiguous boundary Cc(l) there is a flux transfer for
both subdomains X(i) and X(j), the weak formulation of the heat equation for the

Figure 1. Substructuring principle: (a) initial geometry;(b) subdomains coupling.
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whole domain X is written as follows:

XNd

k¼1

Z
XðkÞ

c
qT ðkÞ

qt
f ðkÞqX ¼ �

XNd

k¼1

�Z
XðkÞ

k ~rrf ðkÞ � ~rrT ðkÞqXþ
Z
CeðkÞ

hT ðkÞf ðkÞqC
�

þ
XNd

k¼1

Z
XðkÞ

pf qXþ
Z
CeðkÞ

hTef ðkÞqC
� �

þ
XNc

l¼1

Z
CcðlÞ

uðiÞf ðiÞ þ uðjÞf ðjÞ
� �

qC ð22Þ

Given the conservation of heat flux, the latter is connected to the temperatures
through the introduction of a thermal contact resistance TCR:

uðiÞ ¼ �uðjÞ ¼ T ðiÞ � T ðjÞ

TCR
�

T½ �½ �ði;jÞ
TCR

ð23Þ

where the temperature jump T½ �½ �ði;jÞ is a surface field, which is defined on all borders
contiguous to the different subdomains. This thermal field is unknown.

The weak formulation can finally be written as follows:

XNd

k¼1

Z
XðkÞ

c
qT ðkÞ

qt
f ðkÞqX ¼ �

XNd

k¼1

�Z
XðkÞ

k ~rrf ðkÞ � ~rrT ðkÞqXþ
Z
CeðkÞ

hT ðkÞf ðkÞqC
�

þ
XNd

k¼1

Z
XðkÞ

pf qXþ
Z
CeðkÞ

hTef ðkÞqC
� �

þ
XNc

l¼1

Z
CcðlÞ

T½ �½ �ði;jÞ f½ �½ �ði;jÞ
TCR

qC ð24Þ

In this way, a temperature jump function appears in the weak formulation.

3.2. Building of the Substructuring Reduced Basis

The partition of the domain X into Nd subdomains X(k), where each of them
is bounded by C(k), permits us to compute a branch basis z

ðkÞ
i ; V

ðkÞ
i

� �
for each

subdomain [Eq. (10)]. Each basis is constituted of N
ðkÞ
0 modes. Unlike other bases,

the advantage of using branch modes for the substructuring technique is that the
connection between the subdomains is easy, because these modes form a basis for
any thermal problem, whatever the boundary conditions are. This substructuring
basis allows us then to respect the boundary conditions of temperature jumps
imposed by Eq. (24).

The reduction of each basis corresponding to a subdomain is performed by fol-
lowing the uncoupling amalgam method as defined for the classical global BERM

method. For each subdomain X(k), we then obtain a reduced basis ~zz
ðkÞ
i ; eVV ðkÞ

i

� �
,

the dimension of which is eNNðkÞ
. The extension of each basis on the whole domain
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X is obtained by extending each eigenvector by zero on the other subdomains. Each

vector then defined on the whole domain can be written as V
_ ðkÞ

i . The substructuring

reduced basis of the whole domain X is then constituted by all modes z
_

p; V
_

p

� �
,

defined as above. We can then write that all Nd thermal fields of each subdomain
X(k) can be projected on the substructuring modal basis thus defined as

T ðkÞðM; tÞ ¼
XNd

k¼1

XeNNðkÞ

i¼1

~xx
ðkÞ
i ðtÞ eVV ðkÞ

i ðMÞ ¼
XN_
p¼1

x
_

pðtÞ V
_

pðMÞ ð25Þ

with

N
_

¼
XNd

k¼1

eNNðkÞ ð26Þ

3.3. The Substructuring State Equation

The substructuring modal formulation is made by using a method similar to
that used for the classical global BERM method [Eqs. (5)–(16)]: The implantation
of the temperature projection on the basis [Eq. (25)] in the thermal variational for-
mulation [Eq. (24)], and the use as test function of the eigenvector of the substructur-
ing basis lead to the substructuring state equation.

