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Experimental heat flux identification from a braking system

Olivier Quéméner∗, Frédéric Joly and Alain Neveu

Laboratoire de Mécanique et d’Energétique d’Evry
40 rue du Pelvoux CE1455 Courcouronnes 91020 Evry Cdex FRANCE

This paper presents the Branch Eigenmodes Reduction Method (BERM) applied to the iden-
tification of the heat flux dissipated during the friction between a disc rotating at variable
speed and two brake pads. Temperature measurements used to identify fluxes in the disc and
in the pad come from experimental data. One of the method’s strength lies in its ability to
greatly reduce the dimension of the numerical problem, while maintaining a satisfying preci-
sion on the whole computation domain. The reduction of the model enables to perform the
identification in a time compatible with real-time. The identified heat flux is coherent with
the mechanical increase due to friction. Small discrepancies observed at the beginning of the
friction sequence can be explained by wear.

Keywords: Inverse thermal problem ; Reduced Model ; Branch Modes ;
Advection-Diffusion ; experimental braking device

1. Introduction

Due to its vital application in transport, braking process is an active field of
research, as evidenced by the rich bibliography (thousands of publications since
1980 ...). As a matter of fact, what seems trivial inside an automobile, reveals to
be particularly complex inside a lab : wearing, large plastic deformation, cracking,
oxidation of some constituents at the interface of friction ... Given the complex
phenomena that occur there, the various existing theoretical models used to
predict the thermal behaviour (models with thermal sliding contact resistance and
flux sharing coefficient [1], models using a third body of very small thickness placed
between both elements in friction [2] [3]), require the knowledge of parameters that
can be determined only experimentally. In order to determine those parameters,
the heat flux received as sensible heat by each element of the braking system has
to be known, as well as their temperature at the interface of friction. The heat
flux is identified by inverse method from temperature measurements, and is used
to determine the temperature field at the boundary by direct method.

Unfortunately this technique is often unable to be successfully conducted for
problems characterized by complex geometries, since it is a mathematically ill-
posed problem that requires regularization techniques and the resulting important
computing resources (SVD method [4], Tikhonof regularization [5],[6], specification
of functions technique [7][8]), limiting applications to 1D or 2D geometries. With
the increase of computer resources, standard 3D geometries have been treated
recently with the methods presented above [9] [10].
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Concerning the problem of rotating cylinders involving a transport term in the
heat equation, work is less numerous. Chen and Yang [11], using a minimization
procedure by conjugate gradients, identified the heat flux at the interface of a
roller mill system, for a two-dimensional and stationary configuration. Recently,
Yang and Chen [12] identify the heat flux received by a brake disc in a Lagrangian
reference frame, which is equivalent to identify a moving source. Non linearities are
taken into account. Temperature measurements used in this study are provided
by numerical simulation. From experimental results, Volle et al. [13] identify the
boundary conditions of a rotating cylinder, cooled by the impact of a jet, and
heated by an internal heat source. The technique of specification of function is
used for a two-dimensional problem, in which the characteristics of the solid on
rotation depends on temperature. However, in cases found in the literature, the
computational time remains important with those methods.

In order to treat complex 3D geometries, or for a real time identification
objective, the size of inverse problems has to be drastically reduced. Different
techniques exist: boundary elements method [14], quadrupole formulation [15],
non integer identified model [16]. Modal formulations arise naturally in this
context. The Modal Identification Method (MIM) is directly based on inverse
problems and has been used in many applications : from simple problems, the
technique has been gradually improved, and finally enabled to deal with non-linear
problems [17] [18]. The Proper Orthogonal Decomposition (POD) is also used for
the reduction of inverse problems. In many cases this technique is coupled to a
regularization of the problem by Kalman filter [19]. Quemener et al. [20] used a
Fourier base computed from an eigenvalue problem to identify the flux dissipated
at the interface between a fixed pin and a disc rotating at constant velocity, using
an experimental bench. Unfortunately, the use of the Fourier base prevents from
treating time dependent and non linear problems.

The Branch Eigenmodes Reduction Method (BERM) found in this framework an
adequate field for its potentialities, with non-linear three-dimensional applications
[21], [22], [23]. Recently the problem of the heat flux received by a disc rotating at
variable speed during braking was studied numerically by the authors [24]. It was
shown that a new criterion related to the velocity term is added to the one related
to the diffusion time. It imposes a very small computation time step, which makes
the calculation process particularly long. This problem was solve by BERM on
a numerical case, and the authors showed that it was possible to perform this
identification in real time by applying a low pass filter on the identified heat flux.
To confront this technique to the complexity of a real physical problem, we present
here the identification of fluxes dissipated by friction in an experimental braking
system. The objective of this study is to prove that BERM is an efficient and
fast method to solve inverse problem in industrial configurations, by identifying
together the flux received by the disc in rotation and the flux received by the two
brake pads.

