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NORM-INFLATION FOR PERIODIC NLS EQUATIONS IN

NEGATIVE SOBOLEV SPACES

by

Rémi Carles & Thomas Kappeler

Abstract. — In this paper we consider Schrödinger equations with nonlinearities
of odd order 2σ + 1 on Td. We prove that for σd > 2, they are strongly illposed in
the Sobolev space Hs for any s < 0, exhibiting norm-inflation with infinite loss of
regularity. In the case of the one-dimensional cubic nonlinear Schrödinger equation
and its renormalized version we prove such a result for Hs with s < −2/3.

1. Introduction

We consider nonlinear Schrödinger (NLS) equations of the form

(1.1) i∂tψ +
1

2
∆ψ = µ|ψ|2σψ, ψ = ψ(t, x) ∈ C, t ∈ R, x ∈ T

d

and the renormalized versions

(1.2) i∂tψ +
1

2
∆ψ = µ|ψ|2ψ − 2µ

(2π)d

(∫

Td

|ψ(t, x)|2dx
)

ψ ,

where σ > 1 is an integer, T = R/2πZ, ∆ =
∑d

k=1 ∂
2
xk
, and µ ∈ {1,−1}.

For any s ∈ R and 1 6 p 6 ∞, denote by FLs,p(Td) ≡ FLs,p(Td,C) the Fourier-
Lebesgue space,

FLs,p(Td) = {f ∈ D′(Td,C); 〈·〉s f̂(·) ∈ ℓp(Zd)}
with ℓp(Zd) ≡ ℓp(Zd,C) denoting the standard ℓp sequence space. Note that for any
s ∈ R, FLs,2(Td) is the Sobolev space Hs(Td) ≡ Hs(Td,C) and for any 1 6 p 6 ∞,
∩s∈RFLs,p(Td) coincides with C∞(Td) ≡ C∞(Td,C). The aim of this paper is to
establish the following strong ill-posedness property of equations (1.1) and (1.2).

Supported in part by the French ANR projects SchEq (ANR-12-JS01-0005-01), BECASIM (ANR-
12-MONU-0007-04), and the Swiss National Science Foundation.
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Theorem 1.1. — Let σ, d > 1 be integers.
(i) Assume that dσ > 2 in the case of (1.1) and d > 2 in the case of (1.2). Then for
any s < 0, there exists a sequence of initial data (ψn(0))n>1 in C∞(Td) such that

‖ψn(0)‖FLs,p(Td) −→
n→∞

0, ∀p ∈ [1,∞],

and a sequence of times tn → 0 such that the corresponding solutions ψn to (1.1)
respectively (1.2) satisfy

‖ψn(tn)‖FLr,p(Td) −→
n→∞

∞, ∀r ∈ R, ∀p ∈ [1,∞].

(ii) If d = σ = 1, then for any s < −2/3, there exists a sequence of initial data
ψn(0) ∈ C∞(T) with

‖ψn(0)‖FLs,p(T) −→
n→∞

0, ∀p ∈ [1,∞],

and a sequence of times tn → 0 such that the corresponding solutions ψn to (1.1)
respectively (1.2) satisfy

‖ψn(tn)‖FLr,p(T) −→
n→∞

∞, ∀r ∈ R, ∀p ∈ [1,∞].

Theorem 1.1 implies the following

Corollary 1.2. — Let d, σ > 1 be integers and let s be as in Theorem 1.1. Fur-
thermore assume that p1, p2 ∈ [1,∞] and T > 0. Then for no r ∈ R, there exists a
neighborhood U of 0 in FLs,p1(Td) and a continuous function Mr : R>0 → R>0 such
that any smooth solution ψ to (1.1) (or (1.2)) satisfy the a priori estimate

‖ψ‖L∞(0,T ;FLr,p2(Td)) 6Mr

(
‖ψ(0)‖FLs,p1(Td)

)
.

In particular, for p1 = p2 = 2, there is no continuous function Mr such that smooth
solutions to (1.1) respectively (1.2) satisfy the a priori estimate

‖ψ‖L∞(0,T ;Hr(Td)) 6Mr

(
‖ψ(0)‖Hs(Td)

)
.

Comments: In connection with the study of ill-posedness of nonlinear Schrödinger
and nonlinear wave equations on the whole space Rd, Christ, Colliander, and Tao
introduced in [10] (cf. also [11]), the notion of norm inflation with respect to a given
(Sobolev) norm, saying that there exist a sequence of smooth initial data (ψn(0))n>1

and a sequence of times (tn)n>1, both converging to 0, so that the corresponding
smooth solutions ψn, evaluated at tn, is unbounded. Further results in this direction
were obtained in [2], [5], [6], where in particular norm inflation together with finite
or infinite loss of regularity was established for various equations on Rd. Theorem 1.1
states that such type of results hold true for nonlinear Schrödinger equations on the
torus Td.
Recently, the renormalized cubic Schrödinger equation (1.2) has caught quite some
attention. In particular, on T, some well-posedness / ill-posedness results below L2

have been established – see [9], [15] as well as [8], [18]. Although there are indications
that (1.2) has better stability properties than (1.1), our results show no difference
between the two equations as far as norm inflation concerns.
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Finally let us remark that the scaling symmetry of (1.1), considered on the
Sobolev spaces Hs(Rd), ψ(t, x) 7→ λ−2/σψ( t

λ2 ,
x
λ ) for λ > 0 has as critical exponent

s2,σ = d
2 − 1

σ since for this value of s, the homogeneous Hs−norm is invariant
under this scaling. More generally, for any given 1 6 p 6 ∞, the homogeneous
W s,p(Rd)−norm is invariant for sp,σ = d

p − 1
σ . It suggests that the FLs,p(Rd)−norm

is invariant for sFL
p,σ = d

p′ − 1
σ with 1

p′ = 1 − 1
p . Furthermore, the Galilean in-

variance of (1.1), ψ(t, x) 7→ e−iv·x/2ei|v|
2t/4ψ(t, x − vt) for arbitrary velocities v,

leaves the FL0,p(Rd)−norm invariant. Note that the statements of Theorem 1.1
for (1.1), considered on Hs(Td), are valid in a range of s, contained in the half line
−∞ < s 6 min(s2,σ, 0).