By considering, for example, the first term (the inertial term) which appears in
Eq. (24), it is possible to reassemblate the different subdomains X(k) to obtain
the complete domain X, because the eigenvectors V

_

p used in the state equation
are nonzero only for one subdomain. Thus we write:

XNd

k¼1

Z
XðkÞ

c
qT ðkÞ

qt
f ðkÞqX ¼

XN_
p¼1

XNd

k¼1

Z
XðkÞ

cV
_

pV
_

qqX
� �

qx
_
p

qt

¼
XN_
p¼1

Z
X
cV
_

pV
_

qqX
� �

qx
_
p

qt
ð27Þ

The same consideration for the other terms in Eq. (24) leads to the following
relation:

XN_
p¼1

Z
X
cV
_

pV
_

qqX
� �

qx
_
p

qt
¼ �

XN_
p¼1

Z
X
k ~rrV

_

p � ~rrV
_

qqXþ
Z
Ce

hV
_

pV
_

qqC
� �

x
_
p

þ
Z
X
pV
_

qqXþ
Z
Ce
hTeV

_

qqC

þ
XN_
p¼1

Z
Cc

½½V
_

p��ði;jÞ½½V
_

q��ði;jÞ
TCR

qC

0
@

1
Ax

_
p ð28Þ
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This system is defined by blocks, where each block corresponds to a substructure.
The coupling between the different substructure is obtained by the temperature jump
term which exists only between two substructures.

4. APPLICATION

4.1. Presentation of the Physical Problem

The heterogeneous studied system is composed of three subdomains (see
Figure 2). The first element X(1) is a parallelepiped block (9.8 cm� 9.8 cm� 16.4 cm)
composed of steel (thermal conductivity k1¼ 52W=mK and volume thermal
capacity c1¼ 3,840.103 J=m3K). There is no volume heat source in this subdomains
(p1¼ 0).

The other subdomains X(2) and X(3) are two cylindrical heat sources, of
diameter D¼ 20mm and length L¼ 60mm, which are placed in the block. They
are characterized by a thermal conductivity k2¼ k3¼ 8W=mK and a thermal
capacity c2¼ c3¼ 4,200.103J=m3K. The volume heat sources p2 and p3 time evolu-
tions are presented on Figure 3. We suppose that there is no contact resistance
between the cylindrical heat sources and the block, defined by the surfaces
C1i¼X(1)\X(i), i¼ 1, 2.

The two largest vertical faces of the block C2 which are parallel to the XZ plan
(see Figure 2) are painted in black and exchange heat with the ambiant (considered
at Ta¼ 300K), by convection (ha¼ 8W=m2K), and radiation (emissivity e¼ 0.9).

The block is drilled in its length by two circular ducts (diameter D¼ 1.6 cm).
Oil circulates there, with a constant temperature Th¼ 300K. The boundary C3

defined between the block and the oil is characterized by a convection coefficient
hh¼ 40W=m2.

Figure 2. Studied geometry.
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All other external surfaces of the block are insulated and are notified C1 (i.e.,
the faces of X(1), X(2), and X(3), which are parallel to XY, and the faces of X(1) parallel
to YZ).

The equations defining the problem are presented below.

8M 2 XðiÞ; 1 � i � 3 ci
qT ðiÞ

qt
¼ div ki ~rrT ðiÞ

� �
þ pi ð29Þ

8M 2 C1 k1 ~rrT ð1Þ �~nnð1Þ ¼ 0 ð30Þ

8M 2 C2 � k1 ~rrT ð1Þ �~nnð1Þ ¼ ha T ð1Þ � Ta

� �
þ er T ð1Þ

� �4

�T4
a

� �
ð31Þ

8M 2 C3 � k1 ~rrT ð1Þ �~nnð1Þ ¼ hh T ð1Þ � Th

� �
ð32Þ

8M 2 C1i; 2 � i � 3 � k1 ~rrT ð1Þ �~nnð1Þ ¼ �ki ~rrT ðiÞ �~nnðiÞ T ð1Þ ¼ T ðiÞ ð33Þ

The application treated here is similar to that presented in [8], for which the BERM
technique was used for an inverse problem, in order to identify the heat flux
dissipated by the cylindrical heat source X(2) in real time. This application has been
also used in [22], this time using the MIM technique, always in order to identify the
sources of heat X(2) and X(3).

