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1 INTRODUCTION 
Modern nuclear reactors make use of passive safety 
features, which do not need external input to operate 
and, thus, are expected to improve the safety of nu-
clear power plants because of simplicity and reduc-
tion of both human interactions and hardware fail-
ures (Hassija et al. 2014). 

However, the aleatory and epistemic uncertainties 
involved in the operation and modeling of passive 
systems are usually larger than for active systems 
(USNRC 2009). Due to these uncertainties, the phys-
ical phenomena involved in the passive system func-
tioning (e.g., natural circulation) might develop in 
such a way to lead the system to fail its function 
(e.g., decay heat removal) (Burgazzi 2014). In the 
analysis of such functional failure behavior, the pas-
sive system is modeled by a mechanistic Thermal-
Hydraulic (T-H) code and the probability of failing 
to perform the required function is estimated based 
on a Monte Carlo (MC) sample of code runs which 
propagate the uncertainties in the model and numeri-
cal values of its parameters (Mezio et al. 2014). 

In practice, the probability of functional failure of 
a passive system is very small (e.g., around 10

-4
 or 

less), so that a large number of samples is necessary 
for acceptable estimation accuracy. Given that the 
time required for each run of the detailed T-H sys-

tem model code can be of the order of several hours, 
the MC-based procedure typically requires consider-
able computational efforts (Fong et al. 2009). 

Two main classes of approaches are usually con-
sidered to tackle this issue (Zio & Pedroni, 2011). 
On one side, fast-running surrogate regression mod-
els (also called response surfaces or metamodels) 
can be ‘trained’ to reproduce the behavior of the 
long-running T-H model code and used in the func-
tional failure analysis. Examples of surrogate meta-
models include polynomial chaos expansions 
(Kersaudi et al. 2015), Artificial Neural Networks 
(ANNs) (Zio et al. 2010), Support Vector Machines 
(SVMs) (Hurtado 2007) and kriging (Bect et al. 
2012). 

On the other side, efficient Monte Carlo Simula-
tion techniques can be employed to perform robust 
estimations with a limited number of input samples. 
Examples include Subset Simulation (SS) (Au and 
Wang 2014), Line Sampling (LS) (Valdebenito et al. 
2010, Zio and Pedroni 2010) and splitting methods 
(Botev & Kroese 2012). However, one of the most 
popular advanced MCS techniques is that of Im-
portance Sampling (IS), whereby an Importance 
Sampling Density (ISD) is chosen so as to force the 
rare failure event to occur more often. In this regard, 
it is known that there exists an optimal ISD so that 
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ABSTRACT: The assessment of the functional failure probability of a thermal-hydraulic (T-H) passive sys-
tem can be done by Monte Carlo (MC) sampling of the uncertainties affecting the T-H system model and its 
parameters. The computational effort associated to this approach can be prohibitive because of the large num-
ber of lengthy T-H code simulations necessary for the accurate and precise quantification of the (typically 
small) failure probability. To overcome this issue, in the present paper we propose an Adaptive Metamodel-
Based Subset Importance Sampling (AM-SIS) approach that originally and efficiently combines the powerful 
features of several advanced computational methods of literature: in particular, Subset Simulation (SS) and 
fast-running Artificial Neural Network (ANN) metamodels are coupled within an adaptive MC-based Im-
portance Sampling (IS) scheme. The objective is to construct a fully nonparametric estimator of the ideal, ze-
ro-variance Importance Sampling Density (ISD) and iteratively refine it, in such a way that: (i) the accuracy 
and precision of the corresponding failure probability estimates are improved and (ii) the number of burden-
some T-H code runs is reduced, along with the associated computational cost. The method is demonstrated on 
a case study of an emergency passive decay heat removal system of a Gas-cooled Fast Reactor (GFR). A thor-
ough comparison is made with respect to several advanced MC methods of literature. 



the variance of the MC estimator is zero. Unfortu-
nately, this optimal ISD is not implementable in 
practice, since its analytical expression depends on 
the unknown failure probability itself. With respect 
to that, techniques have been proposed to reduce 
some distances between the instrumental ISD and 
the optimal one: see, e.g., the Adaptive Kernel (AK) 
(Morio 2012), the Cross-Entropy (CE) (Botev & 
Kroese 2008), the Variance Minimization (VM) 
(Asmussen & Glynn 2007) and the Markov Chain 
Monte Carlo-Importance Sampling (MCMC-IS) 
(Botev et al. 2013) methods. 

Finally, efficient combinations of advanced MCS 
methods with metamodeling can be found in (Echard 
et al. 2011 and 2013, Bourinet et al. 2011, Dubourg 
et al. 2013, Fauriat & Gayton 2014). 

