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Abstract. We show that the entropy function—and hence the finite
1-logarithm—Dbehaves a lot like certain derivations. We recall its coho-
mological interpretation as a 2-cocycle and also deduce 2n-cocycles for
any n. Finally, we give some identities for finite multiple polylogarithms
together with number theoretic applications.

1 Information theory, Entropy and Polylogarithms

It is well known that the notion of entropy occurs in many sciences. In thermo-
dynamics, it means a measure of the quantity of disorder, or more accurately, the
tendancy of a system to go toward a disordered state. In information theory, the
entropy measures (in terms of real positive numbers) the quantity of information
of a certain property [17],[20]. From a practical viewpoint, entropies play also
a key role in the study of random bit generators (deterministic or not) [8], in
particular due to the Maurer test [16]. A general definition of entropy has been
given by Rényi [18]: let S = {s1,..., s} be a set of discrete events for which the
probabilities are given by p; = P(s = s;) for ¢ = 1,...,n. The Rényi entropy S
is then defined for @ > 0 and o # 1 as

o ()

The Shannon entropy [20] can be recovered from the one of Rényi when av — 1

Ha(s) =

a—1

Hy(S) = lim Ho(S) = = pilog(p) .

We also often use the minimal entropy which is related to the probability of the
most predictable event (while the Shannon entropy gives an averaged measure):

Huin(5) = lim Ho(S) = —log(. max (p;)).

i=1,
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Those different entropies are related by the following inequalities
Hoin(8) < ... < Ho(S) < Hy(8) < log(card(S)) = lim Ha(S).
a—

The Shannon entropy can be characterised in the framework of information
theory, assuming that the propagation of information follows a Markovian model
[17],[20]. If H is the Shannon entropy, it fulfills the equation, often called the
Fundamental Equation of Information Theory (FEITH),

H(z)+ (1 —2)H (1 Y

x

—x) Hy)—(1—-y)H (1—y> =0. (FEITH)
In [2](section 5.4, pp.66-69), it is shown that if g is a real function locally in-
tegrable on ]0,1[ and if, moreover, g fulfills FEITH, then there exists ¢ € R
such that g = ¢H (we can also restrict the hypothesis to Lebesgue measurable).
There are several papers (e.g., [1],[7]) on the equation FEITH and the under-
standing of its structural properties, with the motivation to weaken either the
probabilistic hypothesis or the analytical ones. The following generalisation of
the equation FEITH has also been considered [14], for 8 positive and x and y in
some admissible range,

H(x)+(1—x)ﬁH< Y ) —H(y)—(1—y)5H< ° ) —0. (1)
1—x 1—y
It turns out that FEITH can be derived, in a precise formal sense [9], from the
5-term equation of the classical (or p-adic) dilogarithm. Cathelineau [5] found
that an appropriate derivative of the Bloch—Wigner dilogarithm coincides with
the classical entropy function, and that the five term relation satisfied by the
former implies the four term relation of the latter. Kontsevich [13] discovered
that the truncated finite logarithm over a finite field F,, with p prime, defined
by
p—1 ok
£1 xXr) = -,
(z) kZ::l ’
satisfies FEITH (or its generalisation for 8 = 1 or p). In [9] we showed how
one can expand this relationship for “higher analogues" in order to produce
and prove similar functional identities for finite polylogarithms from those for
classical polylogarithms. It was also shown that functional equations for finite
polylogarithms often hold even as polynomial identities over finite fields. In par-
ticular, we have shown that the polynomial version of £; fulfills (1) with g = p.
Another approach, due to Bloch and Esnault [3], gives a more geometric version
in terms of algebraic cycles, and further structural properties have been investi-
gated by Cathelineau [6].
In this paper we propose some new formal characterisations of the entropy from
an algebraic viewpoint, using formal derivations and a relation to cohomology
(section 2), and we give complementary relations involving multiple analogues
of the finite polylogarithms with a few applications to number theory (section



3). The details for this last work will be given in a subsequent paper. In the
remainder of the paper, rings are assumed to be commutative. We will denote
by F, the finite field with ¢ elements. If ¢ is prime, we set F, = Z/qZ.

Acknowledgements: We would like to express our sincere gratitude to the
reviewers for their valuable comments who have helped improve this paper.