Figure 3. Time evolutions of the volumic heat sources.
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4.2. Results with the Complete Model

The reference model is the classical finite-elements model, which is character-
ized by P1 triangular discretization leading to a number of ND¼ 23,503 nodes.
The resolution of this problem by the classical global method [Eq. (5)] is made after
spatial discretization in time via an implicit first-order Euler scheme with adaptive
time step. The resulting linear system is solved by the preconditionned BICGSTAB
algorithm designed for sparse matrices. Computation needs a CPU time equal to
1,105 s, and leads to a thermal field evolution Tref, which is considered as the refer-
ence. Figure 4 presents the thermal field à t¼ 4,000 s. The profile along the segment
A0 �A is shown on Figure 5. Because of the internal heat flux dissipation in X(2) and
X(3) and the difference of conductivity, thermal gradients are very different between
the steel block and the cylindrical heat sources.

To characterize the importance of the nonlinearity, another simulation is made
by considering a linearized radiation term (around 300K), which leads to an equiva-
lent coefficient haþ hrad¼ 13.51W=m2K. Figure 6 represents the time evolution of
the temperature, at the point (x¼ 0.1372m, y¼ 0.0686m, z¼ 0.0307m), where the
difference between the two models is maximum. So we note the impossibility of
simplifying the posed problem.

We define a maximum gap by

DTmax ¼ MaxX;t Trefj j �MinX;t Trefj j ¼ 654K ð34Þ

This gap permits us to define relative mean and maximum errors, according to the
relations

emax ¼
MaxX;t Tref � Tj j

DTmax
ð35Þ

emean ¼
1

Ntime V

PNtime

i¼1

R
X Tref � Tj jqX

DTmax
ð36Þ

For example, between the reference model and that obtained by considering a line-
arized radiation term, the maximum error is emax¼ 17.1%, and the mean error is
emean¼ 5.8%.

4.3. The Global BERM Method

4.3.1. Characteristics of the branch basis. Because the number of nodes is
not too large, the studied configuration can be resolved by the global BERM method
[described by Eq. (16)]. For this computation, Eq. (11) yields the Steklov coefficient
f¼ 120,000. Given the hardware used, the number of computed branch modes is lim-
ited to N0¼ 3,000, and the CPU time is tCPU¼ 5,900 s.

Visualization modes shows the existence of two very specific spatial evolutions.

1. Some modes are located in the domain and are quasi-null on the boundaries Ce,
as presented In Figure 7. These are the volume modes. One can notice the special
case of the adiabatic boundaries Ca (characterized by the Steklov number f¼ 0),
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appearing as symmetry planes, and for which these volume modes are nonzero.
Previous studies have shown that the volume eigenmodes are quasi-periodic
fields, the spatial period of which decreases with the eigenvalue, i.e., with the
order in which they are computed by the Lanczos method. As we can see in
Figure 7, the isosurfaces pass through the three subdomains indistinguishably.

Figure 5. Temperature variations along the segment A0A at t¼ 4,000 s..

Figure 4. Thermal fied at t¼ 4, 000 s..

13



Thus there is no spatial location by subdomain, even if subdomains are character-
ized by different thermophysical properties (thermal conductivity here).

2. Other modes are flat on the domain except near the boundaries Ce. These are the
surface modes. These surface modes originate from the Steklov condition [Eq. (8)].
They are the ones that enable us to consider any type of limit conditions. Figure 8
presents two surface modes, localized at just one boundary. As the volume modes,
these surface modes are quasi-periodic fields, and their spatial period decreases
with the eigenvalue.

Figure 6. Comparison between the real model and the linearized model.