Method of proof: Let us give a brief outline of the proof of item (i) of Theorem 1.1
in the case of equation (1.1). Following the approach, developed in [5] and [6] for
equations such as nonlinear Schrdinger equations on the whole space Rd, we introduce
the following version of (1.1),

iε∂tu
ε +

ε2

2
∆uε = ε|uε|2σuε, x ∈ T

d

with ε being a small parameter. The equation is in a form, referred to as weakly non-
linear geometric optics. A solution uε of it, which is 2π−periodic in its x−variables,
is related to a solution ψ of (1.1) by

uε(t, x) = εβ/(2σ)ψ
(

εβt, ε
β−1
2 x
)

where β < 0 is a free parameter, but chosen so that ψ is also 2π−periodic in the
x−variables. We then construct a first order approximate solution uεapp(t, x) of u

ε(t, x)

of the form uεapp(t, x) =
∑

j∈Zd aj(t)e
iφj(t,x)/ε where the phase function φj(t, x) and

the amplitude aj(t) are determined in such a way that uεapp(t, x) solves the above

equation for uε up to O
(
ε2
)
. It turns out that φj(t, x) = j · x − |j|2

2 t and that the
aj ’s satisfy a system of ODEs, defined in terms of the resonance sets

Resj =

{

(kℓ)16ℓ62σ+1 ∈ Z
(2σ+1)d ;

2σ+1∑

ℓ=1

(−1)ℓ+1kℓ = j ;

2σ+1∑

ℓ=1

(−1)ℓ+1|kℓ|2 = |j|2
}

.

The strategy to prove Theorem 1.1 in the case considered is then to choose initial data
for uε of the form uε(0, x) =

∑

j∈S αje
iφj(0,x)/ε with S ⊂ Zd finite and 0 /∈ S so that

the zero mode a0(t)e
iφ0(t,x)/ε is created by resonant interaction of nonzero modes at

leading order, ȧ0(0) 6= 0. With an appropriate choice of the scaling parameter β, the
zero mode of ψ comes with a factor which is increasing in ε. Since the absolute value
of the zero mode bounds the norm ‖ · ‖FLs,p(Td) of any Fourier Lebesgue space from
below, it follows that for any s < 0, 1 6 p 6 ∞, the sequence (‖uεn(tn)‖FLs,p(Td))n>1

is unbounded for appropriate sequences (εn)n>1, (tn)n>1, converging both to 0. The
proofs of the remaining statements of Theorem 1.1 are similar, although a little bit
more involved.
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Related work: There are numerous works on ill-posedness for equations such as (1.1).
Besides the papers already cited, we refer to the dispersive wiki page [1]. In [18] one
finds a quite detailed account of existing results on the one-dimensional cubic NLS
equation below L2.

Organisation: In Section 2 we recall the geometrical optics approximation of first
order and a refined version of it, the latter being needed for the proof of item (ii) of
Theorem 1.1. In the subsequent section, we provide estimates for the approximations
of first order in the functional setup of the Wiener algebra. In Section 4, the resonant
sets of integer vectors, coming up in the construction of the approximate solutions, are
studied in more detail. Finally, in Section 5, we prove estimates for the approximations
of second order, needed for treating equation (1.2). With these preparations, we then
prove Theorem 1.1 in Section 6.
The case of focusing (µ = −1) NLS equations can be treated in exactly the same
fashion as the case of defocusing (µ = 1) ones. Hence to simplify notation, in what
follows we will only consider equations (1.1) and (1.2) with µ = 1. As already pointed
out in [11], results of the type stated in Theorem 1.1 for defocusing NLS equations
maybe considered as more surprising as the corresponding results for focusing ones.

Added in proof: After this work has been completed, Nobu Kishimoto informed us that
in unpublished work, he obtained results similar to ours, using techniques introduced
by Bejenaru and Tao ([3], further developed in [16]). In fact, his method of proof,
being different from ours (it is based on a multiscale analysis), allows him to prove
norm inflation in the Sobolev spaces Hs(T) with s 6 −1/2 for the cubic NLS equation
in one dimension and its normalized version.

2. Geometrical optics approximation: generalities

2.1. Setup. — For 0 < ε 6 1, we consider

(2.1) iε∂tu
ε +

ε2

2
∆uε = ε|uε|2σuε, x ∈ T

d,

along with initial data which are superpositions of plane waves,

(2.2) uε(0, x) =
∑

j∈Zd

αje
ij·x/ε, αj ∈ C.

To insure that uε(0, x) is 2π−periodic in x we will assume throughout the paper that
the parameter ε is of the from ε = 1/N for some N ∈ N. The goal of this and the
next two sections is to describe the solution uε in the limit ε → 0. Let us begin by
briefly recalling the results detailed in [5]. We construct first order approximations
of solutions of (2.1)–(2.2) as a superposition of modes,

(2.3) uεapp(t, x) =
∑

j∈Zd

aj(t)e
iφj(t,x)/ε.

