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L1 Adaptive Control of Parallel Kinematic Manipulators: Design and
Real-Time Experiments

Moussab Bennehar1, Ahmed Chemori1 and François Pierrot1

Abstract— In this paper, the recently developed L1 adaptive
control strategy is experimentally validated for the first time on
a parallel kinematic manipulator. The L1 adaptive controller
is known for its decoupled estimation and control loops which
enables fast adaptation while guaranteeing robustness of the
closed-loop system. The control scheme is experimentally imple-
mented on a 4-DOFs parallel kinematic manipulator. Based on
the obtained experimental results, a comparative study shows
that the proposed L1 adaptive controller outperforms the PD
controller in terms of tracking performance thanks to the
compensation of the nonlinearities in the adaptive controller.

I. INTRODUCTION

Control of Parallel Kinematic Manipulators (PKMs) has
always been described as a challenging task in nonlinear con-
trol community. Indeed, the interconnected structure of rigid
bodies in PKMs gives rise to complex nonlinearities that have
to be carefully taken into consideration in the control scheme
[1]. The earlier control schemes implemented on mechanical
manipulators were conventional single-axis controllers such
as the PD [2] and its nonlinear counterpart (NPD) [3]. Single-
axis controllers are the most adopted schemes in industrial
world thanks to their simplicity and efficiency. However,
they result in a poor tracking performance especially on
high acceleration tasks. Fixed model-based controllers (e.g
Computed Torque [4], PD+ [5], Augmented PD [6], ...)
were consequently introduced to overcome the limitations
of single-axis controllers and particularly, to improve the
tracking performance. In this class of controllers, a nonlinear
loop based on the dynamics of the manipulator is included
in order to compensate for the inherent nonlinearities. Nev-
ertheless, they require an accurate dynamic model of the
manipulator and its parameters to be able to adequately
cancel the nonlinearities. For this reason, fixed model-based
controllers are not suitable for real industrial applications
where the dynamic model is often time-varying or unknown
(e.g varying payload).

In order to overcome such limitations of fixed model-
based controllers, adaptive control theory seemed to be a
suitable solution and therefore, was introduced to mechanical
manipulators [7]. Similar to fixed model-based controllers,
the control architecture features a nonlinear loop to cancel
the inherent nonlinearities. Besides, the control architecture
is appended with an estimation loop that adjusts the varying
parameters of the controller in real-time according to the
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variations of the system. Although adaptive control was
widely implemented on serial manipulators [8], [9], [10],
it has not gained the same success with PKMs, despite the
fact that they share similar properties [11]. Since this paper
is focused on PKMs, we limit our discussion in the sequel
to adaptive controllers applied to PKMs.

In [12], the Desired Compensation Adaptive Law (DCAL)
has been used to control the Hexaglide, a 6-DOFs PKM
intended to be used for high speed milling. The DCAL
controller allowed to estimate both inertial and friction
parameters of the Hexaglide in real-time. DCAL was recently
extended in [13] by replacing the fixed gains in the feedback
loop with nonlinear varying ones. The superiority of the
proposed extended DCAL controller in terms of tracking per-
formance was demonstrated through real-time experiments
on a 4-DOF Redundantly Actuated PKM (RA-PKM). In [14],
a task-space adaptive controller was proposed to control a
2-DOFs RA-PKM. The gradient descent algorithm has been
used to minimize a tracking performance index. The stability
analysis of the proposed controller has been conducted
based on the Lyapunov theory and real-time experiments
showed its relevance. In [15], the Backstepping algorithm
has been employed to design an adaptive controller for the
set-point control of a 2-DOFs planar PKM. Although the
aforementioned adaptive controllers may seem quite differ-
ent, they share one particular limitation. Indeed, in order
to achieve fast convergence of the parameters and hence,
a good tracking performance, the adaptation gain has to be
increased. However, increasing the adaptation gain may lead
to parameter divergence and risk of instability.

Recently, a new control scheme called L1 adaptive control
has been developed to overcome the aforementioned short-
coming and release such a compromise [16], [17]. Indeed, the
L1 adaptive control essentially aims at decoupling robustness
and adaptation through introducing a low-pass filter into
the control architecture. In contrast with Model Reference
Adaptive Control (MRAC), the L1 adaptive control strat-
egy focuses on the feasibility of the controller by partial
compensation of the uncertainties lying inside the control
channel bandwidth [18]. The first validations of L1 adap-
tive control were through numerical simulations on aerial
vehicles [19]. Then, it started gaining an increased interest
and was successfully implemented on various systems such
as underwater vehicles [20], serial mechanical manipulators
[21], underactuated mechanical systems [22], and others.