The article is organized as follows: Sections 2 and 3 describe respectively the
experimental device and its modelling. The main elements of the methodology,
including modal reduction and the inverse problem formulation, are presented in
Section 4. Results are presented and validated in section 5. Finally, section 6 is
devoted to the analysis of the physical phenomena.
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2. Presentation of the test bench

An automobile braking system is studied, with the whole brake calliper, pads
and disc (Fig. 1). For flexibility, the disc is driven by a three phase asynchronous
motor via a gearbox limiting the velocity to 150 rpm. A variable speed drive linked
to a computer (Fig. 2) enables to impose a time dependent velocity according to
a precise sequence, independently of the pressure exerted on the brake. In order
to impose the pressure on the disc in rotation, the hydraulic braking system of
the vehicle (from the master cylinder to the calliper) is used. A simple system of
weights imposes a constant pressure on the master cylinder. The rate of rotation
and the electrical power expended by the motor are measured.

Temperature measurement on the rotating disc is made by infrared ther-
mography. The Flir ThermoVision R© A40 features an uncooled microbolometer
detector, and delivers a thermal image composed of 320 × 240 pixels. Its main
limitation is a maximum acquisition frequency of 50Hz. The relative accuracy
of the measurement is estimated to 2%. Since the temperature is measured
in the output of the friction zone, it is not possible to apply paint with high
emissivity directly on this surface. A groove is machined in the disc (1mm

deep, 2mm wide) in order to obtain an area which is not in contact with the
brake pads. High emissivity paint (ε = 0.9) is apply on the groove as shown
in Fig. 1. For reasons of symmetry, this machining is done on both sides of the
disc. According to the numerical study of this problem [24], we choose a sin-
gle measurement point located at L = 1.5 cm downstream from the pad (see Fig. 3).

The measurement of temperature in the pads is performed by three inserted
thermocouples as shown by Figs. 4 and 5, placed at 6 mm from the friction zone.
To check the symmetry of the flux created by the friction, both brake pads are
instrumented.

The objective is to identify in real time the heat fluxes dissipated during braking,
whose sum has to be compared to the increase of the electric power consumed by the
motor. One thus sees that three inverse problems have to be treated simultaneously
(Fig. 6) one for the heat flux received by the rotating disc, and two for the heat
flux received by both brake pads.

3. Modelling

From the test bench, two models are defined, one for the brake disc and the other
one for the brake pads (Fig. 6).

3.1. The brake disc

The considered rotating brake disc is presented in Fig. 3. The disc is made of
steel (k = 49W.m−1.K−1, c = 3.0× 106 J.m−3.K−1), has a diameter D = 26.5 cm
and a thickness e = 11mm. Due do its small thickness compared to its transverse
dimension and its high diffusivity, the disc is considered two-dimensional. Thermal

accommodation phenomena is taking into account on domain ΩD1 via
2h(t)
e

(Tf−T ).
The disc receives a heat flux on a domain ΩD2 from the braking pressure of the
brake pads. The heat flux is expressed as a volume power Π(M, t) dissipated in
the volume ΩD2 defined by the contact zone with the brake pads (Fig. 6). The
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identification of Π(M, t) can be done by two ways. First, the friction zone can be
divided in several sub-zones, and the flux is identified, assuming it is uniform in
each of them. In the other way, the spatial repartition is supposed of the form :

Π(M, t) = (A(t) r +B(t) r2 + ...)(C(t) θ +D(t) θ2 + ...) (1)

and each parameter is identified. Whatever the chosen method, it is necessary to
use several measurement points, judiciously distributed around the friction zone,
such as they are actually sensitive to different areas of friction. If this is feasible
numerically, it is not the case experimentally. On one hand, an important part
of the disc is hidden by the break calliper. On the other hand, multiplying the
number of measurement points involve the multiplication of grooves, which limits
the friction zone. The simplest physically acceptable solution has been chosen. It
is supposed that the energy dissipated is proportional to the velocity, and thus is
azimuthally constant and grows linearly with the radius :

Π(M, t) = π(M) f1(t) = r f1(t) (2)

where f1(t) is then the temporal evolution to be identified from temperature mea-
surements. This dependency is discussed in paragraph 6.
Expressing velocity as U(M, t) = ω(t)U0(M), the physical problem is described

by the following equations

∀M ∈ ΩD1 ∪ ΩD2,

c
∂T

∂t
= k∇2T − cω(t)~U0(M).~∇T +

2h(t)

e
(Tf − T ) + π(M)f1(t),

(3)

with π(M) = 0 on ΩD1, and h(t) = 0 on ΩD2, together with the boundary condi-
tions