In the present paper, we propose a novel ap-
proach, namely, the Adaptive Metamodel-based 
Subset Importance Sampling (AM-SIS) method, 
which originally combines the powerful features of 
three existing techniques, i.e., MCMC-IS, SS and 
ANNs. The method consists of the following main 
steps: (1) an estimator of the optimal ISD is con-
structed in two stages: (a) the SS technique is adopt-
ed to generate a population of samples approximate-
ly distributed according to the optimal ISD. In order 
to reduce the computational effort associated to this 
step, the original T-H model code is replaced by an 
adaptively refined ANN; (b) the population thereby 
created is ‘fitted’ by means of a proper Probability 
Density Function (PDF) to obtain an estimator for 
the optimal ISD: in this paper, the fully nonparamet-
ric PDF proposed in (Botev et al. 2013) and based 
on the Gibbs Sampler is employed to this aim; (2) 
Importance Sampling (IS) is performed using the 
ISD estimator constructed at step (1). 

The main contributions of the present work with 
respect to the reference paper by (Botev et al. 2013) 
are the following: (1) SS is employed for the con-
struction of the quasi-optimal ISD; (2) ANNs are 
used to reduce the computational effort associated to 
the construction of the quasi-optimal ISD: such met-
amodels are trained according to a sequential, itera-
tive algorithm that makes an intelligent use of the 
samples generated by SS in order to increase the 
ANN accuracy in proximity of the failure domain; 
(3) the performance of the AM-SIS method is as-
sessed with a very small number of T-H code eval-
uations (e.g., of the order of few tens or hundreds): 
this is important for practical cases in which the T-H 
computer codes require several hours to run a single 
simulation; (4) the computational efficiency of AM-
SIS is systematically compared to that of several 
other advanced simulation methods of literature. 

The investigations are carried out with regards to 
a case study dealing with the functional failure anal-
ysis of a passive, natural convection-based decay 
heat removal system of a Gas-cooled Fast Reactor 
(GFR), modified from (Pagani et al. 2005). 

2 FUNCTIONAL FAILURE ANALYSIS OF T-H 
PASSIVE SYSTEMS 

The basic quantitative steps of the functional failure 
analysis of a T-H passive system are (Bassi & 
Marquès 2008): 
1 Detailed modeling of the passive system response 

by means of a deterministic, best-estimate (typi-
cally long-running) T-H code. 

2 Identification of the parameters/variables x  = 
{x1, x2, …, xj, …, 

inx }, models and correlations 
(i.e., the inputs to the T-H code) which contribute 
to the uncertainty in the results, i.e., the outputs y 
= {y1, y2, ..., yl, ..., 

ony }, of the best estimate T-H 
calculations. 

3 Propagation of the uncertainties through the de-
terministic, long-running T-H code in order to es-
timate the functional failure probability of the 
passive system. Let Y( x ) be a scalar variable in-
dicator of the performance of the passive system 
(e.g., the fuel peak cladding temperature) and αY a 
threshold value defining the corresponding failure 
criterion (e.g., a limit value imposed by regulating 
authorities). Also, let us assume that the passive 
system operates as long as Y( x ) < αY. The proba-
bility P(F) of system failure can be expressed by: 

      xxx dqIFP F )(...  (1) 

where  q  is the joint PDF representing the un-
certainty in the parameters x , F is the failure re-
gion (where Y( x ) ≥ αY) and IF(·) is an indicator 
function such that IF(x) = 1, if x   F and IF(x) = 
0, otherwise. 

Step 3 above relies on multiple (e.g., many thou-
sands) evaluations of the T-H code for different 
combinations of system inputs; this can render the 
associated computing cost prohibitive, when the 
running time for each T-H code simulation takes 
several hours (which is often the case for T-H pas-
sive systems). This issue can be tackled in two effec-
tive ways: from one side, efficient MCS techniques 
(e.g., Importance Sampling-IS, see Section 3); from 
the other side, fast-running metamodels (e.g., Artifi-
cial Neural Networks-ANNs, see Section 4). 

3 THE IMPORTANCE SAMPLING METHOD 

The concept underlying Importance Sampling (IS) is 
to replace the original PDF )(xq  with an Importance 
Sampling Density (ISD) )(xg  chosen by the analyst 
so as to generate a large number of samples in the 
“important region” of the sample space, i.e. the fail-
ure region F (Dubourg et al. 2013). The failure prob-
ability can, then, be rewritten as: 
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and the corresponding MC estimator   TN
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where  T

k Nk ...,,2,1: x  are NT independent 
and identically distributed (i.i.d.) samples drawn 
from the ISD )(xg . 