The main contribution of this paper is to experimentally
validate the L1 adaptive control theory on a more complex,
highly nonlinear system; namely the parallel manipulator
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VELOCE. The remainder of this paper is organized as
follows. In Section II, a brief description of the modeling
of VELOCE PKM is provided. Section III is dedicated to
the problem formulation of the L1 adaptive control and
its application to PKMs. The prototype testbed as well as
real-time results are presented and discussed in Section IV.
Finally, conclusions and future work are given in section V.

II. DESCRIPTION AND DYNAMIC MODELING OF
VELOCE: A 4-DOF FULLY PKM

VELOCE is a 4-DOFs fully PKM, which means that it
has the same number of kinematic chains as DOFs [1].
Each kinematic chain is a serial arrangement of an actuator
(i.e. its stator part), an arm (including the rotor part of
the actuator) and a forearm. Its platform (called a traveling
plate) is capable of performing three translations (x, y, z)
along the X-Y-Z axes and one rotation (α) about the Z axis.
Fig. 1 illustrates a schematic view of the CAD design of
VELOCE as well as its workspace. In the sequel, a brief
description of the dynamic model of VELOCE, necessary
for the subsequent theoretical development, is provided.

For the dynamic modeling of VELOCE, the following
assumptions, commonly used in Delta-like robots, have been
considered [23]:
• Both dry and viscous frictions of all joints are neglected

since the joints are carefully designed such that the
friction effects are minimized.

• The inertia of the forearms is neglected and their mass
is split up into two equivalent parts, one is added to the
mass of the arm while the other one is considered with
the traveling plate.

• Gravity is not considered since we are dealing with high
acceleration motions.

The dynamic parameters of the robot are summarized
in Table I and its dynamic model is established through
analyzing the equilibrium of the arms and the traveling plate
separately. Then, the complete dynamic model is obtained
by summing-up these two quantities.

A. Equilibrium of the arms

The relationship between the torque vector Γ ∈ R4 and
the joint accelerations vector q̈ ∈ R4 is formulated as

Γ− JTq F =

(
Iact + Iarm +

l2Mforearm

2

)
q̈ (1)

where Iact ∈ R4×4 and Iarm ∈ R4×4 are the inertia matrices
of the motor drives and the arms, respectively. Mforearm ∈
R4×4 is the mass matrix of the forearms, Jq ∈ R4×4 is the
joint Jacobian matrix, F ∈ R4 is the force vector associated
to the acceleration of the traveling plate. l = diag(l1, . . . , l4)
with li the length of the ith arm, Γ ∈ R4 is the control input
vector.

B. Equilibrium of the traveling plate

The equation of motion of the traveling plate is

JTx F =

(
Mtp + 4

Mforearm

2

)
Ẍ (2)

Fig. 1. CAD schematic view of VELOCE PKM

where Jx ∈ R4×4 is the Cartesian Jacobian matrix, Mtp ∈
R4×4 is the mass matrix of the traveling plate including
eventual payload and Ẍ ∈ R4 is its acceleration vector. It
is worth noting that the complete Jacobian matrix of the
manipulator Jm(q) ∈ R4×4, which is a function of the
manipulator’s pose, is given by Jm = J−1q Jx.

C. Complete equilibrium and full dynamic model

The complete equilibrium of the manipulator is obtained
by substituting (1) in (2) as follows

Ẍ =

(
Mtp + 4

Mforearm

2

)−1
JTm [Γ

−
(
Iact + Iarm +

l2Mforearm

2

)
q̈

] (3)

The simplified dynamic model (3) is essential in any
model-based control scheme. It is important to note that (3)
can be expressed using only Cartesian quantities by using the
adequate kinematic relationships that map the joint and the
Cartesian spaces. To sum up, the dynamic midel of VELOCE
can be finally expressed in Cartesian space as follows

Ẍ =
(
Mtot + JTmItotJm

)−1
JTm

(
Γ− ItotJ̇mẊ

)
(4)

where Mtot = Mtp + 4
Mforearm

2 is the total mass matrix
of the manipulator and Itot = Iact + Iarm +

l2Mforearm

2 is
its total inertia matrix. Similarly, using the appropriate kine-
matic relationships, always valid away from singularities, the
dynamic model of VELOCE can be written in the standard
joint space form as

M(q)q̈ +N(q, q̇) = Γ(t) (5)