The regime (2.1) goes under the name of weakly nonlinear geometric optics (see e.g.
[4]) since according to the considerations below, the phase functions φj turn out to
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be not affected by the nonlinearity in (2.1), while the amplitudes aj are. To find φj
and aj , substitute the ansatz (2.3) into (2.1) and for each j ∈ Zd, consider the terms

containing eiφj/ε separately. We then determine φj and aj so as to cancel the terms
of lowest orders in ε. Since the initial data are assumed to be of the form (2.2), we
find for any given j ∈ Zd at order O

(
ε0
)
,

O
(
ε0
)
: ∂tφj +

1

2
|∇φj |2 = 0, φj(0, x) = j · x,

hence

(2.4) φj(t, x) = j · x− |j|2
2
t.

In particular, for j = 0 one has φ0 = 0 and hence the zero mode a0e
iφ0/ε equals

a0 and is thus independent of ε. At next order, we obtain the following evolution
equation for the amplitude aj

(2.5) O
(
ε1
)
: iȧj =

∑

(k1,k2,··· ,k2σ+1)∈Resj

ak1 āk2 . . . ak2σ+1 , aj(0) = αj ,

where ȧj denotes the t−derivative of aj and Resj ⊂ Z(2σ+1)d the resonant set, asso-
ciated to j ∈ Zd and the nonlinearity |uε|2σuε . It is given by

Resj =

{

(kℓ)16ℓ62σ+1 ∈ Z
(2σ+1)d ;

2σ+1∑

ℓ=1

(−1)ℓ+1kℓ = j ;

2σ+1∑

ℓ=1

(−1)ℓ+1|kℓ|2 = |j|2
}

.

We describe these sets in more detail in Section 4. First we want to explain why the
above sum is restricted to the resonant set, preparing in this way the justification of
the geometrical optics approximation, presented in Section 3.

Duhamel’s formulation of (2.1)–(2.2) reads

(2.6) uε(t) = ei
t
2 ε∆uε(0)− i

∫ t

0

ei
t−τ
2 ε∆

(
|uε|2σuε

)
(τ)dτ .

Substituting the expression of the approximate solution (2.3) into the above formula,
we get

∑

j∈Zd

aj(t)e
iφj(t,x)/ε ≈

∑

j∈Zd

αje
i t
2 ε∆

(

eiφj(0,x)/ε
)

−i
∫ t

0

ei
t−τ
2 ε∆

∑

k1,k2,··· ,k2σ+1∈Zd

ak1(τ)e
iφk1

/εāk2(τ)e
−iφk2

/ε · · · ak2σ+1(τ)e
iφk2σ+1

/εdτ ,

where the symbol “≈” means that left and right hand sides in the formula above are
equal up to O (ε). Taking into account the identity

(2.7) ei
t
2 ε∆

(

eiφj(0,x)/ε
)

= eiφj(t,x)/ε,
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we conclude that modulo ε,
∑

j∈Zd

aj(t)e
iφj(t)/ε =

∑

j∈Zd

αje
iφj(t)/ε

− i
∑

k1,k2,··· ,k2σ+1∈Zd

∫ t

0

ei
t−τ
2 ε∆

(

ak1 āk2 · · · ak2σ+1e
i(
∑2σ+1

ℓ=1 (−1)1+ℓφkℓ)/ε
)

(τ)dτ .

The aim of the next subsection is to analyze terms of the form as in the above sum
in order to infer (2.5).

2.2. An explicit formula and a first consequence. — Given ω ∈ Z, j ∈ Zd,
and A ∈ L∞([0, T ]) ≡ L∞([0, T ],C) with T > 0, introduce

Dε(t, x) :=

∫ t

0

ei
t−τ
2 ε∆

(

A(τ)eij·x/ε−iωτ/(2ε)
)

dτ.

By the identity (2.7),

(2.8) Dε(t, x) = eij·x/ε−i|j|2t/(2ε)

∫ t

0

A(τ)ei(|j|
2−ω)τ/(2ε)dτ.

Lemma 2.1 (From [5], Lemma 5.6). — Suppose that A, Ȧ ∈ L∞([0, T ]) for some
T > 0. Then the following holds:
(i) The function Dε is in C([0, T ]× Td) and

‖Dε‖L∞([0,T ]×Td) 6

∫ T

0

|A(t)|dt.

(ii) Assume in addition that ω 6= |j|2. Then there exists a constant C independent of
j, ω, and A such that

‖Dε‖L∞([0,T ]×Td) 6
Cε

||j|2 − ω|
(

‖A‖L∞([0,T ]) + ‖Ȧ‖L∞([0,T ])

)

.

Sketch of the proof. — Item (i) is obvious and item (ii) follows from (2.8) by inte-
grating by parts.

Back to the above Duhamel’s formula, we have
∑

j∈Zd

aj(t)e
iφj(t)/ε =

∑

j∈Zd

αje
iφj(t)/ε − i

∑

j∈Zd

eiφj(t)/εEj(t)

where

Ej(t) :=
∑

k1,k2,··· ,k2σ+1∈Zd

k1−k2+···+k2σ+1=j

∫ t

0

(
ak1 āk2 . . . ak2σ+1

)
(τ)ei(|j|

2−
∑2σ+1

ℓ=1
(−1)1+ℓ|kℓ|

2)τ/(2ε)dτ.

By item (ii) of Lemma 2.1, all non-resonant terms yield a contribution of order O (ε),
hence are discarded in (2.5).
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2.3. Refined ansatz. — In the cubic one-dimensional case, we will need to go one
step further in the asymptotic description of the solution uε. To simplify notations we
therefore restrict the presentation to the cubic defocusing NLS equation with d = 1,

(2.9) iε∂tu
ε +

ε2

2
∂2xu

ε = ε|uε|2uε, x ∈ T.

