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MAC-Network Cross-Layer Energy Optimization
model for Wireless Body Area Networks

Laaziz Lahlou∗, Amira Meharouech∗, Jocelyne Elias∗ and Ahmed Mehaoua∗

Abstract—In recent years, Wireless Body Area Networks
(WBANs) have gained increasing interest in the research
community and become an emerging technology, especially
in healthcare services. This position paper focuses on the
energy optimization issue and the joint routing and MAC
protocols in WBANs. We extend upon our previous model
on the Energy-Aware Topology Design for WBANs (EAWD),
so as to include PHY and MAC-layer WBAN specifications.
Indeed, EAWD model considered the topology constraints by
minimizing the number of relay nodes, in order to reduce
the total energy consumption, as well as the total network
installation cost. Yet, EAWD involved quite rough assumptions,
omitting overhead considerations, due to MAC routing and
physical clear channel assessment problems. Therefore, we first
introduce the EAWD model and discuss its limitations. Then,
we present our proposal, the Enhanced EAWD (EEAWD), and
assess its performance through a synthesis comparison with
EAWD and related proposals in the literature.

Index Terms—WBAN, Optimization, Relay Placement, Energy-
Efficiency, Routing, Medium Access Control.

I. INTRODUCTION

Wireless body area networks (WBANs) are sensing net-

works that present an emerging technology with the potential

to transform traditional healthcare services. A WBAN consists

of a number of inexpensive and lightweight in-body and on-

body sensors that continuously measure and transmit vital

signs of a patient without constraining her/his normal activity

and without surgical interventions [1].

The medical applications of WBANs can be divided into

wearable and implanted categories. Some examples of use of

wearable devices are: Pulse Oximetry SpO2, Blood Pressure,

Glucose sensor, etc. Implanted devices are inserted inside

the human body, such as those used in cardiac arrhythmia

monitoring/recording and insulin injection.

The wireless sensor nodes used in a WBAN are tiny and

limited power resources. They have different levels of energy

and generate different sizes of data. Existing routing and

MAC protocols in Wireless Sensor Networks (WSNs) and

Ad Hoc networks do not satisfy the specific and challenging

requirements of a WBAN.

In this paper, we consider the joint routing and MAC

protocols for WBANs, which is our focus of interest in our

ongoing and future work. Therefore, we start with a review on

some relevant works that will constitute the basis of EAWD
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improvements. Then, we discuss in detail how to extend the

EAWD protocol [2].

This paper is organized as follows: Section II discusses

related work. Section III briefly presents the EAWD model

and its limitations, then future extensions are discussed in

Section IV. Section V presents a summary of our contribu-

tions, through a synthesis comparison to related proposals in

the literature. Finally, Section VI concludes the paper.

II. RELATED WORK

Authors in [3] studied the performance of unslotted

CSMA/CA protocol used in the non-beacon IEEE 802.15.4

standard in WBANs. The study was done considering different

traffic rates. They concluded that CSMA/CA is unable to

satisfy the WBAN traffic heterogeneity. A recent experimental

study was made by Fabio et al. [4], in order to understand and

quantify the reliability and energy consumption in both single-

hop and two-hop communication patterns. Authors carried out

testbed simulations on three human subjects by collecting

sensor data, during daily activities, with no predetermined

activity scheme.

In each pattern, energy consumption and packet deliv-

ery ratio were studied under three power levels: −20dBm,

−10dBm and 0dBm. As human movements cause path

loss variation, the authors computed the Pearson Correlation

Coefficient in order to understand if there exist dependencies

between nodes attached to the human body. They discussed

the average Packet Delivery Ratio and energy consumption

for successful delivered packets in three different power levels.

However, the formula used to calculate the energy for Packet

Delivery Ratio is very simple in such a way that it does not

consider the overhead due to MAC, routing and upper layers

design. Indeed, they just consider the packet transmission

energy.