In theory, by minimizing the variance of the MC 
estimator   TN

FP̂  (3), it is possible to derive the ex-
pression of the optimal ISD )(*

xg  (Dubourg et al. 
2013): 

 
   
 FP

qI
g F xx

x * . (4) 

It is well-known that this optimal ISD is of no 
practical use, as its definition requires the knowledge 
of the failure probability P(F) itself. In this respect, 
several techniques have been developed in order to 
approximate the optimal ISD (4) or to at least find 
one giving small variance of the estimator (3): see 
the Introduction. In Section 5, we provide details 
about the approach here adopted to tackle this issue. 

4 EMPIRICAL REGRESSION MODELING 

A metamodel is a regression function adopted for es-
timating the (possibly nonlinear) relationship be-
tween a vector of input variables x = {x1, x2, ..., xj, 
..., 

inx } and a vector of output targets y = {y1, y2, ..., 
yl, ..., 

ony }, on the basis of a finite (and possibly re-
duced) set of input/output data examples (i.e., pat-
terns) DTR = {(xp, yp), p = 1, 2, …, NTR}, also re-
ferred to as Design Of Experiments (DOE). It can be 
assumed that the target vector y is related to the in-
put vector x by an unknown nonlinear deterministic 
function μy(x). In the present case of T-H passive 
system functional failure probability assessment the 
vector x contains the relevant uncertain system pa-
rameters/variables, the nonlinear deterministic func-
tion μy(x) represents the complex T-H mechanistic 
model code and the vector y(x) contains the output 
variables of interest for the analysis. The objective is 
to estimate μy(x) by means of a regression function 
f(x, w

*
) depending on a set of parameters w

*
 to be 

properly determined on the basis of the available da-
ta set Dtrain. The algorithm used to calibrate the set of 
parameters w

*
 is obviously dependent on the nature 

of the regression model adopted, but in general it 
aims at minimizing the mean (absolute or quadratic) 
error between the output targets of the original T-H 
code, yp = μy(x), p = 1, 2, ..., NTR, and the output vec-
tors of the regression model, pŷ  = f(xp, w

*
), p = 1, 2, 

..., NTR. Once built, the regression model f(x, w
*
) can 

be used as a simplified, quick-running surrogate of 
the original, long-running T-H model code for reduc-

ing the computational burden associated to the func-
tional failure analysis of T-H passive systems. 

In this work, three-layered feed-forward Artificial 
Neural Network (ANN) regression models trained by 
the error back-propagation algorithm are considered 
(Zio et al. 2010). They are composed of many com-
puting units (called neurons or nodes and mathemat-
ically represented by sigmoidal basis functions) that 
are arranged in three layers (namely, the input, hid-
den and output layers) and interconnected by 
weighed connections (called synapses): the three 
layers contain ni, nh and no nodes, respectively. The 
interesting aspect of ANNs is that they have been 
demonstrated to be universal approximants of any 
continuous nonlinear function, i.e., in principle, of 
any nonlinear T-H code simulating the system of in-
terest (Cybenko 1989). 

In the following Section 5, we present an effec-
tive strategy, called Adaptive Metamodel-based Sub-
set Importance Sampling (AM-SIS), that combines 
the powerful features of two advanced MCS meth-
ods (i.e., IS and SS) and a metamodel (i.e., an ANN) 
for reducing the computational efforts related to the 
assessment of the small functional failure probabili-
ties of T-H passive systems. 

5 THE ADAPTIVE METAMODEL-BASED 
SUBSET IMPORTANCE SAMPLING (AM-SIS) 
METHOD 

The AM-SIS method here proposed consists of two 
main steps (Botev et al. 2013): (a) an estimator 

)(ˆ *
xg  of the optimal ISD )(*

xg  (4) is constructed 
(Section 5.1); (b) Importance Sampling (IS) is per-
formed, in which the estimator )(ˆ *

xg  constructed at 
step a. above is used as an ISD to evaluate the func-
tional failure probability P(F) (1) (Section 5.2). 

5.1 Metamodel-based adaptive approximation of 
the optimal ISD by Subset Simulation 

The estimator )(ˆ *
xg  of the optimal ISD )(*

xg  is, 
here, constructed in two stages: (a) the Subset Simu-
lation (SS) technique (Au and Wang 2014) is adopt-
ed to generate a population {zF

m
: m = 1, 2, …, M} of 

M samples approximately distributed according to 
the optimal ISD )(* g  (4), i.e., {zF

m
: m = 1, 2, …, 

M} ~ )(* g  = IF(∙)q(∙)/P(F)
1
. In order to reduce the 

computational effort associated to this step, the orig-
inal long-running T-H model code is replaced by a 
fast-running surrogate ANN metamodel, properly 
constructed and adaptively refined by means of the 
samples iteratively generated by SS (Section 5.1.1); 

                                                 
1
 Notice that the change of name of the ‘dummy input vector’ 

from x to z has no ‘conceptual reason’ and is done only for no-

tational simplicity and coherence with the description of the 

method reported in the following Sections. 