For initial data as in (2.2), we construct an approximate solution of the form

(2.10) uεapp(t, x) =
∑

j∈Zd

(aj(t) + εbj(t)) e
iφj(t,x)/ε,

introducing terms of order ε in the amplitude. It turns out that for our applications,
we may assume that bj(0) = 0 for all j. Following the procedure of the previous
section, we get, using again formula (2.8),

(2.11) bj(t) = −i
∑

(k,ℓ,m)∈Resj

∫ t

0

(
akāℓbm + ak b̄ℓam + bkāℓam

)
(τ)dτ

(2.12) − i

ε

∑

k−ℓ+m=j

k2−ℓ2+m2 6=j2

∫ t

0

(akāℓam) (τ)ei(j
2−k2+ℓ2−m2)τ/(2ε)dτ .

Note that the despite the prefactor i
ε , the latter term is in fact of order O

(
ε0
)
since

each of the summands is non-resonant and hence can be integrated by parts (cf.
item (ii) of Lemma 2.1). To be consistent, the above expression for bj(t) should
be considered modulo O(ε), but we may choose to keep some terms of order ε for
convenience. In this case, bj(t) might depend on ε and we therefore write bεj(t) instead
of bj(t). To give a precise definition of bεj(t), let us analyze the above expression for

bj in more detail. Let A := akāℓam and assume that A, Ȧ, Ä ∈ L∞([0, T ]) for some
T > 0. Furthermore assume that δj,k,ℓ,m := j2 − k2 + ℓ2 − m2 ∈ Z \ {0}. Then
integrating by parts, one obtains (cf. item (ii) of Lemma 2.1)

i

ε

∫ t

0

A(τ)ei(j
2−k2+ℓ2−m2)τ/(2ε)dτ =

2

δj,k,ℓ,m

(

A(t)ei(j
2−k2+ℓ2−m2)t/(2ε) −A(0)

)

− 2

δj,k,ℓ,m

∫ t

0

Ȧ(τ)ei(j
2−k2+ℓ2−m2)τ/(2ε)dτ .

As by assumption, Ä ∈ L∞([0, T ]), the latter term can be integrated by parts once
more and is hence of order O (ε) . Taking into account the assumption bj(0) = 0, we
define bεj as follows:

(2.13) bεj(t) = −i
∑

(k,ℓ,m)∈Resj

∫ t

0

(
akāℓb

ε
m + ak b̄

ε
ℓam + bεkāℓam

)
(τ)dτ

−
∑

k−ℓ+m=j

k2−ℓ2+m2 6=j2

2

j2 − k2 + ℓ2 −m2

(

(akāℓam) (t)ei(j
2−k2+ℓ2−m2) t

2ε − αkᾱℓαm

)

.
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Note that (2.13) is a linear system for the coefficients bεj . They might indeed depend
on ε through the inhomogeneity given by the latter term. We also note that the

expression−i∑(k,ℓ,m)∈Resj

∫ t

0

(
akāℓb

ε
m + ak b̄

ε
ℓam + bεkāℓam

)
(τ)dτ may have the effect

of coupling the bεj ’s. We will make explicit computations on a simple example in
Subsection 6.4.

3. Geometrical optics: justification of the approximation

3.1. Functional setting. — As in [5] (and following successively [17] and [12], in
the context of geometrical optics for hyperbolic equations), we choose to work in the
Wiener algebra.

Definition 3.1 (Wiener algebra). — The Wiener algebra consists of functions of
the form

f(y) =
∑

j∈Zd

αje
ij·y , αj ∈ C

with (αj)j∈Zd ∈ ℓ1(Zd). It is endowed with the norm

‖f‖W =
∑

j∈Zd

|αj |.

Note that W = FL0,1(Td). The following properties of W are discussed in [5]:

Lemma 3.2. — (i) For f in W and ε (= 1/N, N ∈ N, ) one has f(·/ε) ∈ W and

‖f(·/ε)‖W = ‖f‖W .
(ii) W is a Banach space and continuously embeds into L∞(Td).
(iii) W is an algebra and

‖fg‖W 6 ‖f‖W‖g‖W ∀f, g ∈ W .

(iv) If F : C → C maps u to a finite sum of terms of the form upuq, p, q ∈ N, then it
extends to a map from W into itself which is Lipschitz on bounded subsets of W .
(v) For any t ∈ R, the operator ei

t
2 ε∆ is unitary on W .

3.2. Existence results. — It turns out that the Wiener algebra is very well suited
for constructing both exact and approximate solutions of (2.1)–(2.2) and for proving
error estimates. By [5, Proposition 5.8], one has the following results:

Proposition 3.3. — Let σ, d > 1 be integers. Then for any uε0 ∈ W , there exists
T ε > 0 so that (2.1) admits a unique solution uε ∈ C([0, T ε];W ) satisfying uε|t=0 = uε0.

An existence result for the resonant system (2.5) is given in [5, Proposition 5.12].
In [7, Lemma 2.3], extra regularity properties are established in the cubic case σ = 1
which can be readily proved to extend to higher order nonlinearities, yielding the
following proposition.

Proposition 3.4. — Let σ > 1 be an integer and (αj)j∈Zd ∈ ℓ1(Zd). Then there

exists T > 0 so that (2.5) admits a unique solution (aj)j∈Zd ∈ C∞([0, T ]; ℓ1(Zd)).
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Note that (aj)j∈Zd needs to be in C2([0, T ]; ℓ1(Zd)) in order to justify in the analysis
of the previous subsection that uεapp solves Duhamel’s formula associated to (2.9) up

to O(ε2). For the linear system (2.13), the following result holds:

Lemma 3.5. — Let T > 0 and (aj)j∈Zd ∈ C([0, T ]; ℓ1(Zd)). Then (2.13) has a

unique solution (bεj)j∈Zd ∈ C([0, T ]; ℓ1(Zd)). In addition, ‖bεj‖L∞([0,T ];ℓ1) is bounded
uniformly in ε ∈ (0, 1].