Authors in [5] proposed a medium access control proto-

col for wireless body area networks. First, they proposed

a mathematical programming formulation based on Elias et

al. [2]. Secondly, they implemented their protocol based on the

Time division multiple access (TDMA) approach. A common

problem in TDMA is the extra energy cost of the periodic

synchronization, since the node synchronization is performed

after N number of cycles. In order to avoid collision (packet

loss), they introduce what they call Drift Value (DV ). The

DV is calculated based on expected arrival time and current

arrival time. A threshold value is used as an upper bound. The

DV value is incorporated in a SY NC−ACK response. They

further define the energy of sensing and processing. Thus, in



the mathematical formulation they include both activity energy

and sleep period of sensors.

Same authors in [6] proposed an energy efficient routing

protocol for wireless body area networks. The proposed proto-

col is in the context of handling real-time and on-demand traf-

fic in addition to normal data. They used two communication

schemes: the single-hop for real-time and on-demand data and

multi-hop for normal data. The main virtue of this protocol is

being thermal-aware. The routing path is selected according to

the link state if it is a hot-spot or not. In this protocol, TDMA

approach is used to schedule the communication of the nodes

with the sink. In order to support mobility, nodes are ordered

according to their characteristics in terms of data rate. High

data-rate nodes are placed in less mobile part of the human

body and are considered as the parents. They are connected

directly to the sink. The remaining nodes are attached to the

parents, so that to form a tree structure. The main drawback of

this protocol is when a node is disconnected from its current

parent, it will be affected a new parent which induce extra

energy consumption for the joint process. Also, the new parent

node does not prioritize the disconnected node to send its

stored data, delayed by the link failure due to human mobility.

Authors in [7] proposed a TDMA protocol for real-time

high data rates for wireless sensor networks (TreeMAC). In

this protocol, the used traffic pattern is many-to-one. This

is the key motivation behind TreeMAC. This protocol was

designed for high throughput and energy efficiency. Authors

claimed that their protocol regulates the channel access for

throughput maximization and energy conservation so that each

node gets a number of slots proportional to its bandwidth

demand. TreeMAC divides each cycle into frames and each

frame into slots. Using a tree structure topology, TreeMAC

nodes communicate with their parents, which perform the

frame assignment. Time slots are, then, assigned locally. The

authors proved that, given any node at any time slot T , there

is only one active sender in its 1-hop neighborhood.

A MAC protocol for an EEG remote monitoring application

is proposed in [8]. The authors elaborated a TDMA-based

protocol in which they considered master-slave architecture

and take advantage of the static nature of the body area

network. In the master-slave architecture they define what

they call Master Node (MN ), Monitoring Station (MS) and

Sensors (S). The basic idea behind this architecture is to

use MN for coordinating the synchronization process and

forward the collected data to MS. The authors explained

in detail how they calculated each time slot and the entire

time frame duration. The synchronization of each sensor is

computed by taking into account the guard-time Tg , the total

frame duration Tframe and the sensor clock accuracy. The

computation of the energy consumption and the duty cycle of

each sensor is based on various parameters, such as: sensors

clock accuracy, sampling data rate, communication data rate,

sampled bit during one Tframe and other parameters. Please

see [8] for further details. The main drawback of this protocol

is that a node needs to wait N cycles before resynchronization.

Furthermore, the protocol is not generic, it does not consider

multiple MNs; it only focuses on one MN .

Authors in [9] proposed a routing protocol with mobility

support called CEMob. The proposed routing strategy is

based on a minimum hop counts metric. They exploited single-

hop and multi-hop communications for data differentiation, i.e.

normal data and emergency data. The proposed work is an

improvement of [6]. However, they do not consider medium

access control and physical layer specifications.

The IEEE 802.15.4 is one of the most frequently used

wireless technologies in WBANs, by the research commu-

nity, due to its performance, low power, low data rate and

energy efficiency. This standard supports peer-to-peer and star

topologies. In [10] authors presented a performance analysis of

IEEE 802.15.4 standard in a star topology configuration. They

focused their study on the beacon-enabled mode using slotted

CSMA/CA. The main motivation of this study is to derive

generic equations to model the average power consumption

of a sensor. In Beacon mode the Superframe is composed of

two parts, the active period and inactive period. The active one

contains 16 slots and is divided into Contention Access Period

(CAP) and Contention Free Period (CFP). In CAP, the slotted

CSMA/CA is used for network formation. The CFP is used

to achieve the real-time-constrained traffic, such as video. The

beacon is used by coordinator with the aim to synchronize the

end devices. The coordinator interacts with end devices during

the active period and may sleep in inactive period.