Figure 7. One of the volume modes of the global branch base: representation of two iso-surfaces.
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An automatic localization of modes can be obtained by the following criterion:

Nsurf
i ¼

Z
C
Vi fVi dC ð37Þ

Because of the orthogonality relation defined in Eq. (14), when Nsurf
i is close to 0, Vi

is a volume mode, and when Nsurf
i is close to 1, Vi is a surface mode. Figure 9, which

presents the Nsurf
i evolution for the 3,000 branch modes, clearly shows that the great

majority of the modes are surface modes. Indeed, given the boundary C3 that runs
through the block, the domain modes family cannot be extended easily. Accordingly,
many modes are nonzero both on the core of the domain and at the border and are
characterized by 0:2 < Nsurf

i < 0:8. These are global modes. This graph also shows

Figure 8. Surface modes of the global branch base: representation of two iso-surfaces located at (a)bound-

ary C2 and (b) the boundary C3.

Figure 9. Nsurf
i criterion evolution for the complete domain X.
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clearly that when the branch mode number increases (i.e., zi< 0 increases), the den-
sity of global modes increases at the expense of surface modes, and Nsurf

i decreases
overall.

To reconstitute the important thermal gradient variation observed in the
domain near the heat sources (Figure 5), volume and global modes are important.
It is then necessary to compute an important number of branch modes, which is
not easy when the mesh is large. To determine the error linked to the truncation
of the initial Branch basis from which the reduced basis is built, the following process
is performed.

1. The projection of the reference thermal field Tref(M, t) on each vector of the basis
Vi(M) permits us to obtain the associated states xrefj ðtÞ:

xrefj ðtÞ ¼
Z
X
T refðM; tÞ cVjðMÞ dXþ

Z
C
T refðM; tÞ fVjðMÞ dC ð38Þ

2. These state vectors are used to rebuild the thermal field Tr(M, t):

TrðM; tÞ ¼
XN0

j¼1

xrefj ðtÞVjðMÞ ð39Þ

3. It is then possible to obtain the errors between the thermal field rebuilt and the
reference, by using Eqs. (35) and (36).

With 3,000 branch modes, the maximum error computed is equal to 5K, i.e.,
emax¼ 0.6%. So we consider that the truncated base of 3,000 modes is sufficient to
reconstruct the temperature fields satisfactorily. It is from this basis that the reduced
bases are then built.

4.3.2. Results of the global BERM method. Some reduced models are then
built from the branch modes by considering the following reference model:

1. For each cylindrical heat source, we consider a volume power pmax¼
3.6� 107W=m3.

2. For the steel block, there is no volume flux dissipation. External boundary
conditions correspond to the physical problem with linearization of the radiation
term (when it exists). We use then for C2, h¼ 30W=m2 and Text¼ 300K and for
C3, h¼ 40W=m2 and Text¼ 300K.

Different reduced models are then built, with 50 < eNN < 300. Because of the
analytical technique, the CPU time is negligible in comparison with the CPU time
for the initial branch basis computation.

From these reduced bases, the different state equations systems [Eq. (19)] are
then built and evolved in time like the complete model via an implicit first-order
Euler scheme with adaptive time steps, but this time the linear systems are solved
by a LU algorithm. The results are presented in Table 1. The global BERM method
gives satisfactory overall results: For a reduction order eNN ¼ 100, the average error is
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less than 1%, while the gain in computational time is 25. However, with this model,
errors can be locally important (emax�11%). When increasing the model order, the
time saved decreases quickly, while the accuracy of the model increases relatively
weakly: A reduced model the order of which is eNN ¼ 300 leads to a maximal error
emax�5%, while the gain in CPU time is just over 2.2. As the work of Videcoq
et al. [8] showed, this technique leads to precise results for a heat flux identification
process, in which complete knowledge of the temperature field is not desired. How-
ever, the global BERM method shows these limits when we want accurate results for
the temperatures in the entire domain. The reason lies in the low number of volume
modes that appear in the calculated basis (which is necessarily truncated because of
the hardware limitations). Indeed, as we have seen that these volume modes were not
specific for each subdomain, if we have to built a spatial thermal evolution which is
very different depending on the considered subdomain (for example, due to the pres-
ence of a point source), it is necessary to keep a large number of these modes. Thus
the low number of volume modes which is present in the original basis prevents a
precise rebuilding of the temperature field in the zones where there are strong varia-
tions of temperature gradient, i.e., between two subdomains. The best would be to
use modes which are localized by subdomains. That is the principle of the substruc-
turing technique, in which modes are computed by subdomains.