(b) the population {zF
m
: m = 1, 2, …, M} is ‘fitted’ 

by means of a proper PDF to obtain the estimator 
)(ˆ *

xg . The fully nonparametric PDF proposed in 
(Botev et al. 2013) and based on the Gibbs Sampler 
is here employed to this aim (Section 5.1.2). 

5.1.1 Generation of samples distributed as the op-
timal ISD by means of Subset Simulation and 
adaptively trained ANN metamodels 

As highlighted above, the construction of an estima-
tor )(ˆ * g  for the optimal ISD )(* g  (4) requires the 
generation of a population {zF

m
: m = 1, 2, …, M} of 

M samples approximately distributed according to 
the optimal ISD, i.e., {zF

m
: m = 1, 2, …, M} ~ )(* g  

= IF(∙)q(∙)/P(F). In this paper, the Subset Simulation 
(SS) technique is adopted to this aim. In synthesis, 
SS is an adaptive probabilistic simulation method 
originally developed for efficiently computing small 
failure probabilities in structural reliability problems. 
The idea underlying the SS method is to convert the 
simulation of an event (e.g., the rare failure event F) 
into a sequence of nF simulations of intermediate 
conditional events corresponding to subsets (or sub-
regions) Fi, i = 1, 2, …, nF, of the uncertain input pa-
rameter space. During simulation, the conditional 
samples (lying in the intermediate subsets or subre-
gions Fi) are generated by Markov Chain Monte Car-
lo (MCMC): by so doing, the conditional samples 
gradually populate the successive intermediate sub-
sets (or subregions) Fi up to the target (failure) re-
gion F (Au & Wang 2014). 

The SS algorithm proceeds as follows. First, M 
vectors {z0

m
: m = 1, 2, …, M} are sampled by stand-

ard MCS, i.e., from the original PDF q(·). The corre-
sponding values of the response variable {Y(z0

m
): m 

= 1, 2, …, N} are, then, computed and the first 
threshold value y1 (identifying the first intermediate 
conditional event) is chosen as the (1 – p0)M

th
 value 

in the increasing list of values {Y(z0
m
): m = 1, 2, …, 

M} (p0 = 0.1, in this paper). With this choice of y1, 
there are now p0M samples among {z0

m
: m = 1, 2, 

…, M} whose response Y(z) lies in the intermediate 
subregion F1 = {z: Y(z) > y1}. Starting from each one 
of these samples, MCMC simulation is properly 
used to generate (1 – p0)M additional conditional 
samples in the intermediate subregion F1 = {z: Y(z) > 
y1}: by so doing, there are a total of M conditional 
samples {z1

m
: m = 1, 2, …, M}  F1. Notice that the 

Markov chains are designed so that the target condi-
tional distribution of the M samples {z1

m
: m = 1, 2, 

…, M} is q(∙|F1) = IF1(∙)q(∙)/P(F1). Then, the inter-
mediate threshold value y2 is chosen as the (1 – 
p0)M

th
 value in the ascending list of {Y(z1

m
): m = 1, 

2, …, M} to define F2 = {z: Y(z) > y2}. The p0M 
samples lying in F2 function as ‘seeds’ for sampling 
(1 – p0)M additional conditional samples lying in F2, 
for a total of M conditional samples {z2

m
: m = 1, 2, 

…, M}  F2 (distributed as q(∙|F2) = 
IF2(∙)q(∙)/P(F2)). This procedure is repeated until (at 

least) M samples {znF
m
: m = 1, 2, …, M} are generat-

ed in the failure region FnF ≡ F = {z: Y(z) > αY}. It is 
demonstrated that following this procedure, the sta-
tionary density of the points {znF

m
: m = 1, 2, …, M} 

is q(∙|F) = IF(∙)q(∙)/P(F), which coincides with the 
optimal ISD )(* g  (4) (Au & Wang, 2014). 