2 Algebraic interpretation of the entropy function

2.1 Formal entropy as formal derivations

Definition 1. Let R be a (commutative) ring and let D be a map from R to R.
We will say that D is a unitary derivation over R if the following azioms hold:

1. “Leibniz’s rule”: for all x,y € R, we have D(zy) = xD(y) + yD(x).
2. “Additivity on partitions of unity”: for all x € R, we have D(z)+D(1—x) =
0.

We will denote by Der*(R) the set of unitary derivations over R.

Applying analogous arguments as for derivations (see for instance [15], chap. 9),
we have

Proposition 1. The set of unitary derivations over R, Der*(R), is an R-
module, which has Deryz(R) as a submodule. If D and D' are two unitary deriva-
tions, then the composition Do D’ and the Lie bracket [D,D') = DoD"—D'o D
are unitary derivations.

Let D be a unitary derivation over R.

1. For all x € R and all n € N we have D(z") = nz"~1D(z). Furthermore, if
x € R* the rule is also true for n € Z.

2. Foralln € N, D((n+1)1g) = ") D(-1), and 2D(~1) = 0.

3. If R has no 2-torsion or if 2(—1) = 0 in R, then for allz € R and alln € Z,
we have D(nz) = nD(x).

4. Suppose that R has no 2-torsion, or that 2(—1) = 0 in R, and let m € Z
with m € R, then D(X) = 0. If moreover Q C R, then D(Q) = 0.

Proof. 1. Works as the classical proof for derivations.

2. First, using the standard fact that 0 = 0 - 0, we deduce that D(0) = 0, and
then D(1) = 0. Then we can see that 2D(—1) = 0 and that D(n+1)—D(n) =
nD(—1). Thus an induction argument proves the formula.

3. If R has no 2-torsion, or if 2(—1) = 0 in R, then D(—1) = 0, and using the
previous result together with the fact that D(—n) = —D(1 + n), we deduce
D(n) = 0 for all n € Z. Then the desired formula follows.

4. Direct consequence of the previous rules.

O

Remark 1. We can get nicer statements by working in Der*(R)/{D(—1)), where
(D(—1)) denotes the submodule of Der*(R) spanned by D(—1).



Corollary 1. Suppose that nR = 0, for a given n € N —{0}. Then if D is a
unitary derivation over R and if A, : R — R is defined by \,(x) = 2™, we then
have D o A\, = 0. In particular if p is a prime number, v € N — {0} and ¢ = p¥,
then D(F,) = 0.

Recall the following definition from [12].

Definition 2. Let R be a commutative ring and k be a natural number. We say
that R is k-fold stable if for any family of k unimodular vectors (a;,b;)1<i<k € R?
(i.e. a;R+ b;R = R), there exists t € R, such that a; + tb; € R* for all i.

Proposition 2. “Unitary Derivations are almost Derivations”
Let R be a 2-fold stable ring, and suppose that R is of characteristic 2 (i.e.
2R =0) or that R has no 2-torsion. Then Derz(R) = Der“(R).

Proof. According to Proposition 1, we have to show that any unitary derivation
is additive. Let D € Der"(R) and let x,y € R. Suppose first that « is invertible.
Then x+y = x(14+%), and by Leibniz’s rule, we have D(z+y) = 2 D(1+%)4(1+
2)D(z). Using the additivity on partitions of unity, D(1+%) = —D(—%) and also
D(—%) = —D(%). Hence we deduce D(x+y) = D(x)+ D(y). Now suppose that
x is not invertible. Then applying the 2-fold stability to the unimodular vectors
(0,1), (z,1), we deduce the existence of t € R* such that x + t is invertible.
Setting &’ = z+t and y' = y—t, we have D(z+y) = D(2'+y’). Then we can apply
the previous arguments to 2’, y’, and deduce that D(x+y) = D(x+t)+ D(y—t).
Now we again apply the same arguments to x, ¢, and y, —t. Using the rules of
Proposition 1, we conclude that D(z +y) = D(x)+ D(y), and the claim follows.

O

Ezxample 1. As any semilocal ring R such that any of its residue fields has at
least 3 elements is 2-fold stable [12], we then deduce that Derz(R) = Der*(R).

2.2 Unitary Derivations and Symmetric Information Function of
degree 1

For more details on this section related to information theory see [14].