∀M ∈ ΓD, k~∇T.~n = h(t) (Tf − T ) . (4)

The determination of the heat exchange coefficient is a difficulty. Correlations are
found in [25] [26] [27] but for velocities by far greater than those considered in
this study. Moreover, depending on the used correlations, results are dispersed.
The heat exchange coefficient is then approached by a linear law function of the
velocity ω(t):

h(t) = 10 + βω(t), (5)

with 0.13 < β < 0.4 W.m−2.K−1.rpm−1, yielding a maximum exchange coefficient
30 < hmax < 70W.m−2.K1 for a maximum velocity equal to 150 rpm. The influence
of parameter β is discussed in paragraph 5.4.

3.2. The brake pad

The pad is composed of a sintered material (ΩP1) and of its support made of
steel (ΩP2). Thermophysic parameters of the sintered material have been char-
acterized at the TREFLE lab. (Bordeaux, FRANCE), and were found to be
k = 4W.m−1.K−1 and c = 1.8 × 106 J.m−3.K−1. The properties of the steel are
k = 50W.m−1.K−1 and c = 3.6 × 106 J.m−3.K−1. Given the complexity of the
geometry (Fig. 4) and the low value of k, a three-dimensional modelling is chosen.
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The spatio-temporal evolution of the temperature is modelled by the following
equations:

∀M ∈ ΩP , c
∂T

∂t
= k∇2T, (6)

∀M ∈ ΓP,i, i = 1, 3, k~∇T.~n = h(t)(Tf − T ) + ϕ(M)f2(t). (7)

Γp,1 is the surface of the pad in friction with the disc. On this boundary, h(t) = 0.
Similarly to the case of disc, ϕ(M) is the known spatial repartition of the flux,
which is assumed to be a linear function of the radius, while f2(t) is the temporal
evolution to be identified from the temperature measurements.
Γp,2 is the union of the different surfaces in contact with the ambient air. The

top of the pad is placed above the disc and is therefore not in friction and is part
of Γp,2. Moreover, there is also no friction in the zone facing the groove machined
on the disc. On this surfaces, h(t) = 10W.m−2.K−1, and ϕ(M) = 0.
A bakelite wafer is added to the back face of the steel support to decrease the

thermal losses. On this surface (Γp,3), h = 8W.m−2.K−1 and ϕ(M) = 0.

4. Methodology

This work is the concrete form of previous theoretical papers. Its objective is to
demonstrate the viability of the method in industrial applications. The following
paragraph gives the main issues necessary for the global comprehension of this
paper. For more details, the reader is encouraged to read the mentioned articles.

4.1. Modal formulation

Combining Eqs. (3)-(7), the general heat equation to solve is :

∀M ∈ Ω, c(
∂T

∂t
+ ω(t)~U0.~∇T ) = k∇2T + a h(t) (Tf − T ) + π(M)f1(t), (8)

∀M ∈ Γ, k~∇T.~n = h(t)(Tf − T ) + ϕ(M)f2(t), (9)

where a is a numerical parameter whose value is 0 for the pad and 2
e
for the disc.

Modal formulations consist in searching for the solution as a sum of elementary
thermal fields Vi, the modes, weighted by their time dependent amplitudes xi:

T (M, t) =

N
∑

i=0

xi(t)Vi(M) (10)

Rigorously, N = ∞, but in practice, only a finite number N of modes is accessible,
analytically or numerically. Two issues are raised by Eqs. (8)-(10).
As the heat exchange coefficient h(t) is a function of time, the set of functions Vi

has to be able to rebuild boundary conditions (9) for any value of h(t), i.e., it has
to form a base for the workspace H1(Ω) in order to fulfil the equality in Eq.(10).
Moreover, to be appropriate for on-line identification, the number of unknowns

has to be small. A second step is mandatory to reduce the order of the model.
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4.2. Branch basis

The eigenfunctions of the branch problem satisfy the boundary condition criteria.
This problem is defined by:

∀M ∈ Ω, −k∇2Vi + cω0
~U0.~∇Vi = zicVi, (11)

∀M ∈ Γ, k~∇Vi.~n = −ziζVi, (12)

where zi and Vi are, respectively, the eigenvalues and the eigenfunctions of the
branch modal base. The specificity of this eigenvalue problem is its boundary con-
dition involving the eigenvalue (Eq. (12)), which means that the branch modal
basis defined by Eqs.(11)-(12) is not linked to a specific physical boundary con-
dition. The parameter ζ is a numerical parameter called the Steklov number. It
ensures that the eigenvalue z has the same dimension in Eqs. (11) and (12). Its
numerical value is chosen in order to balance the integrals on the boundary and on
the volume [28]:

ζ =

∫

Ω

c dΩ

∫

Γ

dΓ
(13)

The introduction of boundary condition (12) leads to two principal kinds of modes
[29]. A first family is composed of modes quasi-null on the boundary but not in
the bulk of the domain (volume modes), while a second one is made of modes
quasi-null on the bulk, but not near the boundaries (surface modes). The existence
of surface modes enables to rebuild temperature and thermal flux density for all
h(t) convective coefficient. This basis is then adapted to non stationary and non
linear thermal problems. Detailed studies of this modes have been performed (see
for example [29] or [30]).