3.3. Error estimates. — In the case of the first order expansion presented in Sub-
section 2.1, the approximate solution uεapp, defined by Proposition 3.4 on an interval
[0, T ], satisfies

iε∂tu
ε
app +

ε2

2
∆uεapp = ε|uεapp|2σuεapp − εrε, uεapp|t=0 = uε|t=0

where the term rε ≡ rε(t, x) is given by

rε =
∑

j∈Zd

∑

k1−k2+···+k2σ+1=j

|k1|2−|k2|2+···+|k2σ+1|2 6=|j|2

ak1 āk2 · · ·ak2σ+1e
i(φk1

−φk2
+···+φk2σ+1

)/ε .

Since the kℓ’s are integer vectors and hence there are no issues of small nonzero
divisors, the integrated source term

Rε(t, x) =

∫ t

0

ei
t−τ
2 ε∆rε(τ, x)dτ

can be estimated in view of item (ii) of Lemma 2.1 by

‖Rε‖L∞([0,T ];W ) 6 Cε

where the constant C is independent of ε.

In the case of the second order expansion presented in Subsection 2.3 for the cubic
NLS equation on the circle (d = 1, σ = 1), one has by Proposition 3.4 and Lemma 3.5
that the approximate solution uεapp is defined on the interval [0, T ] with T as in
Proposition 3.4. Hence

iε∂tu
ε
app +

ε2

2
∂2xu

ε
app = ε|uεapp|2uεapp − εrεb , uεapp|t=0 = uε|t=0

where rεb ≡ rεb (t, x) is given by an explicit formula, similar to the one for rε. Using
again item (ii) of Lemma 2.1, one shows that the integrated source term

Rε
b(t, x) =

∫ t

0

ei
t−τ
2 ε∂2

xrεb (τ, x)dτ

satisfies the estimate

‖Rε
b‖L∞([0,T ];W ) 6 Cε2

with a constant C independent of ε. In view of Proposition 3.3, a bootstrap argument
applies, yielding the following error estimate:
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Proposition 3.6. — Let σ, d > 1 be integers, (αj)j∈Zd be a sequence in ℓ1(Zd), and
T be given as in Proposition 3.4 . Then there exists a constant C > 0 independent of
ε so that the following holds:
(i) The first order approximation uεapp, constructed in Subsection 2.1, satisfies

‖uε − uεapp‖L∞([0,T ];W ) 6 Cε .

(ii) In the case d = σ = 1, the second order approximation uεapp, constructed in
Subsection 2.3, satisfies

‖uε − uεapp‖L∞([0,T ];W ) 6 Cε2 .

4. Description of the approximate solution

4.1. Resonant sets and the creation of modes in the cubic case. — Using
arguments developed in [5] in connection with [13], the resonant sets Resj , introduced
in Subsection 2.1, can be characterized in the cubic case as follows:

Proposition 4.1. — Let σ = 1 and j ∈ Zd.
(i) If in addition d = 1, then

Resj = {(j, ℓ, ℓ), (ℓ, ℓ, j) ; ℓ ∈ Z \ {j}} ∪ {(j, j, j)}.
(ii) If in addition d > 2, then (k, ℓ,m) ∈ Resj if and only if either the endpoints
of the vectors k, ℓ,m, j are the four corners of a nondegenerate rectangle with ℓ and
j opposing each other or this quadruplet corresponds to one of the following three
degenerate cases: (j, ℓ, ℓ) with j 6= ℓ, (ℓ, ℓ, j) with j 6= ℓ, or (j, j, j).

By item (i) of Proposition 4.1, we see that in the case d = σ = 1, (2.5) becomes

(4.1) iȧj =

(

2
∑

k∈Z

|ak|2 − |aj |2
)

aj , aj(0) = αj .

It then follows that for any j ∈ Z, d
dt(|aj |2) = 0 and hence

(4.2) aj(t) = αj exp

(

−i
(

2
∑

k∈Z

|αk|2 − |αj |2
)

t

)

In particular, if initially the j-mode vanishes, αje
φj(0,·)/ε = 0, then aj(t) = 0 for any

t > 0. The situation is different in higher dimensions. The example considered in [6]
also plays an important role here: for d > 2, let

(4.3) uε(0, x) = eix1/ε + eix2/ε + ei(x1+x2)/ε.

Let k := (0, 1, 0Zd−2), ℓ := (1, 1, 0Zd−2), and m := (0, 1, 0Zd−2). Then (k, ℓ,m) is in
Res0 and the initial data can be written as uε(0, x) = eix·k/ε + eix·m/ε + eix·ℓ/ε. The
zero mode a0(t) then becomes instantaneously nonzero for t > 0 since by (2.5),

iȧ0|t=0 = 2αkαℓαm = 2.

In such a case we say that the zero mode is created by resonant interaction of nonzero
modes. Furthermore, by item (ii) of Proposition 4.1, no other modes are created.
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4.2. Creation of modes for higher order nonlinearities. — The key idea to
prove Theorem 1.1 is to choose initial data, causing instantaneous transfer of energy
from nonzero modes to the zero mode. In the previous subsection we provided an
example for such initial data in the cubic multidimensional case (σ = 1, d > 2). It
turns out that for d > 2, a similar example also works for higher order nonlinearities,
based on the following observation: if in the case σ = 1, one has (k, ℓ,m) ∈ Resj ,
then for any σ > 2

(k, ℓ,m, k, · · · , k
︸ ︷︷ ︸

2σ−2 times

), (k, ℓ,m, ℓ, · · · , ℓ
︸ ︷︷ ︸

2σ−2 times

), (k, ℓ,m,m, · · · ,m
︸ ︷︷ ︸

2σ−2 times

) ∈ Resj .