4.4. The Substructuring Model

The substructuring BERM method is used, by choosing three subdomains,
X(1), X(2), and X(3).

4.4.1. Substructuring branch basis computation. The computation of the
branch basis linked to each subdomain is performed as in Eq. (10). For the sub-
domains fX(1), X(2), X(3)g, the Steklov parameter f is fixed respectively to
f110,000, 18,210, 18,210g, by following the criterion defined in Eq. (11). As pre-
viously, the substructuring base for the subdomain X(1) is limited to N

ð1Þ
0 ¼ 3;000.

The computation time is tCPU¼ 5, 265 s. Concerning the other subdomains X(2)

and X(3) corresponding to the two cylindrical heat sources, the computation of the
branch basis is easy because of the weak dimension of the meshes, and almost all
the modes are calculated (N

ð2Þ
0 ¼ N

ð3Þ
0 ¼ 1;470). For each of them, computation time

is tCPU¼ 115 s.
This time, surfaces C12 and C13 between the steel block and the heat sources are

considered for each subdomain are boundaries, on which surface modes appear

Table1. Global reduced model: results

Global order N
_

emax (%) emean (%) tCPU (s)

50 14.12 1.57 13

100 10.93 0.88 44

150 9.23 0.80 115

200 7.01 0.78 212

250 5.73 0.75 332

300 4.88 0.71 493
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Figure 11. Modes of the substructuring branch base for the subdomain X(2), representation of two

iso-surfaces;(a) surface mode and (b) volume mode.

Figure 10. One of the surface modes of the substructuring branch base for the subdomain X(1), represen-

tation of two iso-surfaces.
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(Figure 10 for the block steel X(1) and Figure 11 a for one cylindrical heat source
X(2)). Figure 12 presents the Nsurf

i evolution for the subdomain X(1). The evolution
is similar to that obtained in the case of the global basis defined on the whole field
X (Figure 9), but this time the number of modes which tend to volume modes is
much less important: In the case of the global branch basis, the proportion of modes
characterized by Nsurf

i < 0:4 is 4.3%, and that corresponding to Nsurf
i < 0:2 is 0.3%.

In the case of the branch base defined only for the steel block X(1), the proportion of
modes characterized by Nsurf

i < 0:4 is only 0.3%, and that corresponding to
Nsurf

i < 0:2 is zero. This is due to boundaries C1,2 and C1,3 crossing the block, which
prevents the development of this mode family.

The Nsurf
i evolution for subdomains X(2) and X(3) is presented in Figure 13. This

time, surface modes (Figure 11a) and volume modes (Figure 11b) clearly appear,
with just some global modes. A phenomenon even more marked than for the pre-
vious evolution of Nsurf

i is that the first computed modes (corresponding to the larger
zi< 0) are all surface modes.

As presented for the global branch basis [Eqs. (38)–(39)], the precision of each
temporary basis constituted by the first eigenvectors V

ðkÞ
j is computed for all subdo-

mains 1� k� 3, and compared to the precision of the temporary global basis.
Results are presented in Figure 14. For all subdomains, results are precise and better
than those corresponding to the complete domain X.

Indeed, as we have seen that the substruturing technique allows us to obtain
surface modes on the external and the internal boundaries, and volume modes lim-
ited to each subdomain, the complete substructured basis is far richer than the global
basis, and moreover, this richness exists as soon as the first modes of the basis have
been computed.

In our application we saw that it was necessary to reconstitute an important
variation of thermal gradient near the internal boundaries C12 and C13. For the

Figure 12. Nsurf
i criterion evolution for subdomain X(1).
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complete domain X, these important variations of gradients are located inside the
domain, and have to be reconstituted by volume modes which are not numerous.
For each subdomain, these gradients can be reconstituted by the surface modes,
which are numerous.

To build the final reduced basis, the uncoupling amalgam method is used. The
difficulty lies in the choice of the parameters of the Fourier condition at the bound-
aries C12 and C13. The test case is then completely different from the real problem.

Figure 13. Nsurf
i criterion evolution for subdomain X(2).