4.3. The adjoint branch basis

As this model is non self-adjoint, its eigenmodes do not form an orthogonal set,
and the adjoint branch modal base has to be defined :

∀M ∈ Ω, −k∇2V ⋆
i − cω0

~U0.~∇V ⋆
i = zcV ⋆

i , (14)

∀M ∈ Γ, k~∇V ⋆
i .~n = −ziζV

⋆
i . (15)

The set of functions (Vi, V
⋆
i ) forms a bi-orthogonal system, and verifies the following

orthogonality property:

< V̄i
⋆
, Vj >= c

∫

Ω

V̄i
⋆
(M)Vj(M)dΩ+

∫

Γ

ζV̄i
⋆
(M)Vj(M)dΓ = δij . (16)

Subscript denotes the order of the eigenmode, δi,j = 1 if i = j and δi,j = 0
otherwise, < ., . > is the inner product, and V̄i

⋆
is the complex conjugate of V ⋆

i .
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Evidently, in the case of the brake pad, ω = 0, and the eigenproblem becomes
self-adjoint.
The generalized eigenvalue problems Eqs. (11)-(12) and (14)-(15) are defined

independently of any spatial discretization. For simple geometries, analytical solu-
tion might even be found. However, given the complex geometries, a finite elements
discretization with linear shape functions is chosen, leading to a mesh with Nmesh

nodes. The direct and adjoint branch basis are computed after spatial discretization
with the Arpack software [31].

4.4. Reduction

The next step consists in reducing the model, i.e. decreasing its size from N to
Ñ with Ñ << N , while keeping the maximum information. This is done by the
generalized amalgam method [32]. In this method, the most influential modes are
selected, and the remaining modes are added to them, balanced with a coefficient.
It ensues new modes Ṽi, named amalgamated modes, which are expressed as a
linear combination of branch modes Vi according to:

Ṽi =

Ni
∑

p=0

αi,pVi,p. (17)

The determination of coefficients αi,p is done by minimizing in the modal space the
distance between a reference model and the reduced one. The modal decomposition
of temperature reads then as:

T (M, t) =

Ñ
∑

i=0

x̃i(t)Ṽi(M), (18)

4.5. Amplitude equation

The reduced model amplitude equation whose unknowns are x̃i, and whose order
is Ñ , is obtained by replacing in the variational formulation of Eq. (8)-(9) the
temperature field by its modal decomposition (Eq.(18)), while the test functions
are the eigenmodes of the adjoint branch problem.

c

Ñ
∑

i=0

∫

Ω

Ṽ ⋆
j ṼidΩ

∂x̃i

∂t
= −k

Ñ
∑

i=0

∫

Ω

~∇Ṽ ⋆
j
~∇ṼidΩx̃i

−cω(t)

Ñ
∑

i=0

∫

Ω

Ṽ ⋆
j
~U0

~∇ṼidΩx̃i

−h(t)



a

Ñ
∑

i=0

∫

Ω

Ṽ ⋆
j ṼidΩx̃i +

Ñ
∑

i=0

∫

Γ

Ṽ ⋆
j ṼidΓx̃i





+h(t)



a

∫

Ω

Ṽ ⋆
j TfdΩ+

∫

Γ

Ṽ ⋆
j TfdΓ





+f1(t)

∫

Ω

Ṽ ⋆
j π(M)dΩ+ f2(t)

∫

Γ

Ṽ ⋆
j ϕ(M)dΓ.

(19)
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f1(t) and f2(t) will be identified with this equation from the knowledge of T .
Numerical implementation details are given in appendix A.

4.6. Inverse problem

As the objective is to perform on-line identification, the inverse method has to
be sequential, which discards global minimization methods such that conjugate
gradients. A Beck time-stepping method adapted to the modal formulation has
been chosen for both domains (pad and disc). The reduced formulation broadens
the scope of investigation of the method of Beck with problems of large dimensions
while keeping acceptable computation time. The general formulation of the method
used is given in appendix B.