The additional main advantages of SS are the fol-
lowing: (i) no prior information about the failure re-
gion is required for its functioning; (ii) since the 
method relies on several Markov chains, it can iden-
tify also multiple, possibly disconnected failure re-
gions. On the other hand, notice that a single run of 
the SS algorithm may require a large number Nc 
(e.g., hundreds or thousands) of evaluations of the 
long-running system model code, depending on the 
magnitude of P(F) (i.e., approximately Nc = 
M∙logp0[P(F)], with M ≥ 100 for obtaining reliable 
estimates). Thus, in order to reduce the associated 
computational effort, the original T-H model code is 
replaced by a fast-running surrogate ANN, properly 
constructed and adaptively refined by means of the 
samples iteratively generated by SS itself (Bourinet 
et al. 2011). In synthesis, the idea is to build an ini-
tial ANN by means of a DOE generated by classical 
techniques (e.g., plain random sampling, Latin Hy-
percube Sampling, partial or full factorial designs, 
and so on). Then, SS is run using the constructed 
ANN (instead of the original T-H code) and samples 
are generated in the failure region F of interest. 
Some of the sampling points lying in proximity of F 
are added to the current DOE, which is then en-
riched in the areas close to the failure region. The 
enriched DOE is employed to update the ANN, 
which is, then, expected to be more accurate in re-
producing the behavior of the original T-H code in 
proximity of the region F of interest. This process is 
repeated until the identified failure region F does not 
change much from one iteration to another, i.e., until 
it is not accurately and reliably “located”. The pro-
posed algorithm can be summarized as follows: 
1 Build and train a first ANN regression model f(z, 

w
0
) on the basis of a DOE DTR

0
= {(xp

0
, yp

0
), p = 1, 

2, …, NTR
0
} composed by NTR

0
 vectors selected 

by classical techniques. This allows obtaining a 
“first trial” fast-running surrogate of the T-H 
model code (see Section 4); 

2 Run SS using the ANN regression model f(z, w
0
) 

to obtain M samples {znF
m,0

: m = 1, 2, …, M} ap-
proximately distributed as )(* g  = q(∙|F) = 
IF(∙)q(∙)/P(F) (M = 1000 in this paper). Notice 
that this operation is almost computationally cost-
less, since it only involves computing by the fast-
running ANN f(z, w

0
) instead of by the original 

long-running T-H code μy(z); 

3 Use f(z, w
0
) to provide an estimate   0,ˆ TN

ANNFP  of 

the failure probability P(F) (e.g., by FORM, di-

rect MCS or other straightforward techniques). 



As for step 2. above, this operation is almost 

computationally costless; 
4 Set t = 0 and εP(F) = 100%, where t is the iteration 

number and εP(F) quantifies the relative change 
between two successive ANN-based estimates of 
P(F) obtained during the adaptive and iterative 
process of metamodel refinement; 

5 while εP(F) > εP(F)
th

 (i.e., the relative variation be-
tween the ANN-based failure probability esti-
mates at two successive iterations exceeds a pre-
defined threshold εP(F)

th
) and NTR

t
 < NTR

max
 (i.e., 

the size of the DOE – in other words, the total 
number of T-H model runs – is below a maximal 
allowable value NTR

max
), perform the following 

steps in order to adaptively and iteratively refine 
the ANN metamodel in proximity of the failure 
region F and to produce samples approximately 
distributed as the optimal ISD )(* g : 
a. t = t + 1; 
b. select Nadd points {zp

add
: p = 1, 2, …, Nadd} 

among all those generated by SS at iteration 
(t – 1): the most consistent fraction of these 
points (say, K = 0.5) is chosen around the 
limit state in order to better characterize the 
behaviour of the T-H passive system in prox-
imity of the failure region F; the remaining 
vectors are “distributed” around the bounda-
ries of the other intermediate conditional re-
gions Fi identified by SS. This allows a ro-
bust “anchoring” of the ANN in the key areas 
of the uncertain input space “visited” by SS; 

c. join the Nadd new points to the current DOE 

upon Nadd new evaluations of the passive sys-

tem performance function by means of the 

original T-H code μy(z): thus, t

TRD  = 1t

TRD    
add

TRD , where DTR
add

 = {(zp
add

, yp
add

 = 

μy(zp
add

)), p = 1, 2, …, Nadd}; 
d. build and train an ANN regression model f(x, 

w
t
) using the updated DOE t

TRD ; 
e. run SS using the ANN regression model f(x, 

w
t
) to obtain M samples {znF

m,t
: m = 1, 2, …, 

M} approximately distributed as )(* g ; 

f. provide an ANN-based estimate   tN

ANN
TFP

,ˆ  of 

the failure probability P(F) and compute 

 FP  as       1,1,, ˆˆˆ 


tN

ANN

tN

ANN

tN

ANN
TTT FPFPFP ; 

6 the failure region F of interest is accurately and 
robustly “located” and the ANN metamodel is 
sufficiently refined in its proximity. Thus, retain 
the samples {znF

m,t
: m = 1, 2, …, M} generated at 

the last iteration t, as if they were the “optimal 
ones” {zF

m
: m = 1, 2, …, M} distributed accord-

ing to the real zero-variance ISD )(* g . 