Figure 14. Choice of the minimum number of branch modes for each subdomain for the substructuring

configuration (X(1), X(2), X(3)) and for the one-body configuration (X).
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The difficulty is then to choose an optimal linear test case for each subdomain
considered as independent of the other subdomains. In [17] it was shown that the
precision of the substructuring reduced model did not vary a lot according to the test
case used. Indeed, it is not necessary that the temperature fields corresponding to the
reference test case be identical to those of the physical problem considered. Even if
the these two problems are different, if the diffusion of heat observed in the test case
follows approximately the same direction as the diffusion that is obtained in the real
case, then the the patterns of temperature fields will be similar. The modes preferen-
tially excited by the test case will then have a dominant role in the reconstruction of
temperature fields of the real problem. The reduced model, optimal for the test case,
will then be quite satisfactory for the real physical problem.

The different test cases corresponding to each subdomains are presented below.

1. For each cylindrical heat source, we consider as before a volume power
pmax¼ 3.6� 107W=m3. Furthermore, we choose for the exchange coefficient
h¼ 50W=m2 and for the external temperature Text¼ 300K.

2. For the steel block, there is no volume flux dissipation. External boundary con-
ditions are chosen as previously and we then use for C1 and C2, h¼ 30W=m2

and Text¼ 300K, and for C3, h¼ 40W=m2 and Text¼ 300K.Concerning the
contiguous boundaries with the cylindrical heat sources, because of the important
volume power they dissipate, we choose an important exchange coefficient h. To
take into account the difference of the dissipated energy in the two cylindrical
heat sources (see Figure 3), the conditions are different for the two boundaries:
For C12 we choose h¼ 10,000W=m2, and for C13 we have h¼ 1,000W=m2, with
Text¼ 500K for the two boundaries.

Different reduced models are then built, with 50 < N
_

< 300. The manner of
repartition of the number of eigenmodes corresponding to each subdomain is diffi-
cult. At present no precise rule is defined. A first estimation consists of linking it to
the minimal number of branch modes to use for each subdomain. As seen previously,
we found for the treated application fNð1Þ

0 ;N
ð2Þ
0 ;N

ð3Þ
0 g ¼ f3;000;1; 470; 1;470g, which

leads to a ratio of 2 between the number of modes of the block and of each cylindri-
cal heat source. For the different models tested, the reduced modes ratio varies from
1 to 3 between the steel block and each cylindrical heat source.

4.4.2. Choice of the fictitious resistance. As shown by Eq. (24), the
substructuring method needs to introduce a thermal contact resistance TCR, which
does not exist in the real physical configuration. The problem is then to verify
whether the introduction of such a fictitious resistance leads to satisfactory results.

To be able to observe the fictitious thermal contact resistance influence
independently of the errors coming from the modal reduction, a first step consists
of solving the problem in the thermal space. The discretization is performed in such
a way that the meshes of the different subdomains correspond to each other on the
contiguous internal boundaries. The mesh sizes for the different subdomains fX(1),
X(2), X(3)g are, respectively, NST¼f22,377, 1,476, 1,479g. To choose the thermal con-
tact resistance value, a thermal balance is performed in a simple case: We consider
thus the stationnary case in which the maximum thermal power coming from a
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cylindrical heat source pmax¼ 3.6� 107W=m3 passes through the internal boundary
in a uniform way:

pmax ¼
4u
D

¼ 4DT
DTCR

ð40Þ

For a fixed relative temperature jump E ¼ DT=DTmax ¼ 0:25%, the fictitious
thermal contact resistance value obtained by Eq. (40) is TCR¼ 10�5m2K=W. This
value corresponds approximately to the value of thermal contact resistance between
two reamed surfaces subjected to a pressure of 1GPa.

The resolution of the substructuring finite-element method is then performed
as defined by Eq. (24). Results are satisfactory, since the maximum error defined
by Eq. (35) is equal to emax¼ 0.51%. Figure 15 presents the evolution of temperature
for the point which corresponds to the maximal error. This point is located in the
second cylindrical heat source (X(3)).