5. Application

5.1. Numerical parameters

The choice of parameters (reduced model order, time step and the number of future
time steps) is delicate, since they are linked. The optimum is then obtained from an
equilibrium and a sensitivity analysis is required. However, as a reduced model is
used, the sensitivity analysis is performed in a short time. For the disc, a complete
numerical study, including stability analysis ans sensitivity to measurement and
material property errors has been conducted by Quéméner et al. [24]. For the pad,
similar configurations has been fully studied in refs. [22], [23]. The numerical pa-
rameters of the reduced models used for the identification process are the following.

The disc is discretized on a mesh containing 4914 nodes. In accordance with [30],
the base branch is computed with a low angular velocity ω0 = 0.018 rpm, a con-
ductivity k = 49 W.m−1.K−1, volume thermal capacity c = 3.0× 106 J.m−3.K−1,
and a Steklov number ζ = 2.0 × 105 J.m−2.K−1. An initial base of 615 modes
is computed, reduced to 54 modes with the amalgam procedure. The number of
future time steps is equal to 0. The necessary time step is 2.10−3 s. The camera fre-
quency being of 50Hz, temperature records are oversampled using a quadratic law.

The pad is discretized on a mesh containing 6956 nodes. The base branch is
computed with a conductivity k = 4 W.m−1.K−1, volume thermal capacity c =
1.6× 106 J.m−3.K−1), and a Steklov number ζ = 1.3× 104 J.m−2.K−1. An initial
base of 600 modes is computed, reduced to 50 modes with the amalgam procedure.
The number of future time steps is equal to 10, the time step is 0.2 s.

5.2. Experimental mechanical solicitations

The temporal evolution of the disc velocity is shown in Fig. 7. The velocity is
linear by segments, varying from 0 to 150 rpm, alternating phases of acceleration,
deceleration, constant speed and letup. In order not to have too much torque at low
speed (which locks the engine), the pressure on the braking system is imposed only
when the disc velocity reached the constant speed steps. Figure 7 also represents
the evolution of mechanical power dissipated during the friction known within an
uncertainty of 5%. This value is obtained from the difference of electrical power
with and without friction, the uncertainty being estimated with the losses by joules
effect on the stator engine.
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5.3. Validation of the inversion procedure

The heat fluxes dissipated by the pads and by the disc are identified from the
temperatures evolution (Fig. 8).

Although the level of temperature is similar, an asymmetry appears clearly
between the two pads, the temperature variations in pad n02 being slower than
those observed in pad n01, showing the necessity to treat both pads. The identified
fluxes for both pads are presented in Fig. 9. Accordingly to the temperature
measurements, the flux asymmetry between the two pads is recovered.
These heat fluxes are used as input in the direct model (Eq. (19)). Figure 10
compares the temperature evolutions obtained numerically with the experimental
ones. The global shape is similar, although discrepancies of a few degrees are
observed. Nevertheless, the maximum difference is less than 5%, validating the
on-line inversion procedure.

Concerning the temperature at the surface of the disc (Fig. 8), regular oscil-
lations, functions of the speed, appear since the beginning of the heating. These
oscillations are in agreement with several studies reported in the literature [33],
[34], [35]. They are caused by the existence of hot spot engendered by mechanical
phenomena (non uniform wear, contact asperity, thermo-elastic deformations,
imperfect geometry of the disc). After the letup of the disc velocity (t = 240 s),
the amplitude of the temperature oscillations lightly increases then decreases to
its initial level.
The identified heat flux dissipated in the disc, presented by Figure 11 for
β = 0.27W.m−2.K−1.rpm−1, i.e. hmax = 50W.m−2K−1, is strongly noised,
especially at high velocities. Following the numerical study [24], the raw identified
heat flux is filtered with a low pass filter, with a cut-off frequency of 0.3Hz (see
Fig. 12). It is remarkable that the raw identified heat flux yields such result after a
simple filtering : from a signal varying from [−106 : 106]W.m−2, the filtering gives
results in the range [0 : 1400]W.m−2. Moreover, this heat flux is consistent with
the friction sequence : A stiff increase of the heat flux is observed when a pressure
is exerted on the brake, while a stiff decrease is seen when the pressure stops.
The existence of strong oscillations is mainly due to the filter : the low cut-off
frequency, imposed by the velocity, limits the number of sinusoids kept to rebuild
the signal after the filtering.
The smoothed value of the filtered identified heat flux (see Fig. 12) is chosen
as input in the direct simulation. Figure 13 compares the experimental tem-
perature evolution with the numerical one. As expected, the numerical model
can not reproduce temperature oscillations, as their causes are not taken into
account by the model. However, numerical simulation reproduces faithfully the
mean experimental evolution. It is remarked that the numerical model predicts
small temperature oscillations during the second stage of acceleration after the
suspension of rotation. These oscillations, due to a hot spot engendered by the
velocity variation, coincide with lightly larger experimental oscillations. This good
agreement validates the inversion procedure for the disc.