5.1.2 Construction of an estimator of the optimal 
ISD by means of a fully nonparametric PDF 

The adaptive ANN-based algorithm described above 
(relying on SS) allows sampling states approximate-
ly from the optimal zero-variance ISD. Botev et al. 
(2013) propose to ‘fit’ those points by means of the 
one step ahead transition density  zx  of a Markov 
chain, when the chain is in state m

Fz , and average 
over the M states {zF

m
: m = 1, 2, …, M} (obviously, 

the target stationary distribution of the selected tran-
sition density  zx  need to be the optimal ISD 

)(*
xg ). In other words, regardless of how the transi-

tion density  zx  is constructed, the optimal ISD 
)(*

xg  is approximated by )(ˆ *
xg  (5): 

 



M

m

m

F
M

g
1

* 1
)(ˆ zxx  . (5) 

Following the suggestion of Botev et al. (2013), 
in this paper the transition density  m

Fzx  adopted 
by the very well-known Gibbs Sampler is considered 
(see the cited reference for technical details). 

The advantage of the ISD (5) is that we are no 
longer restricted by parametric models, such as those 
used in the Cross Entropy (CE) or Variance Minimi-
zation (VM) methods. On the other hand, for ISD (5) 
in the rare-event setting it is not guaranteed that the 
positivity condition holds (i.e., that )(ˆ *

xg  > 0 
whenever    xx qIF  > 0). In such a case, we modify 

)(ˆ *
xg  to make sure that it is nonzero over the entire 

support of )(*
xg . One way of doing this is to take a 

mixture of )(ˆ *
xg  with the original density q(x), i.e.: 

  )(ˆ1)()(ˆ **
xxx gwqwgw  , (6) 

where w is an arbitrary weight between 0 and 1 (in 
this paper, w = 0.01). 

5.2 Importance sampling from the estimator of the 
optimal ISD 

The procedure for drawing NT samples from the es-
timator )(ˆ *

xwg  (6) of the optimal ISD )(*
xg  is 

based on the so-called ‘composition method’: 
1 Set the sample index k = 1; 
2 Generate a uniform random number u in [0, 1); 
3 If u < w, then generate a random sample x

k
 from 

the original PDF q(x); otherwise, sample from 
)(ˆ *

xwg ; in particular: (a) generate the integer ran-
dom number m over the set {1, 2, …, M}; (b) 
sample x

k
 from the corresponding transition den-

sity  m

Fzx  in (5); 
4 If k < NT, then set k = k + 1 and return to step 2. 

above; otherwise, go to step 5. below; 

5 Referring to (3), calculate the AM-SIS estimator 

  TN
FP̂  of the failure probability P(F) employing 

(6) as instrumental ISD. 



6 CASE STUDY DESCRIPTION 

The case study considered in this work concerns the 
natural convection cooling in a 600-MW Gas-cooled 
Fast Reactor (GFR) under a post-Loss Of Coolant 
Accident (LOCA) condition (Pagani et al. 2005). 

A GFR decay heat removal configuration is 
shown schematically in Figure 1; in the case of a 
LOCA, the long-term heat removal is ensured by 
natural circulation in a given number Nloops of identi-
cal and parallel loops. Only one of the Nloops loops is 
reported for clarity of the picture: the path of the 
cooling helium gas is indicated by the black arrows. 

 
Figure 1. Schematic representation of one loop of the 600-MW 
GFR passive decay heat removal system (Pagani et al. 2005). 

 
In the present analysis, the average core power to 

be removed is assumed to be 18.7MW: to guarantee 
natural circulation cooling at this power level, a 
nominal pressure of 1650kPa in the loops is re-
quired. Finally, the secondary side of the heat ex-
changer (i.e., item 12 in Figure 1) is assumed to have 
a nominal wall temperature of 90°C. 

Only epistemic uncertainties are considered. Pa-
rameter uncertainties are associated to the reactor 
power level (x1), the pressure in the loops (x2) and 
the cooler wall temperature (x3); model uncertainties 
are associated to the correlations used to calculate 
the Nusselt numbers (x4, x5 and x6) and friction fac-
tors (x7, x8 and x9) in the forced, mixed and free con-
vection regimes, respectively. These uncertainties 
leads to the definition of a vector x of nine uncertain 
model inputs x = {xj: j = 1, 2, ..., 9}, assumed de-
scribed by normal distributions of known means μ = 
[18.7MW, 1650kPa, 90°C, 1, 1, 1, 1, 1, 1] and 
standard deviations σ (% of μ) = [1.5%, 7.5%, 5%, 
5%, 15%, 7.5%, 1%, 10%, 1.5%]. 