For proving Theorem 1.1, it therefore remains to consider the case σ > 2 in the one-
dimensional case. In view of the above observation, it suffices to treat the case of the
quintic nonlinearity (σ = 2).

For d = 1 and σ = 2, the zero mode is created by resonant interaction of nonzero
modes if we can find k1, k2, k3, k4, k5 ∈ Z \ {0} such that

{
k1 − k2 + k3 − k4 + k5 = 0,

k21 − k22 + k23 − k24 + k25 = 0.

Squaring the first identity, written as k1 + k3 + k5 = k2 + k4, and using the second
identity, this system is equivalent to

{
k1 + k3 + k5 = k2 + k4,

k1k3 + k1k5 + k3k5 = k2k4.

Assume that k1, k3, k5 are given. Then k2 and k4 are the zeroes of the quadratic
polynomial

X2 − (k1 + k3 + k5)X + k1k3 + k1k5 + k3k5 = 0 ,

whose discriminant is

∆ = (k1 + k3 + k5)
2 − 4 (k1k3 + k1k5 + k3k5)

= k21 + k23 + k25 − 2k1k3 − 2k1k5 − 2k3k5 .

Assuming that k2 and k4 are listed in increasing order, they are then given by

k2 =
k1 + k3 + k5 −

√
∆

2
, k4 =

k1 + k3 + k5 +
√
∆

2
.

In particular, ∆ must be of the form ∆ = N2 with N an integer, having the same
parity as k1 + k3 + k5. One readily sees that k1, k3, and k5 cannot be all equal.
Furthermore, one can construct infinitely many solutions of the form

(k1, k3, k5) = (a,−a, b), a, b 6= 0, b 6∈ {a,−a}.
Indeed, for (k1, k3, k5) of this form, ∆ = b2+4a2. Hence we look for integer solutions
of

b2 + (2a)2 = N2,

meaning that (b, 2a,N) must be a Pythagorean triplet. We infer:
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Lemma 4.2. — For any p, q ∈ Z with p, q 6= 0 and p 6= q, the 5-tuple

(k1, k2, k3, k4, k5) = (pq,−q2,−pq, p2, p2 − q2)

creates the zero mode by resonant interaction of nonzero modes.

Example 4.3. — With p = 2 and q = 1, we find

(k1, k2, k3, k4, k5) = (2,−1,−2, 4, 3).

Remark 4.4. — In [14], the creation of a mode k6 by resonant interaction of the
modes k1, k2, k3, k4, k5 is studied. Under the specific assumptions that kj = kℓ for
two distinct odd and kn = km for two distinct even indices in {1, 2, 3, 4, 5}, a com-
plete characterization of the corresponding resonant set is provided. Note that these
assumptions are not satisfied by the 5-tuples considered in Lemma 4.2. On the other
hand, it follows from the characterization of the resonant set in {1, 2, 3, 4, 5} that for
k6 = 0, each of the 5-tuples of the form

(k1, k2, k3, k4, k5) =







(k, 3k, k, 3k, 4k),

(k, 3k, 4k, 3k, k),

or (4k, 3k, k, 3k, k),

k ∈ Z \ {0},

create the zero mode by resonant interaction.

5. Geometrical optics for the modified NLS equation

In this section, we consider the equation

(5.1) iε∂tu
ε +

ε2

2
∆uε = ε|uε|2uε − 2ε

(2π)d

(∫

Td

|uε(t, x)|2dx
)

uε, x ∈ T
d,

along with the initial data (2.2).

5.1. One-dimensional case. — In view of the analysis of Subsection 2.3, one has

∫

T

|uεapp(t, x)|2dx =

∫

T

∣
∣
∣
∣
∣
∣

∑

j∈Z

(
aj(t) + εbεj(t)

)
eiφj(t,x)/ε

∣
∣
∣
∣
∣
∣

2

dx

=

∫

T

∑

j,k∈Z

(
aj(t) + εbεj(t)

) (
āk(t) + εb̄εk(t)

)
ei(φj(t,x)−φk(t,x))/εdx

= 2π
∑

j∈Z

(
|aj(t)|2 + ε

(
āj(t)b

ε
j(t) + aj(t)b̄

ε
j(t)
)
+ ε2|bεj(t)|2

)
,

since the family (eiφj(t,·)/ε)j∈Z is orthogonal in L2(T) and |T| = 2π. It then follows
that for any j ∈ Z, the formula corresponding to (4.2) in the case of (5.1), becomes

(5.2) iȧj = −|aj |2aj , aj(0) = αj ,
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and thus aj(t) = αje
i|αj |

2t, showing that the a′js are no longer coupled. (This is an

indication that equation (5.1) might be more stable than (1.1). ) Furthermore (2.13)
becomes

bεj(t) =− i
∑

(k,ℓ,m)∈Resj

∫ t

0

(
akāℓb

ε
m + ak b̄

ε
ℓam + bεkāℓam

)
(τ)dτ

−
∑

k−ℓ+m=j

k2−ℓ2+m2 6=j2

2

j2 − k2 + ℓ2 −m2

(

(akāℓam) (t)ei(j
2−k2+ℓ2−m2) t

2ε − αkᾱℓαm

)

+ 2i

∫ t

0

(

bεj
∑

k∈Z

|ak|2 + aj
∑

k∈Z

(
ākb

ε
k + ak b̄

ε
k

)

)

(τ)dτ.

5.2. Multi-dimensional case. — When d > 2, we argue as in Subsection 4.1,
choosing as initial data

uε(0, x) = eix1/ε + eix2/ε + ei(x1+x2)/ε .