A survey on power-efficient MAC protocols for wireless

body area networks is conducted in [11]. Authors gave a

synthetic comparison of the most used schemes for medium

access control in WBANs.

III. EAWD MODEL

In this section, we give an overview of EAWD [2] and

address some of its limitations. EAWD is a mathematical

framework based on the integer linear programming. The

original work considers the network scenario of Figure 1

and investigates the joint data routing and relay positioning

problem in wireless body area networks. The model is very

simple and powerful. It includes two well-known mathematical

optimization problems: the set covering and multi-commodity

flow problems. These problems belong to NP-hard class. Elias

et al. stated that it was solved in a very short computing time,

with CPLEX 11, a mathematical programming solver [12].

Indeed, the network scenarios are of small size and the total

number of sensors and relays are bounded by 13 and 30,

respectively. Given a set of biosensors and relay nodes, the

framework consists in the design of their interconnection

network. As stated in [2], the framework minimizes the total

energy consumed and determines the optimal assignment of

the relay nodes, based on the following objective function and

constraints. For further details please refer to [2]. The basic

notation used in the objective function (1) and constraints are

referenced in Table I.



Min

{

∑

j∈P

cIjzj+

+ α
(

∑

i∈S,j∈P,k∈N

dikxij(ETXelec + Eamp(nij)D
nij

ij )+ (I)

+
∑

i∈S,j∈P,k∈N

dikxijERXelec+ (II)

+
∑

j,l∈P,k∈N

fk
jl(ETXelec + Eamp(njl)D

njl

jl
+ ERXelec)+ (III)

+
∑

j∈P,k∈N

f t
jk(ETXelec + Eamp(njk)D

njk

jk
+ ERXelec)

)

}

(IV )

(1)

s.t.
∑

j∈P

xij = 1, ∀i ∈ S (2)

xij ≤ zjaij , ∀i ∈ S, j ∈ P (3)
∑

i∈S

dikxij +
∑

l∈P

(fk
lj − fk

jl)− f t
jk = 0, ∀j ∈ P, k ∈ N (4)

fk
jl ≤

∑

i∈S

dikbjlzj , f
k
jl ≤

∑

i∈S

dikbjlzl, ∀j, l ∈ P, k ∈ N (5)

∑

i∈S,k∈N

dikxij +
∑

l∈P,k∈N

fk
lj ≤ vj , ∀j ∈ P (6)

f t
jk ≤

∑

i∈S

dikejkzj , ∀j ∈ P, k ∈ N (7)

zORi(a)
+

∑

b∈Ii:b>a

xiORi(b)
≤ 1, ∀i ∈ S, a ∈ Ii (8)

xij , zj ∈ {0, 1}, ∀i ∈ S, j ∈ P (9)

The objective function of EAWD model allows it to ensure

a tradeoff between the cost installation cost of the relay nodes,

represented by the first term,
∑

j∈P cIjzj , and the total energy

consumed by the network which is scaled by the weighting

coefficient α. The objective function explicitly specifies the

different transmission and reception instances by formulating

each energy component such as : (I) sensors transmitting

to relays, (II) Relays receiving from sensors, (III) relays

forwarding to relays and relays receiving from relays and (IV)

relays forwarding to sinks and sinks receiving from relays.

Constraints (2) provide full coverage of all sensors, while

constraints (3) are coherence constraints ensuring that a sen-

sor i can be covered by CS j only if a relay is installed in j
and if i can be connected to j.