4.4.3. Results. From this TCR value, different reduced models
(50 < eNN < 300) are used for the resolution of the real problem. The results are pre-
sented in Table 2 and show the interest of the substructuring method: For acceptable
precision (i.e., emax< 10%), the CPU time is very much smaller than that obtained by
the classical model (tCPU¼ 1,105 s). For a reduced model the order of which is

N
_

¼ 100 ¼ f40; 30; 30g, the CPU gain reaches 23.5, while the maximum error
emax�3%. Figure 16 shows the maximum error evolution, which is located in X(3).

It is important to compare this error with that resulting from the introduction
of the fictitious thermal contact resistance (emax¼ 0.51%): For a reduction order
small enough to permit a significant gain of CPU time, the error between the reduced

Figure 15. Substructuring detailed model: maximum error evolution.
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substructuring model and the reference finite-element model is especially due to the
reduction and not to the fictitious thermal contact resistance.

The improvement provided by the substructuring BERMmethod, as compared
to the global BERM method, is indisputable when comparing Tables 1 and 2.

First, when the orders of the reduced models are the same, and when these are
high enough, the computation times for the substructuring BERM method are
significantly lower than those obtained by the global BERM method. Indeed, since
each eigenvector is initially calculated for only one subdomain and extended by zero
on the other subdomains, the equation of state (28) is characterized by sparse matrix
per block, making its resolution faster.

Moreover, and most important, when the reduction order is the same, the
precision obtained by solving the substructuring modal formulation is better than
that produced by the global method. This is due to all that has been observed
previously, i.e., the substructuring branch basis is more appropriate compared to
the global branch basis, when reconstructing temperature fields for subdomains
characterized by very different properties and=or different thermal solicitations,
which generate large variationsin temperature gradients at the contiguous borders.

Table 2. Susbstructuring reduced model: results

Global order N
_

~NN
ð1Þ
; ~NN

ð2Þ
; ~NN

ð3Þn o
emax (%) emean (%) tCPU (s)

50 f30, 10, 10g 7.46 0.72 43

100 f40, 30, 30g 3.33 0.69 46

150 f50, 50, 50g 3.13 0.68 58

200 f80, 60, 60g 2.99 0.67 80

250 f90, 80, 80g 2.85 0.67 104

300 f100, 100, 100g 2.80 0.66 138

Figure 16. Substructuring reduced model: maximum error evolution.
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Finally, a substructuring modal model the order of which is 100 leads to
precision equal to 3% and a CPU time gain of 23.5, while the global BERM model
the order of which is 300 leads to a precision equal to 5%, for a CPU time gain just
equal to 2. Then, even if it is possible to use a global BERM model, a substructuring
technique is more efficient in the case studied.

5. CONCLUSION

The use of the substructuring technique for the resolution of the reduced modal
model of the nonlinear 3-D thermal problem posed in this study permitted us to
show the following points.

First, the branch basis is especially adapted to the substructuring technique,
because a large number of surface modes appear naturally at the boundaries of each
subdomains, which allows easy coupling between them.

The technique of reduction of the branch base by the uncoupled amalgam tech-
nique is well adapted to the substructured formulation, even if the reference problem
of each subdomain is necessarily different from the real global problem.

Given its principle, the substructuring method naturally treats the problems of
imperfect contacts between subdomains. We have seen here that this method can also
solve problems for which the contacts are either perfect or the partition is fictitious.
Indeed, the fictitious thermal contact resistance introduced in the substructuring
model does not lead to important bias, in comparison with that resulting from the
reduction step. The TCR value can be easily obtained from physical considerations,
and the numerical value obtained corresponds physically to the conditions of excellent
contact. It is then possible to create fictitious internal boundaries to define subdo-
mains, the mesh size of each being small enough that a branch basis can be computed.

In the case where a global BERM method is possible, the use of a substructur-
ing model can still be attractive, in particular when the different subdomains are
characterized by different thermal behaviors.