5.4. Validation of the inversion results

As stated in section 3.1, an uncertainty for the identification of the heat flux
dissipated by the disc comes from the insufficient knowledge of the heat exchange
coefficient and its dependency towards the disc velocity. The heat flux is identified
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with the extreme values of β (Fig. 15). As expected, the identified heat flux is
sensitive to the value of the exchange coefficient, except at the beginning of the
experiment, where the disc temperature is close to the ambient, limiting the heat
exchange. These fluxes are taken as input for the direct model. Whatever the value
of β, the temperature computed with the direct model fits the experiment. As
a matter of fact, comparison between experimental and numerical temperatures
obtained with the identified flux is only a way to verify the coherency between
direct and inverse models. It enables to validate the inversion procedure, but does
not enable to validate the identification result. The use of incorrect parameters
will yield an incorrect flux, which will yield, with the same wrong parameters,
the measured temperature. The insufficient knowledge of h leads to an area of
uncertainty (shaded area in figure Fig. 15), for which the maximum value is 8%.

In order to validate the identification results, two complementary ways are used.
The heat fluxes received by the three components are first added and compared to
the increase of mechanical power due to friction (Fig. 16). Following the first law of
thermodynamics, the global heat flux is of the same magnitude than the increase
of mechanical power.
Furthermore, the repartition of the global heat flux is compared to the model of
semi-infinitive solids giving the fraction γ of frictional heat flux entering the disc
[36] :

γ =
ǫ

1 + ǫ
with ǫ =

√
λD cD√
λP cP

(20)

With the thermophysical parameters used in this study, γ = 82%. By comparing
the identified fluxes in the pad and in the disc, it is seen that about 85% of
the mechanical power is absorbed by the disc. These two results validate the
identification results.

Computations are conducted on a PC cadenced at 1.8Ghz and a memory of 2Go

(RAM). With this common hardware, the sequential identification process and the
filtering take less than 205 s (194 s for the disc and 5 s for one pad) while the total
process duration is 448 s. This study proved that identification with BERM is a
suitable method for real experimental problems with rotating device, and it opens
the way to real-time process.

6. Discussion

At some special moments, especially during the first heating phase, a significant
difference appears between the two powers. The question is whether it is an
identification error or a physical phenomenon not taken into account in the
thermodynamics balance. It is noted that during the second stage of friction, the
two fluxes are equal in the limit of the uncertainties. This eliminates systematic
errors of modelling such as wrong thermophysical properties or inappropriate
two-dimensional simplification.

The examination of Fig. 8 reveals an asymmetry inside both pads, the sensor
located downstream measuring a temperature lower than the central and upstream
sensor. This is confirmed by the observation of the pad after some experiments
(photo 17). It is first seen that some parts of the surface (zone A) have a glossy
appearance. This corresponds to the abrasion of the metal grains present in the
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sintered materials. The areas of non-friction, especially the part of the pad facing
the groove machined into the disc, appear (zone B). Surprisingly, the bottom of
the pad (zone C), supposed to be in contact with the disc, does not have the
same glossy appearance than zone A. We finally note the existence of a deposit
of powder (zone D), coming from the wear of the pad and which is interposed
between the pad and disc. These observations also correspond to those found in
the rich bibliography insisting on the complexity of the phenomena that occur
at the interface between a disc and a plate brake, and which are little known.
Furthermore, this non-uniformities of the surface appearance varies according to
experimental tests.

The difference of temperature inside pad as well as the examination of the pad
prove the complex azimuthal and radial non-uniformity of the flux dissipated at
the interface, which is not taken into account in the numerical model. Moreover,
given the complexity of the physics and the variation of the solicitations, the
spatial repartition of the flux is probably time dependent, explaining the non
systematic errors. Radial linear law used in our model is a coarse approximation
of reality, and the inclusion of an accurate repartition of the flux in the numerical
model might improve the identification results. If the numerical implementation
of a sophisticated law is not a fundamental difficulty, it is not the case of its
procurement, representative of every phenomenon. A first refinement can be done
with a mechanical simulation taking into account the entire braking system,
the repartition of the pressure exerted by the master cylinder on the pads and
the static jamming. However, the non-uniform wear and the resulting release of
particles trapped at the interface between the disc and the pad [37] [38] [39] as
well as the dynamic jamming and unjamming are hardly precisely predictable.

The pad wear does not just impact on the heat flux repartition. It also impacts on
the thermodynamics budget. A prominent phenomenon is the release of particles
from the pad, but also from the disc, which are trapped at the interface. The
softer parts are slowly being crushed, and are either expelled or incorporated at
the interface in order to form a third body between the two initial bodies. There
are also very hard parts, which retain their original size and attack the surfaces of
bodies in contact. With the models used here, only the heat flux received by the
elements as sensible heat is identified, while there is little doubt that wear occurs
without energy supply.