Table I: Basic Notation

S Set of sensors
P Set of Candidate Sites (CSs)
N Set of sinks

cIj Cost for installing a relay in CS j
dik Traffic generated by sensor i destined to sink k
vj Maximum capacity of a relay installed in CS j
aij 0-1 connectivity parameter between sensor i and CS j
ejk 0-1 connectivity parameter between CS j and sink k
bjl 0-1 connectivity parameter between CS j and CS l

xij 0-1 variable that indicates if sensor i is covered by CS j
zj 0-1 variable that indicates if a relay is installed in CS j

fk
jl Traffic flow on wireless link (j, l) destined to sink k

f t
jk Traffic flow between the relay in CS j and the sink k

In this paper we would not revise the whole constraints,

we just focus on constraints (5) and (7) since both of them

present some weakness aspects. Indeed, constraints (5) con-

siders a binary representation of the relationship between two

candidate sites and does not take into account the possibility

of a link establishment between successive time epochs. Also,

constraints (7) does not consider the multihop paths formed

by the relays and just forces to zero the flow between a relay

and a sink if they are not connected over a direct link.

Yet, as part of our work in the next section is to revise and

enhance these two latter constraints.

IV. ENHANCED EAWD (EEAWD) DESIGN CHALLENGES

AND OPEN ISSUES

In this section, we will discuss the EAWD model proposed

in [2] and give our insights about the possible extensions of

the model, based on syntheses made from previous works and

some conclusions that we came to.

Elias et al. made quite strong assumptions and do not

take into account the medium access control and physical

layer specifications. Indeed, Elias et al. just considered the

energy consumption and the total costs of the mesh network

formed by biosensors and relay nodes and do not consider

the overhead due to MAC, routing and physical clear channel

assessment problems. Thus, a cross-layer optimization frame-

work needs to be implemented and tested in real scenarios.

A. Mobility and QoS-aware traffic management for EEAWD

In TDMA medium access control, the network topology

is considered static and does not take into account mobility.

The main drawback of this approach is the need for syn-

chronization between nodes and then the mobility will cause

perturbations that will lead to performance degradation and

energy wastage. In the literature, authors do not consider

realistic mobility of human body, they just consider different

postural positions in a static way, i.e there is no performance

evaluation in a timely manner from a body posture A at time

T to body posture B at time T + 1. Yet, in our approach we

propose “pseudo-mobility” support.

It is obvious to see that much of the body area network

is static; merely a small part is mobile. This observation is

very important as it gives us an idea of the placement of relay

nodes in order to take into account the mobile part of the body

and even the associated communication pattern (multi-hop).

Moreover, in the design of the medium access control protocol,

we should also handle a power-level switching mechanism if

the mobility is detected for example we can exploit the work

done in [14].

This specific design of EEAWD framework is intended for

people with low mobility, namely the elderly people. This

scenario could constitute a basic model that could be enhanced

in order to apply to more general and dynamic scenarios, with

more stringent real-time and mobility constraints.

EAWD does not consider different traffic classes as done

in [9]. Then, in Enhanced EAWD we will explicitly express

the traffic class in the model, by considering both normal and

emergency traffic.



Figure 1: Candidate sites for placing relays and corresponding tree topology [13]

B. MAC and PHY layers for EEAWD

A key feature of EAWD is the hierarchical structure of

the mesh network composed by biosensors and relay nodes.

Hence, such topological structure lead us to admit a hierarchi-

cal synchronization between the nodes that form the network.

We propose a combination of two medium access control

schemes, which will be interesting if we want to remain in a

general case where mobility is handled. We opt for CSMA/CA

for network formation and TDMA for network access.
Yet, we need a greater understanding of the physical layer,

wireless channel propagation and human bodies’ effects (LOS,

NLOS, fading...).

C. Energy consumption in EEAWD

In EAWD, there is no energy constraint that guarantees

an available amount of energy of the relay node involved

in a routing process, to be above a threshold value, denoted

hereafter as Ethreshold. We model this constraint as follows,

using the energy components of function (1) :

(II) > Ethreshold

(III) > Ethreshold

(IV) > Ethreshold

As we will consider the duty cycle of sensors and relays we

need to modify the formulation of the energy in the model.