The characterization of the resonant sets Resj , described in item (ii) of Proposi-
tion 4.1, shows that the only possible new mode created by cubic interaction is the
zero mode. Setting

k := (1, 0, 0Zd−2), ℓ := (1, 1, 0Zd−2), m := (0, 1, 0Zd−2),

the resonant set Res0 is given by

{(k, ℓ,m), (m, ℓ, k), (k, k, 0), (0, k, k), (ℓ, ℓ, 0), (0, ℓ, ℓ), (m,m, 0), (0,m,m), (0, 0, 0)}
and the zero mode a0 satisfies

iȧ0 = 2akāℓam − |a0|2a0, a0|t=0 = 0.

In particular, iȧ0(0) = 2, meaning that the zero mode is created through cubic inter-
action of nonzero modes.

6. Proof of Theorem 1.1

6.1. Scaling. — We follow the same strategy as in [6]: as a first step, we relate
equations (1.1) and (2.1) respectively (1.2) and (5.1) by an appropriate scaling of all
the quantities involved: let ψ(t, x) be a solution of (1.1) and uε be of the form

uε(t, x) = εαψ(εβt, εγx) .

Such a function solves (2.1) iff

1 + β = 2 + 2γ = 1+ 2σα.

Keeping β as the only parameter, we have

(6.1) uε(t, x) = εβ/(2σ)ψ
(

εβt, ε
β−1
2 x
)

.
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In order that the initial data for uε is of the form (2.2), the one for ψ is chosen so

that εβ/(2σ)ψ
(

0, ε
β−1
2 x
)

=
∑

j∈Zd αje
ij·x/ε. It means that

(6.2) ψ(0, x) = ε−β/(2σ)
∑

j∈Zd

αje
ij·x/ε

1+β
2 .

Furthermore, to assure that both ψ and uε are periodic functions and hence wellde-
fined on Td, we require that 1/ε = Nκ ∈ N, for some integers N, κ, where κ is chosen
so that for a given rational number β > 0,

1

ε
1+β
2

= Nκ 1+β
2 is an integer.

In the sequel, for any given rational number β > 0, we will consider sequences εn → 0
so that the above requirements are fulfilled.

The strategy for proving the statements of Theorem 1.1 is the following one: the
initial data for uε (or equivalently for ψ), is chosen to be a finite sum of nonzero modes,
which create the zero mode by resonant interaction at leading order, ȧ0(0) 6= 0, except
in the cubic one-dimensional case, where the zero mode is created at the level of the
corrector b0. Due to the choice of the scaling, the zero mode of ψ comes with a
factor which is increasing in ε. Since the absolute value of the zero mode bounds the
norm ‖ · ‖FLs,p(Td) of any Fourier Lebesgue space from below, it follows that for any
s < 0, 1 6 p 6 ∞, the sequence (‖uεn(tn)‖FLs,p(Td))n>1 is unbounded for appropriate
sequences (εn)n>1, (tn)n>1, converging both to 0.

6.2. Norm inflation in the multidimensional case. — Suppose d > 2, σ > 1.
For any fixed s < 0, there exists a rational number β > 0 so that

|s|β + 1

2
>

β

2σ
.

Note that β → 0 as s→ 0. We then choose a sequence (εn)n>1 with εn → 0 as above.
Taking into account the discussion at the beginning of Subsection 4.2, it suffices to
consider example (4.3). With the above scaling, ψn(0, x) is then given by

ψn(0, x) = ε−β/(2σ)
n

(

eix1/ε
1+β
2

n + eix2/ε
1+β
2

n + ei(x1+x2)/ε
1+β
2

n

)

.

For any p ∈ [1,∞], we have

‖ψn(0)‖FLs,p(Td) ≈ ε−β/(2σ)−s(β+1)/2
n = ε−β/(2σ)+|s|(β+1)/2

n ,

implying that

‖ψn(0)‖FLs,p(Td) −→
n→∞

0 .

In Section 4 we have seen that there exists τ > 0 with a0(τ) 6= 0. Setting tn = τεβn,
one has tn −→

n→∞
0. With ψn,app(t, x) obtained from uεnapp(t, x) by the above scaling, it

follows that for any r ∈ R and p ∈ [1,∞],

‖ψn,app(tn)‖FLr,p(Td) > ε−β/(2σ)
n |a0(τ)| −→

n→∞
+∞ .
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Note that W →֒ FLr,p(Td) for any r 6 0 and p ∈ [1,∞] and hence

‖ψn(t)− ψn,app(t)‖FLr,p(Td) . ‖ψn(t)− ψn,app(t)‖W .

In view of (6.1) and the scaling invariance of the norm ‖ · ‖W (see item (i) of
Lemma 3.2), Proposition 3.6 then implies

‖ψn(tn)− ψn,app(tn)‖FLr,p(Td) . ε1−β/(2σ)
n . εn‖ψn,app(tn)‖FLr,p(Td).

Altogether we have shown that ‖ψn(tn)‖FLr,p(Td) ∼ ‖ψn,app(tn)‖FLr,p(Td) → ∞ and
item (i) of Theorem 1.1 is proved in the case d > 2, σ > 1.

6.3. Norm inflation in the quintic one-dimensional case. — The case d = 1,
σ > 2, is dealt with along the same lines as the case d > 2, σ > 1, treated in the
previous subsection. Since by Lemma 4.2, it is possible to create the zero mode
by quintic interaction of nonzero modes, the above argument is readily adapted by
choosing, for instance, initial data as in Example 4.3,

ψn(0, x) = ε−β/(2σ)
n

(

e2ix/ε
1+β
2

n + e−ix/ε
1+β
2

n + e−2ix/ε
1+β
2

n + e4ix/ε
1+β
2

n + e3ix/ε
1+β
2

n

)

.