So the substructuring technique allows us to extend the BERM method. This
modal method has proven its efficiency for homogeneous domains characterized
by complex geometries, but cases of high variations of the thermal properties are
not easy to solve by modal formulation. It is now possible, by using this method,
to resolve a lot of thermal problems, which can be nonlinear and with unstationary
parameters, characterized by complex geometries leading to important meshes sizes.
The modal method then becomes more adapted to real problems corresponding to
industrial cases. The next step is to develop this technique in configurations where
the domains are in relative motion, for which the modal formulation of branches
has already demonstrated interest [9].

REFERENCES

1. J. Saigon and A. Neveu, Application of Modal Analysis to Modelling of Thermal Bridge
in Building, Energy and Buildings, vol. 10, pp. 109–120, 1987.

2. O. Quéménér, J.-L. Battaglia, and A. Neveu, Resolution d’un Probleme Inverse Par
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APPENDIX: DISCRETE FORMULATION

This appendix presents the matrix relations corresponding to the different
equations of this article. They are obtained from spatial discretization by classical
finite-element method with linear shape functions, giving Nmesh nodes. The following
equations are obtained by respecting the appearance order of the different terms in
the analytical relations. These discrete formulations permit us to highlight the dimen-
sions of the different relations.

The different matrices are as follows.

1. Concerning the heat equation, T is the unknown temperature vector. CX and K

are respectively the capacity matrix and the conductance matrix. A is the matrix
of exchange through the external boundary Ce. The vectors PX et PC correspond
to the volume and surface (through Ce) solicitations. All these matrices and vec-
tors can depend on time and temperature. The matrix JT defines the flux coupling
between subdomains through the contiguous boundaries Cc.
In the classical global technique, the unknown number is Nmesh. For the substruc-
turing technique, the dimension of this equation takes into account the double
value of temperature at the NCc nodes which define the contiguous boundaries
Gammac. The number of unknown is then NSTR¼NmeshþNCc.

2. In the eigenvalues problem, Vi is the discretized eigenvector i associated to the
eigenvalue zi, the size of which corresponds to the number of nodes used for
the domain (or subdomain) considered Nmesh. The matrices K0, CX0, and CC

are, respectively, the conductance matrix, the capacity matrix, and the Steklov
matrix, which correspond to fixed values of parameters. Because a truncation is
performed when the Lanczos method is used, the number of eigenvectors is
N0<Nmesh.

Global technique Substructuring technique

Heat

equation
CX

dT

dt
¼ ðKþAÞTþPX þPC Eq: ð5Þ CX

dT

dt
¼ ðKþ AÞT

þPX þPC þ JTT

Eigenvalues

problem

K0Vi ¼ �ziðCX0 þ CCÞVi Eq: ð10Þ K0V
ð1Þ
i ¼ �z

ð1Þ
i ðCX0 þ CCÞVð1Þ

i

K0V
ð2Þ
i ¼ �z

ð2Þ
i ðCX0 þ CCÞVð2Þ

i

K0V
ð2Þ
i ¼ �z

ð3Þ
i ðCX0 þ CCÞVð3Þ

i

Eq: ð24Þ

Reduction V ) eVV Vð1Þ ) eVVð1Þ

Vð2Þ ) eVVð2Þ

Vð3Þ ) eVVð3Þ

9>=
>; ) V

_

States

equation
eVVt
CX

eVV dX

dt
¼ eVVtðKþ AÞeVVX
þ eVVtðPX þPCÞ Eq: ð19Þ

V
_t

CXV
_ dX

dt
¼ V

_t

ðKþ AÞV
_

X

þ V
_t

ðPX þPCÞ

þ V
_t

JTV
_

X Eq: ð28Þ
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3. In the reduction step, the matrix V[Nmesh, N0] contains all the N0 eigenvectors Vi.

The reduction leads to a matrix eVV½Nmesh; eNN�. In the substructuring technique,

V
_

½NSTR;N
_
�, is built (with N

_
¼ eNNð1Þ þ eNNð2Þ þ eNNð3Þ

), by adding each substructuring

reduced basis, which are extended by zero on the other subdomains.

4. For the state equation, the dimension of such matrix formulation is then equal to
[eNN; eNN] for the global method, and to ½N

_
N
_
� for the substructuring method. These

dimensions can be compared with the dimension of the classical finite-element
formulation, described by Eq. (5).
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