We will consider the active and sleep period in each cycle as

Ecycle.

Ecycle = Eactive + Esleep + Eswitching

such that:

• Eactive stands for the energy consumed during the activ-

ity period.

• Esleep stands for the energy consumed during sleep

mode.

• Eswitching stands for the energy consumed in the switch-

ing mode, sleep-to-active, and vice versa.

Yet, in order to provide accurate formulation, the Eactive

can be expressed as :

Ecycle = αEsr + βErr + γErsk (10)

• Esr stands for the energy consumed by sensors when

transmitting to relays.

• Err stands for the energy consumed by relays when

forwarding to relays.

• Ersk stands for the energy consumed by relays when

transmitting to the sink.

where α, β and γ values are 0 or 1, respectively depending

on the components that are involved in each cycle.

The total energy consumed will be formulated as the sum

of the energy amounts consumed during each cycle:

E =
n∑

i=1

Ecyclei

We will evaluate the energy consumption for successfully

delivered packets and the network lifetime as stated in [4].

For any link (i, j), the energy Eij consumed for transmitting

a packet successfully from i to j, during the cycle x is:

Eij,x =
EZ

TX

PDRij

Where PDRij is the probability of successful delivered

packet from i to j and EZ
TX is the energy used to transmit

packet at z dBm as in [4]. This is for the one-hop scenario.

In two-hop scenario, the energy consumed for transmitting

a packet successfully from i to j using a node relay k is:

Ek
ij =

2× Ek
TX

PDRk
ij

Where PDRk
ij is the number of packets from i delivered

successfully to j through relay k [4].

Authors in [4], used the same TX power level for all

sensors, but in the case of heterogeneous wireless body area

network it will be different.

Other enhancements of the aforementioned framework deal

with the original constraints that need to be modified in order

to consider further specific cases.

First, we need to modify the constraint (7) of the EAWD.

For reminder, this constraint forces the flow between relay

j and sink k to zero if node j is not connected to k. This

constraint does not take into account the existence of a multi-

hop link (a path-relay) formed by relays to reach sink k. In this

case, we need to exploit the multi-hop pattern communication

and the concept of cooperation among relays.

The constraint (5) is weak because it is a binary interpreta-

tion of the existence of a link between CSj and CSl and the

connectivity parameter bjl, and it does not consider the state of



each node in the link they form between two periods of time,

T and T +1. The idea to improve this constraint and take into

account the link availability in EAWD is to use a probabilistic

formulation like that presented in [15], considering the Link

Availability Estimation.

V. SYNTHESIS TABLE

The table below summarizes our contributions in EEAWD,

compared to the surveyed approaches. We mainly focused on

the MAC layer, mobility support and time synchronization,

which have not been considered, simultaneously, in the afore-

mentioned works.

Approach MAC Mobility Network Time
support config. synchronization

[8] TDMA No Tree Yes
[2] Not Not Generic Not

considered considered considered
[7] TDMA No Tree Yes
[6] TDMA Pseudo Star Yes

mobility
[15] Slotted No Star Yes

CSMA/CA
[5] TDMA No Tree Yes
[9] Not Pseudo Star Not

considered mobility Star considered
EEAWD TDMA Yes Yes Yes

vs CSMA/CA

Table II: Synthesis table of studied protocols

VI. CONCLUSION AND PERSPECTIVES

In this paper we investigated the design of a new framework

for wireless body area networks based on the enhancement of

EAWD model with TreeMAC [14] and [7]. Our investigations

focused on the energy efficiency issue and on the joint routing

and MAC-network protocols in wireless body area networks.

The first point of concern was to present EAWD [2]. The

second point was to discuss its weaknesses, in order to give

our insights about its extensions, based on relevant literature

and a possible architecture that we will adopt.

We strongly recommend to add PHY and MAC-layer

WBAN specifications to the EAWD model and compare it

to the previous work and other related works. Therefore, in a

future work, we need to implement and validate our proposal

(EEAWD) through simulations or experiments.
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