The passive decay heat removal system is consid-
ered failed when the temperature of the coolant heli-

um leaving the core (item 4 in Figure 1) exceeds ei-
ther 1200°C in the hot channel (model output y1(x)) 
or 850°C in the average channel (model output 
y2(x)). The corresponding true value of the function-
al failure probability P(F) is 1.8089∙10

-7
. 

7 RESULTS 

The objective is the estimation of the very small 
functional failure probability of the T-H passive sys-
tem described in Section 6, by means of the AM-SIS 
algorithm. The benefits coming from the use of the 
proposed technique are shown by means of a com-
parison between the estimation accuracies and pre-
cisions of the following methods: (i) standard MCS; 
(ii) Latin Hypercube Sampling (LHS); (iii) classical 
IS, where the ISD is centered on the “design point” 
of the problem identified in the standard Normal 
space (the approach is hereafter referred to as IS-Des 
for brevity); (iv) Adaptive Kernel-based Importance 
Sampling (AK-IS), where an estimator of the opti-
mal ISD is constructed as a weighed superposition of 
optimized Gaussian kernels centered on failure sam-
ples generated by a Markov chain; (v) Line Sam-
pling (LS), where lines are used to probe the failure 
domain of interest F: an “important direction” is de-
termined to point towards F and a number of condi-
tional “one-dimensional” problems are solved along 
such direction; (vi) the proposed AM-SIS method. 

The AM-SIS algorithm is run with the following 

set of parameters. 0

TRN  and Nadd are chosen equal to 

three times the dimension ni of the input vector x 

(i.e., ni = 9 in this case) (Roussouly et al. 2013). Pa-

rameter εP(F)
th

 is used to check the convergence of 

the ANN-based failure probability estimates 

  TN

ANNFP̂  during the ANN refinement step. As veri-

fied by the authors but not shown here for brevity, 

the value εP(F)
th

 = 0.01 represents a satisfactory trade-

off between ANN accuracy and acceptable computa-

tional effort. Finally, parameter K is set to 0.5. In this 

configuration the SS-based ANN refinement phase 

converges after t = 14 iterations and 405 calls to the 

original, long-running T-H model code. 

In order to properly represent the randomness of 

the probabilistic simulation methods adopted and 

provide a statistically meaningful comparison be-

tween their performances, 10000 independent runs 

of each method have been carried out and in each 

simulation an estimate of the failure probability P(F) 

has been computed (in practice, an empirical distri-

bution of the estimator TN
FP )(ˆ  is constructed). The 

following performance indices have been, then, con-

sidered: (i) the expected value ])(ˆ[ TN
FPE  of the 

failure probability estimator; (ii) its standard devia-



tion ])(ˆ[ TN
FP  and (iii) the well-known Figure Of 

Merit (FOM) defined as FOM = 

1/ comp

N
tFP T ])(ˆ[2 , where compt  is the time required 

by the method. Since   T

N
NFP T ]ˆ[2  and approx-

imately Tcomp Nt  , the FOM is almost independent 

of NT. Obviously, the higher the FOM, the higher the 

computational efficiency of the approach. 
Table 1 reports the values of these indicators ob-

tained by simulation methods i)-vi). The number of 
T-H code runs required by each method is also re-
ported: actually, in the presence of burdensome sys-
tem model codes (which is often the case for passive 
safety systems), the total number of code simulations 
is the critical parameter which determines the over-
all computational cost (i.e., tcomp) associated to the 
method. In detail, Nc,P(F) is the number of code runs 
used by the algorithm only to estimate the failure 
probability P(F). On the contrary, Nc,aux is the num-
ber of additional (auxiliary) code runs required to 
“set up” the method: for example, for IS-Des, AK-IS 
and AM-SIS, Nc,aux code runs are used to build the 
corresponding Importance Sampling Densities 
(ISDs); instead, for LS, Nc,aux code runs are used to 
identify the LS “important direction”. In this respect, 
two considerations need to be made. First, in order 
for the comparison to be fair, the same number of 
additional code runs Nc,aux has been used for the IS-
Des (iii), AK-IS (iv), LS (v) and AM-SIS (vi) meth-
ods: this has been achieved by using the same ANN 
metamodel (trained by the adaptive SS-based strate-
gy of Section 5.1) in the “set up stage” of all the 
above mentioned techniques. Secondly, notice that 
for both the LS and the AM-SIS approaches Nc,P(F) = 
2·NT T-H analyses are needed to estimate the failure 
probability P(F) with NT random samples. This is 
due to the fact that both methods require the compu-
tation of NT conditional “one-dimensional” failure 
probability estimates by means of a linear or quad-
ratic interpolation of the T-H passive system perfor-
mance function Y(x): such procedure implies two or 
three evaluations of the system model code for each 
random sample drawn. See (Zio and Pedroni 2010) 
for technical details on this issue. 