Definition 3. Let R be a commutative ring. We will say that a map f: R - R
is an abstract symmetric information function of degree 1 if the two following
conditions hold: for all x,y € R such that x,y,1 —x,1 —y € R*, the functional
equation FEITH holds and for all x € R, we have f(z) = f(1 — x).

Denote by JF; (R) the set of abstract symmetric information functions of degree 1
over R. Then JF;(R) is an R-module. Let Leib(R) be the set of Leibniz functions
over R (i.e. which fulfill the “Leibniz rule”), then it is also an R-module (in fact
the composition and the Lie bracket still hold in Leib(R)). The proof of the
following proposition is a straightforward computation.

Proposition 3. We have a morphism of R-modules H : Leib(R) — IF1(R),
defined by H(p) = p+port, with7(x) = 1—x. Furthermore, Ker(H) = Der“(R).

Remark 2. The morphism H is not necessarily onto. If R = F,, a finite field,
then Leib(F,) = 0, but JF;(F,) # 0.



2.3 Cohomological interpretation of formal entropy functions

The following results are classical in origin (see [4], pp.58-59, and also the ref-
erences cited there, and also [13]). We try in this section to render the proofs
(for the finite case) more transparent, and also emphasize the derivation aspect
of the previous sections.

Theorem 1. Let F' be a finite prime field and H : F — F a function which ful-
fills the following conditions: H(x) = H(1—x), the functional equation (FEITH)
holds for H and H(0) = 0. Then the function ¢ : F x F — F defined by

p(x,y) = (x+y)H () if v +y # 0 and 0 otherwise, is a non-trivial 2-cocycle.

Proof. The fact that ¢ is a 2-cocycle is a straightforward consequence of the
properties on H. In order to see this, we use the inversion relation, which in turn
one can deduce from (FEITH), and the relation H(z) = H(1 — z). By setting
Y =7 and X = ¢ +Z — (assuming some suitable admissibility conditions
on z, y and z), and modulo some modifications using the other relations, the
2-cocycle condition is deduced from (FEITH). For the non-triviality, notice that
 is homogeneous and recall that as F' is a field we can endow the cochains with
a structure of F-vector space. Suppose that ¢ is a 2-coboundary. Then, there
exists amap @ : F' — F, such that ¢(z,y) = Q(z+y)—Q(z) —Q(y). Notice that
Q(0) = 0. As ¢ is homogeneous, we have p(Az, \y) = AQ(z+y) —AQ(z) —AQ(y).
Thus the function ¢y (z) = Q(Ax)—AQ(x) is an additive morphism F' — F, hence
entirely determined by ¥ (1). The map (1) fulfills the Leibniz chain rule on
F*. Indeed, assuming F' = Z/pZ, if A, p are arbitrary elements of F', as upy (1) =
(1), by a straightforward computation we deduce ¥, (1) = ¥ (1) + A, (1).
Thus we formally have 1ym (1) = mA™ 14\ (1). But F* is generated by a prim-
itive root, say w. Let p = card(F). Then w?~! = 1. Moreover 0 = (1) =
(p — 1)wP~=24,(1) . Hence (1) = 0 and then Q(A\z) = AQ(z) for all \,z € F.
This implies that @ is an additive map and thus ¢ = 0, which contradicts the
fact that it is a non-zero 2-cochain. ad

Remark 3. We should notice that H(\) = o(X, 1—=X) = ¥ (1)+11-x)(1), which
is very similar to the results of Maksa [14].

Corollary 2. The map F — H?*(F,F), given by A\ = A\p, is an isomorphism
and, up to a constant, £1 is unique.

Using the (cup) product structure on the cohomology ring H*(F, F) (cf. [10],
chap. 3), we can check the following property:

Corollary 3. Let n be a positive integer. The map

2n—1
(21, T2n) = H e(@i, Tit1)

1=1,1 even

induces a non-trivial cocycle in H*"(F, F), which corresponds to the cup product
induced by @. This cocycle corresponds to the product of n functions H, and is
unique up to a constant.



3 Finite multiple polylogarithms

While classical polylogarithms play an important role in the theory of mixed
Tate motives over a field, it turns out that it is often preferable to also consider
the larger class of multiple polylogarithms (e.g., [11]). In a similar way it is useful
to investigate their finite analogues. We are mainly concerned with finite double
polylogarithms which are given as functions Z/p x Z/p — Z/p by

xm yn
Lap(z,y) = E A b
0<m<n<p

3.1 Expressing £;,; via £3

Our arguably most interesting result, from which we will deduce a couple of
consequences, is the following.