TABLE I
DYNAMIC PARAMETERS OF VELOCE

Mtp [Kg] Mforearm [Kg] Iact [Kg.m2] Iarm [Kg.m2]
0.257 0.080 0.0041 0.0053
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where M(q) = Itot +
(
JTm
)−1

Mtot

(
JTm
)−1

is the inertia
matrix and N(q, q̇) =

(
JTm
)−1

Mtot

(
JTm
)−1

J̇mJm is the
Coriolis and centrifugal forces vector. It is worth noting that
the structure of the dynamic quantities in this representation
is very complex and highly nonlinear due to the inherent
complex nonlinearities in the Jacobian matrices. The formu-
lation (4) is more suitable for joint space control design and
will then be used in the subsequent development.

III. PROPOSED CONTROL SOLUTION: L1

ADAPTIVE CONTROL

Let qd(t) ∈ R4 be the desired joint position vecotor and
q̇d(t) ∈ R4 the corresponding desired velocity vector. The
desired joint trajectories (i.e positions and velocities) are
issued from a trajectory generation process which computes
in real-time the joint quantities corresponding to a certain
task defined in Cartesian space. Consider the combined
tracking error r(t) ∈ R4 as follows

r = (q̇ − q̇d) + Λ (q − qd) (6)

where Λ ∈ R4×4 is a symmetric positive-definite matrix.
The control input vector τ(t) is the combination of two
separate terms, a fixed state-feedback term characterizing
the evolution of the transient response of the system and
an adaptive term that compensates for the nonlinearities of
the system, that is

τ(t) = Amr(t) + τad(t) (7)

where Am ∈ R4×4 is a Hurwitz matrix characterizing the
transient response of the system and τad(t) ∈ R4 is the
adaptive component to be designed later. The time derivative
of (6) combined with (7) and (5) leads to the following error
dynamics

ṙ(t) = Amr(t) + τad(t)− η(t, ζ(t)), r(0) = r0 (8)

where ζ = [r, q]
T and η(t, ζ(t)) is a nonlinear function

that gathers all the nonlinearities of the system including
eventual external disturbances. The function η(t, ζ(t)) can
be parametrized, under some reasonable assumptions, using
the truncated infinity norm of r(t) as regressor as follows
[18]

η(t, ζ(t)) = θ(t)‖rτ‖L∞ + σ(t), ∀t ∈ [0, τ ] (9)

where θ(t), σ(t) ∈ R4 are differentiable functions and
‖(.)τ‖L∞ denotes the truncated L∞-norm of (.). rτ (t) is
the truncation of r(t) defined by

rτ (t) =

{
r(t), 0 ≤ t ≤ τ

0, t > τ
(10)

From this parametrization, it follows that (8) can be
rewritten as:

ṙ(t) = Amr(t)+τad(t)−(θ(t)‖rt‖L∞ + σ(t)) , r(0) = r0
(11)

If all the nonlinearities of the system are perfectly known
(i.e perfect dynamic model, ideal working conditions, no
external disturbances, etc.), putting τad(t) = η(t, ζ(t)) in

(8) yields to an exponentially stable system ṙ(t) = Amr(t).
Which means that r(t) will converge to zero as fast as
specified by the choice of Am; consequently q will approach
qd since (6) is a stable system. However, it is practically
impossible to know perfectly all the nonlinearities of the sys-
tem. Then, the adaptive control term τad(t) can be designed
in order to cancel the nonlinearity η(t, ζ(t)). Since this last
one is not well known, the objective of the adaptive control
term τad(t) would be to estimate and compensate η(t, ζ(t)).
For that, consider the following state predictor

˙̂r(t) =Amr̂(t) + τad(t)−
(
θ̂(t)‖rt‖L∞ + σ̂(t)

)
−Kr̃(t), r̂(0) = r0

(12)

where r̃(t) , r̂(t) − r(t) is the prediction error and
K ∈ R4×4 is a design parameter to be tuned to reject
high-frequency noise [21]. θ̂(t) and σ̂(t) are estimates of
θ(t) and σ(t) respectively, obtained through the following
projection-based adaptation laws [18] in order to ensure the
boundedness of their infinity norms

˙̂
θ(t) = ΓProj

(
θ̂(t), P r̃(t)‖rt‖L∞

)
, θ̂(0) = θ̂0 (13)