The performance of AM-SIS is verified by com-
parison with methods i)–v) in the practically relevant 
case where the number of random samples drawn 
(and, consequently, of system model evaluations) is 
quite small: this may be mandatory in practical ap-
plications of computer codes requiring several hours 
to run a single simulation. In particular, we consider 
here the situation where the number Nc,P(F) of T-H 
code runs “allowed” for estimating the small failure 
probability is set to 20. It is straightforward to note 
that using NT = 20 simulations no failure samples are 
obviously generated by standard MCS and LHS, so 
that the expected value of the corresponding failure 

probability estimator is equal to 0. This result is rea-
sonable: in fact, the estimation of failure probabili-
ties near 10

-7
 by means of standard MCS and LHS 

with NT = 20 samples is not efficient, since on aver-
age 20·10

-7
 ~ 0 failure samples are available in the 

failure region of interest. On the contrary, the use of 
ISDs (for IS-Des, AK-IS and AM-SIS) or of prefer-
ential lines (for LS) to probe the failure domain F of 
interest allows accurate estimations even with very 
few samples (and T-H model evaluations): actually, 
the expected values of the failure probability estima-
tors are very close to the true value P(F) = 
1.8089∙10

-7
 for all the mentioned techniques. It can 

be also seen that AM-SIS provides more precise es-
timates than all the other methods: actually, the 
standard deviation is about 2 to 10 times lower than 
that of the other advanced approaches iii)-v), where-
as it is about 3 orders of magnitude lower than that 
of the classical sampling schemes i)-ii). Also, the 
overall computational efficiency of AM-SIS is sig-
nificantly higher: actually, the FOM is 2 to 42 times 
larger than that of methods iii)-v), whereas it is 6 or-
ders of magnitude larger than that of methods i)-ii). 

In summary, the results obtained confirm the pos-
sibility of achieving accurate and precise estimates 
of small failure probabilities by the AM-SIS method 
with a very low number NT of samples and, in gen-
eral, with a very low number Nc of calls to the origi-
nal long-running T-H code: in this latter example, a 
failure probability of the order of 10

-7
 has been accu-

rately and precisely estimated by resorting to a total 
of Nc = Nc,aux + Nc,P(F) = 405 + 20 = 425 code runs. 

8 CONCLUSIONS 

In this work, we have introduced the new Adaptive 
Metamodel-based Subset Importance Sampling 
(AM-SIS) method for efficiently estimating very low 
probability values (P(F) ≈ 10

-7
). We have demon-

strated it in the functional failure analysis of a natu-
ral convection-based passive cooling system of a 
GFR, under a post-LOCA condition. The perfor-
mance of AM-SIS has been compared with other ad-
vanced simulation methods in a case where the 
number of random samples drawn is quite small. 
The results have shown that AM-SIS outperforms all 
the other approaches in terms of (i) accuracy and 
precision of the failure probability estimates and (ii) 
reduced overall computational burden: in summary, 
only few hundreds of code runs (i.e., around 400) 
were necessary for ‘completing’ the two phases of 
ISD construction and of failure probability evalua-
tion. The outstanding performances of AM-SIS re-
ported in this paper allow drawing a strong, positive 
conclusion regarding the actual feasibility of applica-
tion of the method to the realistic, nonlinear and 
non-monotonous cases of practical interest in the re-
liability analysis of passive systems. 



 
Table 1. Values of the performance indicators obtained with Nc,P(F) = 20 T-H code runs by methods i)-vi) in the estimation of the 
functional failure probability P(F) of the passive system considered 

Functional failure probability (“True” value, P(F) = 1.8089∙10
-7

) 

   Performance indicators (Nc,P(F) = 20; S = 10000 runs) 

Method NT Nc,aux ](F)PE[ TNˆ  ](F)Pσ[ TNˆ  FOM 

Standard MCS (i) Nc,P(F) = 20 0 0 1.2185∙10
-4

 6.7352∙10
5
 

LHS (ii) Nc,P(F) = 20 0 0 1.1352∙10
-4

 7.7599∙10
5
 

IS-Des (iii) Nc,P(F) = 20 405 1.7641∙10
-7

 5.6585∙10
-7

 3.1232∙10
10

 

AK-IS (iv) Nc,P(F) = 20 405 1.8097∙10
-7

 2.7310∙10
-7

 1.3408∙10
11

 

Optimized LS (v) Nc,P(F)/2 = 10 405 1.8155∙10
-7

 1.2377∙10
-7

 6.5278∙10
11

 

AM-SIS (vi) Nc,P(F)/2 = 10 405 1.8088∙10
-7

 5.8888∙10
-8

 1.3108∙10
12
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