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ABSTRACT 

Large scale outages on real-world critical infrastructures (CIs), although infrequent, are increasingly 

disastrous to our society. In this paper, we are primarily concerned with power transmission networks 

and we consider the problem of allocation of generation to distributors by rewiring links under the 

objectives of maximizing network resilience to cascading failure and minimizing investment costs. 

The combinatorial multi-objective optimization is carried out by a non-dominated sorting binary 

differential evolution (NSBDE) algorithm. For each generators-distributors connection pattern 

considered in the NSBDE search, a computationally-cheap, topological model of failure cascading in a 

complex network (named, the Motter-Lai (ML) model) is used to simulate and quantify network 

resilience to cascading failures initiated by targeted attacks. The results on the 400kV French power 

transmission network case study show that the proposed method allows to identify optimal patterns of 

generators-distributors connection which improve cascading resilience at an acceptable cost. 

To verify the realistic character of the results obtained by the NSBDE with embedded ML topological 

model, a more realistic but also more computationally-expensive model of cascading failures is 

adopted, based on optimal power flow (namely, the ORNL-Pserc-Alaska (OPA) model). The 

consistent results between the two models provide impetus for the use of topological, complex 

network theory models for analysis and optimization of large infrastructures against cascading failure 

with the advantages of simplicity, scalability and low computational cost. 

KEY WORDS: critical infrastructure, power transmission network, cascading failures, complex 

network theory model, power flow model, optimization 

1 INTRODUCTION 

Our modern society has come to depend on large-scale critical infrastructures (CIs) to deliver 

resources and services to consumers and businesses in an efficient manner. These CIs are complex 

networks of interconnected functional and structural elements. Large scale outages on these real-world 

complex networks, although infrequent, are increasingly disastrous to society, with estimates of direct 



costs up to billions of dollars and inestimable indirect costs. Typical examples include blackouts in 

power transmission networks (1-3), financial bankruptcy (4), telecommunication outages (5), and 

catastrophic failures in socio-economic systems (6-7). 

Cascading failures are initiated typically when a small part of the system fails for some reasons, and 

the load on that part (i.e. the flow passing through it) must be redistributed to other parts in the system. 

This redistribution may cause other components to exceed their capacity causing them also to fail. 

Hence, the number of failed or stressed components increases, propagating throughout the network. In 

particularly serious cases, the entire network is affected. Research regarding modeling, prediction and 

mitigation of cascading failures in CIs, whereby small initial disturbances may propagate through the 

whole infrastructure system, has addressed the problem in different ways (4-6, 8-13).  

Albert et al. (14) demonstrated that the vulnerability of modern infrastructure networks (e.g., power 

transmission networks) is inherent to their structure. Thadakamalla (15) revealed that the topology of a 

supply infrastructure has great impact on its resilience. Then, much attention has been paid in recent 

years in the direction of network topology optimization, with the purpose of achieving desired targets 

of reliability and/or resilience (16-19, 26).  Shao et al. (17) proposed a shrinking and searching algorithm to 

maximize the reliability of a distributed access network with constrained total cost; however, the 

intense computational cost for evaluating network reliability prohibits the application of the model to 

large size networks. Gutfraind (18) introduced a multi-objective optimization method for constructing 

cascade resilient networks based on the structure of terrorist networks. Besides, Newth et al. (19) used a 

modified Metropolis evolutionary algorithm to evolve failure resilient networks with the objective of 

maximizing the average network efficiency. Cadini et al. (20) investigated the problem of optimizing 

the transmission reliability efficiency of an existing power transmission network with least cost by 

adding new connection links. 

In practical cases, the cost of knocking down an existing network and reconstructing it from scratch is 

prohibitive, especially for CIs like the power transmission network. A more practicable alternative is 

to reconfigure parts of the network topology, e.g. by reallocation of the links which connect 

production facilities to consumers.  