˙̂σ(t) = ΓProj (σ̂(t), P r̃(t)) , σ̂(0) = σ̂0 (14)

where Γ ∈ R+ is the adaptive gain, P = PT > 0 is
the solution to the algebraic Lyapunov equation ATmP +
PAm = −Q for some arbitrary matrix Q = QT > 0.
The projection operator Proj (θ, y) does not modify the
value of y if θ belongs to a certain sphere defined with a
maximum accepted value θmax, it only modifies y when
θ takes values outside the allowed range. Consequently the
estimated parameters always satisfy the constraints ‖θ̂‖∞ <
θb, ‖σ̂‖∞ < σb, ∀t ∈ [0, T ]. The adaptive control term
τad(t) is the output of the following system

τad(s) = C(s)η̂(s) (15)

where η̂(s) is the Laplace transform of η̂(t) =(
θ̂(t)‖rt‖L∞ + σ̂(t)

)
and C(s) is a diagonal matrix whose

elements are BIBO-stable strictly proper transfer functions
satisfying a unity DC gain and zero initialization for their
state-space realizations.

The objective of the proposed controller is to drive the
tracking error r to its desired value rd = 0 while ensuring
that all signals remain bounded and that the control sig-
nal does not exceed the control channel bandwidth [18].
Consequently, the L1 adaptive controller aims at partial
compensation of the nonlinearities in order to maintain the
robustness of the system. Therefore, the adaptive gain Γ can
be increased without altering the robustness of the closed-
loop system. One major advantage of this control scheme lies
in the fact that it is a model-free adaptive control. Indeed,
in contrast with the widely developed model-based adaptive
controllers for mechanical manipulators, the control law in
(7) does not require any knowledge about the dynamics of
the system.

To sum up, the overall block diagram of the proposed L1

adaptive controller is shown in Fig. 2.
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IV. EXPERIMENTAL RESULTS

A. Experimental testbed of VELOCE PKM

In order to validate the proposed adaptive controller,
real-time experiments were conducted on the experimental
testbed of the prototype of VELOCE PKM, shown in Fig.
3. The actuators of the robot are the TMB0140-100-3RBS
ETEL direct-drive motors. They can provide a maximum
peak torque of 127 Nm and they are able to reach 550 rpm of
maximum speed. Each actuator is equipped with a contact-
free incremental optical encoder providing a total number
of 5000 pulses per revolution. The assembled manipulator
is capable of reaching 10 m/s of maximum linear velocity
of the traveling plate, 200 m/s2 of maximum acceleration
and is able to carry a maximum payload of 10 Kg. The
control architecture is implemented using Matlab/Simulink
from Mathworks and compiled using the XPC Target real-
time toolbox. Then, the resulting low-level code is uploaded
to the target PC, an industrial computer executing the control-
loop at a frequency of 10 KHz (i.e. a sample time of 0.1 ms).

B. Real-time experiments

In order to highlight the outcomes of the proposed L1

adaptive controller, its performance is proposed to be com-
pared with the one of a PD controller. The PD controller in
joint space can be expressed as [2]

τPD(t) = Kp (qd(t)− q(t)) +Kd (q̇d(t)− q̇(t)) (16)

where Kp, Kd ∈ R4×4 are positive definite feedback gains
usually taken as diagonal matrices (i.e no coupling between
the joints is considered). The PD feedback gains providing
the best results were tuned by trial and error leading to the
following values: Kp = 102 × diag(39, 39, 39, 39), Kd =
diag(6, 6, 6, 6). The parameters of the L1 adaptive controller
providing the best results are summarized in Table II.

The reference trajectories were generated in Cartesian
space using 5th order polynomials. The traveling plate of the
manipulator has to follow several point-to-point trajectories
within the workspace (including some rotations as well)
away from singularities. The duration of each point-to-point
trajectory is fixed to 0.15 seconds. The desired joint trajec-
tories are then computed by solving the Inverse Kinematics
problem in real-time while the actual joint velocities were

r = (q̇ − q̇d)
+ Λ(q − qd)

Amr +
+ VELOCE

C(s)η(s)

State
Predictor

−
+ Adaptive

Laws

qd, q̇d r τ

r̂ r̃

q, q̇

θ̂, σ̂

τad

Fig. 2. Block diagram of the L1 adaptive controller

Fig. 3. View of the experimental setup of VELOCE PKM

obtained using a numerical differentiation of the encoders’
position measurements. The measured Cartesian positions are
computed by solving the Forward Kinematics problem using
the measured joint positions.