7. Conclusion

The objective of this study was to prove that Branch Eigenmodes Reduction
Method (BERM) is an efficient and fast method to solve inverse problem in
industrial configurations. The chosen application is the identification of the heat
flux dissipated during friction between a rotating disc and two brake pads. The
experimental device being close to a real configuration, the identification process
is characterized by every bias linked to experimental domain : measurement
uncertainties and distortion between the model and its necessary approximations
on one hand, and the reality and its complexity on the other hand. BERM depends
solely on a mathematical model. To model accurately the reality, thermo-physical
parameters (capacity, conductivity, heat exchange coefficient, spatial repartition of
the flux...) have to be accurately known. This is the main limitation of our method.
However, since they are known, whatever their complexity (time dependency,
spatial repartition, non linearity), they can be incorporated in the model. Despite

Accepted Manuscript

11



this limit, this study achieved its objective, as the identification results presented
here are in good agreement with the measured mechanical power. Moreover, as
the computation time is far below the process duration, it opens the way to real
time identification.

This study was confronted to the complex phenomena due to wear. It impacts
on the spatial repartition of the heat flux and on the thermodynamics budget, and
might explain the small discrepancy observed at the beginning of the experiment.
This highlights how the weakness of the method might become a strength: as
we know precisely the nature of what is identified, this method, coupled with a
sophisticated experimental device used to determine the spatial distribution of the
flux, can be a tool to quantify the energetic phenomena involved during the braking
process.
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Décomposion sur les modes de branches, Int. J. Thermal Sci. 38 (1999), pp. 289–304.
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Appendix A. Discrete amplitude equation

The variational formulation of Eqs. (8)-(9) reads

c

∫

Ω

g
∂T

∂t
dΩ =− k

∫

Ω

~∇g.~∇TdΩ− cω(t)

∫

Ω

g~U0.~∇TdΩ

− h(t)



a

∫

Ω

gTdΩ+

∫

Γ

gTdΓ





+ h(t)



a

∫

Ω

gTfdΩ+

∫

Γ

gTfdΓ





+ f1(t)

∫

Ω

gπ(M)dΩ+ f2(t)

∫

Γ

gϕ(M)dΓ,

(A1)

where g is a trial function defined in H1(Ω).
In Eq.(A1), the temperature field is replaced by its modal decomposition

(Eq.(10)), while the test functions f are the adjoint branch problem eigenmodes.
The amplitude equation reads then as :

c

Ñ
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Ṽ
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j ṼidΩ
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Ṽ

⋆,t
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Ṽ

⋆,t
j TfdΓ

)

+ f1(t)

∫

Ω

Ṽ
⋆,t
j π(M)dΩ+ f2(t)

∫

Γ

Ṽ
⋆,t
j ϕ(M)dΓ,

(A2)

where Ṽ
⋆,t
j is the transpose of Ṽ ⋆

j . This is the reduced model state equation whose

unknowns are x̃i, and whose order is Ñ . The following operators are defined :

K = k
∫

Ω
~∇ • ·~∇gdΩ C = c

∫

Ω •gdΩ
U = c

∫

Ω g~U0 · ~∇ • dΩ H = a
∫

Ω g • dΩ+
∫

Γ g • dΓ
Tf = a

∫

Ω gTfdΩ+
∫

Γ gTfdΓ P =
∫

Ω

gπ(M)dΩ

F =
∫

Γ

gϕ(M)dΓ

(A3)

They are discretized on finite elements mesh with linear shape functions, leading
to a mesh with Nmesh nodes. Noting Ṽ[Nmesh×Ñ ] the matrix defining the reduced
base, and Ṽ⋆,T the transpose of the adjoint matrix, the equation system to solve
is :
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Ṽ⋆,TCṼ
˙̃
X(t) =Ṽ⋆,T [K+ ω(t)U+ h(t)H] ṼX̃

+ h(t)Ṽ⋆,TTf + f1(t)Ṽ
⋆,TF + f2(t)Ṽ

⋆,TP.
(A4)

This equation can be rewritten as :

L
dX̃

dt
= [MK + ω(t)MU + h(t)MH ] X̃+ h(t)NTf

+ f1(t)Nπ + f2(t)Nϕ, (A5)

Working in the amplitude space, and for a given number of modes Ñ , matrices
L, MK , MU and MH , of dimension [Ñ × Ñ ], are respectively the projection of
inertia, conductance, transport and convective exchange matrices in the amplitude
space, X̃ is the amplitudes vector. The vectors NTf