6.4. Norm inflation in the cubic one-dimensional case. — In the cubic one-
dimensional case, we have seen in Subsection 4.1 that αj = 0 implies aj(t) = 0
for any t. The same phenomena is true in the case of (5.1). Therefore, the previous
analysis has to be modified. We consider the higher order approximation, discussed in
Subsection 2.3. We want to show that for appropriate initial data ψn(0, x) , b

ε
0(τ

ε) ≈ 1
for some τε > 0 with τε ≈ ε. Note that in view of (2.13), initial data with only one
nonzero mode is not sufficient to ensure that bεj has this property. We therefore choose

ψn(0, x) = ε−β/2
n

(

eix/ε
1+β
2

n + e2ix/ε
1+β
2

n

)

as initial data. By (6.2), the corresponding initial data for uε is given by

uε(0, x) = eix/ε + e2ix/ε .

It means that α1 = 1, α2 = 1, and αj = 0 for all j ∈ Z \ {1, 2}. By the analysis of
Subsection 4.1,

a1(t) = a2(t) = e−3it, aj(t) ≡ 0 for j ∈ Z \ {1, 2}.
The creation of bεj ’s can have two causes:

– the source term (2.12) is not zero, or
– the coupling between the bεj ’s, due to (2.11), causes the creation of bεj ’s after

others have been created by a nonzero source term.

We examine the two possibilities separately. Let us begin with the analysis of (2.12).
The only non-resonant configurations k, ℓ,m ∈ {1, 2} in the sum in (2.12) are

(k, ℓ,m) = (1,−2, 1) and (k, ℓ,m) = (2,−1, 2).

Since 1 − 2 + 1 = 0 and 2 − 1 + 2 = 3, bε0 respectively bε3 are created through
these configurations. Furthermore, for j ∈ Z \ {0, 3}, (2.12) is zero. To address the
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possibility of creation of bεj ’s through coupling, consider the first term in the integral

of (2.11):

akāℓb
ε
m, (k, ℓ,m) ∈ Resj .

For this term to be non-zero, we have necessarily k, ℓ ∈ {1, 2}. Then, in view of item
(i) of Proposition 4.1, m ∈ {1, 2}, and we infer j ∈ {1, 2}. The same argument can be
repeated for the other two terms, akb̄

ε
ℓam and bεkāℓam. Therefore, the terms bε1 and bε2

are coupled. But since they solve a homogeneous system with zero initial data, they
remain identically zero.
Since by (2.11) - (2.12), ḃε0(0) = −i/ε and ḃε3(0) = −i/ε, altogether we have proved
that precisely bε0 and bε3 are created. In particular, we compute

bε0(t) = −4i

∫ t

0

bε0(τ)dτ −
(

e−3it+it/ε − 1
)

,

yielding the following explicit solution

bε0(t) = −1− 3ε

1 + ε
e−4it

(

eit+it/ε − 1
)

and hence the following formula

|bε0(t)| = 2
1− 3ε

1 + ε

∣
∣
∣
∣
sin

(

(1 + ε)
t

2ε

)∣
∣
∣
∣
.

Thus, for 0 < ε ≪ 1, there exists τε ≈ ε such that |bε0(τε)| = 1. From this point on
we can argue as in the previous subsections. For any p ∈ [1,∞],

‖ψn(0)‖FLs,p(T) ≈ ε−β/2+|s|(β+1)/2.

Hence to ensure that ‖ψn(0)‖FLs,p(T) → 0 as n→ ∞, we need to impose that

(6.3) |s| > β

β + 1
.

By taking into account only the term εbε0(t)e
iφ(t,x)/ε in uεapp(t, x), it follows that for

tn = εβnτεn ,

(6.4) ‖ψn,app(tn)‖FLr,p(T) > ε−β/2+1,

where the extra power of ε stems from the factor in front of bε0. Finally, for r 6 0,

‖ψn(tn)− ψn,app(tn)‖FLr,p(T) . ‖ψn(tn)− ψn,app(tn)‖W
. ε−β/2

n ‖uεn(τεn)− uεnapp(τεn)‖W .

By item (ii) of Proposition 3.6, it then follows that

‖ψn(tn)− ψn,app(tn)‖FLr,p(T) . ε2−β/2
n ,

implying that

‖ψn(tn)− ψn,app(tn)‖FLr,p(T) . εn‖ψn,app(tn)‖FLr,p(T),

and hence ‖ψn(tn)‖FLr,p(T) ≈ ‖ψn,app(tn)‖FLr,p(T) as n→ ∞. By (6.4), the sequence
(‖ψn(tn)‖FLr,p(T))n>1 is thus unbounded provided that β > 2. Taking into account
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that s is assumed to be negative, the condition β > 2 is compatible with (6.3) provided
that s < −2/3.

6.5. Norm inflation for equation (1.2). — To complete the proof of Theorem 1.1,
it remains to consider equation (1.2). We already noted in Subsection 6.1 that the
scaling introduced there establishes a one-to-one correspondence between solutions of
(1.2) and those of (5.1). As initial data for uε we again choose

uε(0, x) = eix/ε + e2ix/ε .

By (5.2),
a1(t) = a2(t) = eit, aj(t) ≡ 0 ∀j ∈ Z \ {1, 2}.

A similar combinatorial analysis as above shows that only bε0 and bε3 are created. In
the case considered, b0 is given by

bε0(t) = −
(

eit+it/ε − 1
)

,

implying that

|bε0(t)| = 2

∣
∣
∣
∣
sin

(

(1 + ε)
t

2ε

)∣
∣
∣
∣
.

To finish the proof, we then can argue in the same way as in the previous subsection.
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