A comparison between the PD and the L1 adaptive con-
trollers in terms of joint tracking errors is illustrated in Fig.
4. For the seek of clarity, the plots are zoomed around the
interval [8, 10] seconds. It can be clearly seen that the
tracking errors in the case of PD are greater than those of the
L1 adaptive controller. The proposed controller significantly
improves the tracking capabilities of the manipulator thanks
to the compensated nonlinearities.

Similarly, a comparison between both controllers in terms
of Cartesian tracking performance is shown in Fig. 5. Once
again, the L1 adaptive controller outperforms the PD con-
troller in all axes. The improvement is more noticeable on
the x and y axes.

To quantify the enhancement brought by the L1 adaptive
controller, we evaluate the tracking errors according to the
following RMS-based (RMS: Root Mean Square) criteria
where the translational movements are separated from the

TABLE II
SUMMARY OF THE PARAMETERS OF THE L1 ADAPTIVE CONTROLLER

Parameter Description Value
Λ position error weight 10× diag(65, 65, 65, 65)
Am transeint response matrix diag(−6,−6,−6,−6)
θmax upper bound on θ 50
σmax upper bound on σ 30

Γ adaptation gain 106

K noise rejection gain 103 × diag(6, 6, 6, 6)
C(s) L1 design filter 144/(s2 + 21.6s+ 144)

1590



8 8.5 9 9.5 10

−0.2

−0.1

0

0.1

0.2

0.3
ε q1

 [d
eg

]

8 8.5 9 9.5 10

−0.2

−0.1

0

0.1

0.2

0.3

ε q2
 [d

eg
]

8 8.5 9 9.5 10

−0.2

−0.1

0

0.1

0.2

0.3

ε q3
 [d

eg
]

Time [s]
8 8.5 9 9.5 10

−0.2

−0.1

0

0.1

0.2

0.3

ε q4
 [d

eg
]

Time [s]

Fig. 4. Evolution of the joint tracking errors versus time: L1 adaptive
controller (solid), PD (dashed)

rotational ones

RMSqer =

√√√√ 4∑
i=1

RMS2(εqi)

RMStra =

√
RMS2(εx) + RMS2(εy) + RMS2(εz)

RMSrot = RMS(εα)

In these formulas, ε(.) denotes the tracking error of the
DOF (.). The obtained results are summarized in Table
III, from which the improvement brought by the proposed
controller is clearly observed. The tracking errors are reduced
at least by 24% with respect of those of the PD controller.
On the other hand, the improvement is more important for
the rotation of the traveling plate with an improvement of at
least 33%.

For the L1 adaptive controller, the evolution of the es-
timated parameters θ̂ and σ̂ is shown in Fig. 6 and Fig.
7 respectively. The estimated parameters keep oscillating
and do not converge to a constant value since the desired
trajectory of the traveling plate is time-varying. As expected,
the estimated parameters never exceed their allowed bounds
θmax and σmax thanks to the projection operator. During
the real-time experiments, the initial values θ̂0 and σ̂0 were
initialized to zero

(
θ̂0 = [0, 0, 0, 0]T and σ̂0 = [0, 0, 0, 0]T

)
.

The generated control inputs are shown in Fig. 8. It can
be noticed that the inputs are away from the limits of the
actuators, namely 127 Nm. Moreover, they are smooth and

TABLE III
SCENARIO 1: TRACKING PERFORMANCE COMPARISON

RMSqer [deg] RMStra [mm] RMSrot [deg]
PD 0.1402 0.57869 0.0138

L1 adaptive 0.1028 0.44187 0.0093
Improvement 27 % 24 % 33 %
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Fig. 5. Evolution of the Cartesian tracking errors versus time: L1 adaptive
control (solid), PD (dashed)

they do not show show any discontinuities.
The movements of the robot while tracking reference

trajectories have been recorded, they are illustrated in the
video accompanying the paper.

V. CONCLUSION AND FUTURE WORK

This paper presents a first application of the recently
developed L1 adaptive control theory to PKMs. The control
law consists of two terms designed to track some desired
reference trajectories. The first part being a stabilizing state-
feedback term, while the second one is an adaptive term
designed to compensate for the nonlinearities of the system.
The proposed controller was implemented in real-time on a
4-DOFs PKM developed in our laboratory. To demonstrate
its superiority, a comparison with a PD controller in terms of
tracking performance was conducted. Experimental results
show that the L1 adaptive controller gives better tracking
performance, both in joint and task spaces. This work
may be further extended by considering various operating
conditions including payload changes, presence of external
disturbances, etc. It would also be interesting to implement
the proposed controller on other prototypes of PKMs.
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