, Nπ and Nϕ are respectively

the ambient, volume and superficial solicitations vectors of dimension Ñ . They
are defined by Eq. (A4) according to their apparition order. The resulting linear
system is of small size, but the matrices are full. For direct resolution the time
discretization is done by a is a backward Euler scheme. The resulting linear system
is solved by a LU method.
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Appendix B. Beck Method adapted to reduced modal problem

Resolution of an inverse problem is done from temperature value on n particular
points in the domain, named outputs, yielding a vector Y of dimension n linked
to the temperature field, and thus to the reduced modal base, by the following
relations:

Y(t) = ST (t) = SṼX(t) = HX̃(t) (B1)

A Beck sequential technique [7] with a constant time steps semi implicit temporal
discretization is used. Indeed, time dependent parameters should not appear in the
matrix that will be inversed. They are estimated at time step k :

X̃(k + 1) = (L− δtMK)−1 [L+ δt(ω(k)MU + h(k)MH)] X̃(k)

+h(k + 1)δt (L− δtMK)−1
NTf

+f(k + 1)δt (L− δtMK)−1
Nπ

(B2)

The outputs vector expresses from Eqs. (B1) and (B2)

Y(k + 1) = MH [L+ ω(k)δtMU + h(k)δtMH ] X̃(k)
+h(k + 1)δtMHNTf

+f(k + 1)δtMHNπ,

(B3)

Or

Y(k + 1) = f(k + 1)HP +H
[

G (k)X̃(k) + h(k + 1)F
]

, (B4)

with the following matrices















M = (L− δtMK)−1

G (k) = M [L+ ω(k)δtMU + h(k)δtMH ]
F = δtMNTf

P = δtMNπ

(B5)

In order to take into account the lagging and damping effects of the diffusion
process, it is necessary to obtain information using future time steps. A function
specification is introduced. A temporary assumption is made on the additional
unknowns: f(k+ 1+ 1), . . . , f(k+ 1+ nf), where nf is the number of future time
steps. In this study, a constant value of f is chosen:

f(k + 1 + i) = f(k + 1) = constant for 1 ≤ i ≤ nf (B6)

The addition of future time steps leads to the resolution of a system of (nf +1)×q

equations where q is the number of measurements.
Hence, at each time step, the temperature measurements vector Y⋆ contains

(nf + 1)× n rows, as follows:

Y⋆ =











Y⋆(k + 1)
Y⋆(k + 2)

...
Y⋆(k + 1 + nf)











(B7)
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The system to solve is then overdetermined. The aim is to identify the pseudo-
solution f̂(k+1) source of the inverse heat advection-conduction problem, such as
Y⋆ − Ỹ ∼= 0, where Ỹ is the temperature vector computed by the reduced model.
This condition can be written, according to Eq.

Y⋆ −
(

Cf̂(k + 1) +D
)

∼= 0 (B8)

with the following matrices

C =



















HP

H [P + PG (k + 1)]
...

H



I+

nf
∑

j=1

nf
∏

i=j

G (k + i)



P ∀nf ≥ 1



















(B9)

D =























H
[

G (k)X̃(k) + h(k + 1)F
]

H
[

G (k)G (k + 1)X̃(k) + h(k + 2)F + h(k + 1)G (k + 1)F
]

...

H
[

∏nf
i=0 G (k + i)X̃(k) +

[

h(k + nf + 1) +
∑nf

j=1 h(k + j)
∏nf

i=j G (k + i)
]

F

]

∀nf ≥ 1























(B10)

The inversion procedure leads to the sequential solution :

f̂(k + 1) =
(

CTC
)

CT (Y⋆ −D) (B11)

With the reduced model, matrix (L− δtMK) can be easily inverted, and thus
the inverse problem can be solved, while it is impossible with the finite elements
formulation due to the size of the matrix.
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Figure 1. Experimental apparatus : the disc and the calliper (which is open) without the front pad
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Figure 2. Principle of the test bench
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Figure 3. Disc geometry and location of the temperature measurement point
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Figure 4. Pad geometry
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Figure 5. Location of the sensors in the pad
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Figure 6. Modelization of the experiment
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Figure 7. Mechanical measurements from the motor
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Figure 9. Identified heat flux received by the pads
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Figure 10. Front pad : comparison between measured and computed temperatures
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Figure 11. Identified heat flux received by the disc : raw result
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Figure 12. Filtered identified heat flux received by the disc and heat flux used in the direct simulation
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Figure 13. Disc : comparison between measured and computed temperatures
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Figure 14. Influence of the exchange coefficient value on the filtered heat flux identification for the disc
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Figure 15. Influence of the exchange coefficient value on the filtered heat flux identification for the disc
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Figure 16. Comparison between the mechanical and the thermal powers
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Figure 17. The pad after friction
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