Theorem 2. The finite (1, 1)-logarithm £11(z,y) can be expressed in terms of
£9. More precisely, we have

y£1’1(x’§) N £2<_yp[ﬂ - —y)pH :za;

The proof of this result takes (1 —y)? £ (1:—;) and decomposes the (triangular)

|+n-al+0-9). @

domain over which the summation variables run into an “open” part (a trian-
gle) and three “boundary” parts (one diagonal, a vertical and a horizontal line)
and identifies the former with the £ ;-expression and the latter with the three
remaining terms in the equation. At a crucial step one uses the binomial identity

(0 - ()

3.2 Cathelineau’s £3-identity

Combining the well-known shuffle identity £45(x,y) + £5.0(y, ) + Lags(zy) =
£a(x)£p(y) for a = b =1 with the above we find that the product £1(z)£1(y)
can indeed be expressed as a sum of £5-terms. In fact, the resulting expression
is precisely Cathelineau’s “double bracket” [[z,y]] ([5], p-1344, Déf. 4). Now the
sum obtained from the four terms of (FEITH) for one of the two arguments and
while leaving the second argument fixed kills the products of £1-terms so we are
left with only £s-terms, hence we have proved a functional equation—in fact,
Cathelineau’s 22-term equation in ([5], p.1346, (2)).

3.3 Further identities

We can prove an inversion formula for finite multiple polylogarithms

1 1 dm
Tf"'TéD £m[7"'7m1 (E”ﬁ) = (71)m1+ e £m1,---,me(T1""aT€)a

and we can also build a four variable identity for £ ;.



Proposition 4. Define [z,y]s = £11(x,y) + £11(y,x) and consider the fol-
lowing linear combination

K(e,y) =lo3ls + 27 [24]

S

S S |

1 vy 1 1
T S S R [
#'(1-y) xy—ls+x( v) x' 1—yls

Then the following functional equation (purely in £11 ) holds:
I(x7yazaw) —I(JT,Z,y,’UJ) = Oa
where

Hz,y;z,w) = (1+2) 1+ w) K(z,y) + (1+2)(1+y) K(z,w).

3.4 Finite polylogarithms and Fermat’s last theorem

Several classical criteria used by Kummer, Mirimanoff and Wieferich to prove
certain cases of Fermat’s Last Theorem can be rephrased in terms of functional
equations and evaluations of finite (multiple) polylogarithms. For example, Mi-
rimanoff was led to the study of (nowadays called) Mirimanoff polynomials (cf.
[19], VIII, (1.11))

p—1
i (T) = KT,
j=1
which are nothing else but finite polylogarithms:

@i (T) = £p—;(T) (mod p).

(Note that Mirimanoft’s original polynomials correspond to —¢;(—T).)
Part of the groundwork for Mirimanoft’s congruences was formed by the
crucial identity

1

) [@p—l(Tﬂ

2

T
= ¢pal1) + (T = 1y s (=) (mod p)
([19], VIII, (1.29)) which is nothing but the special case product formula z =
y (=T) in our identity for £1(x)£1(y) alluded to in 3.2.

The Mirimanoff congruences ([19], VIII, (1B)) can be reformulated as follows:
for any solution (z,y, z) of zP+yP+ 2P = 0 in pairwise prime integers not divisible
by p (i.e. a Fermat triple) and for t = f% we have

. p—1
£1(t):0, £j(t)£p_j(t):0 (]:2,...,?).
One can prove these congruences using an identity expressing £,_;_1 j4+1(1,7)

in terms of £,,(T"): denoting the Bernoulli numbers by B,,, we have

1 J

Ly (1.7T) = ——
p—J 1,1+J(a ) j+1n:o

(J':l)ann(T) j=1,....p—2. (3



Also, Wieferich’s criterion states that if the first case of FLT for the prime p
is false then p? divides 27 — 1 (only two such primes are known for which that
latter holds: p = 1093 and p = 3511). This criterion can be rephrased in terms
of finite polylogarithms as saying £1(—1) = 0 for such primes.
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