The primary objective of this paper is to propose a methodology for optimal allocation of the links 

connecting generators and distributors in a power transmission network for obtaining high resilience to 

cascading failures while keeping the investment costs low. Formulated as a large-scale, nonlinear and 

combinatorial multi-objective optimization problem, the facility allocation problem is solved by an 

evolutionary method, i.e., the non-dominated sorting binary differential evolution (NSBDE) algorithm 
(21, 22).  



The search by the NSBDE requires also: (i) the construction of a model to describe the cascading 

failure process in the network of interest, and (ii) the repeated evaluation of the model for every 

possible generators-distributors configuration proposed by the algorithm during the search. With 

respect to the model, two approaches are typically considered in the analysis of power transmission 

systems: complex network theory models, such as the Motter-Lai (ML) model (8, 9) and artificial power 

flow models, such as the ORNL-Pserc-Alaska (OPA) model (10-12). These approaches provide different 

tradeoffs between the (relatively low) computational cost associated to the model evaluation (allowing 

real-time applications to large scale power grids) and the (high) level of detail in the system 

description (including physical characteristics and power flows constraints), respectively. 

The OPA model seeks to faithfully describe the dispatching dynamics of the power flows during the 

evolution of the failure propagation following the initial disturbances, by explicitly incorporating the 

standard DC power flow equations and minimizing generation cost and load shedding (11). Embracing 

this more physical description and solving the constrained linear optimization functions associated to 

the model, result in a significant increase in the computational burden, rendering its application 

extremely difficult for realistic networks with large number of elements (13).  

For these reasons, topological models based on complex network theory (e.g. the ML model) have 

emerged in recent years (8, 9, 23-25). In particular, the ML model is a relatively simple and abstract model 

relying on the resemblance of complex networks to electrical infrastructure systems (in terms of graph 

theory). It has the advantage of modelling cascading dynamics with few parameters, so that its 

application to realistic, large-scale networks is feasible and certainly more readily than OPA (23). 

However, ML abstracts the power flow laws and constraints of the electrical system. Inevitably, then, 

it cannot provide direct physical measures of blackout size, but rather abstract measures such as 

efficiency loss. This has posed questions on whether or not it is adequate in practice, due to its abstract 

nature, although it has been recognized to offer a new and interesting perspective on the study of 

cascading failures on power grids (24).  

It is worth mentioning that studies tackling the problem of validation of network-centric approaches 

are few in literature. Some studies (13, 24) have provided qualitative comparisons between complex 

network theory models and power flow models – identifying similarities and differences, and 

evaluating advantages and disadvantages. Most recently, Correa and Yusta (26) conclude on the 

appropriateness of graph theory techniques for the assessment of electric network vulnerability by 

means of comparisons between physical power flow models and scale-free graph statistic indexes. 

Cupac et al. (27) have presented a method to quantitatively compare a network-centric model (CLM) 

and the power flow model OPA, finding that the CLM model exhibits overall properties which are 

consistent with the more realistic OPA fast-scale model. On the other hand, Fitzmaurice et al. (40) find 

that the topological nearest neighbor cascading failure model (namely, the TC model) shows different 



characteristics from other two Kirchhoff models (namely, LD and QSS). Hines et al. (41) conclude that 

evaluating vulnerability in power networks using purely topological metrics may be misleading under 

some circumstances. Furthermore, Cotilla-Sanchez et al. (42) propose a new method for representing 

electrical structure using electrical distances rather than geographic connections.  

In the present paper, we embrace the topological ML cascading failure model and embed it in the 

NSBDE for optimally solving the problem of generators-distributors link allocation. For 

exemplification, we apply the method to the 400 kV French power transmission network, under the 

objectives of maximizing network resilience to cascading failures and minimizing investment costs (28). 

We, then, tackle the problem of realistic significance of the results that can be obtained with the 

proposed methodology. For this reason, the OPA is performed on the optimal network topologies 

found. To the authors’ knowledge, this is the first study addressing the validation of optimization 

based on topological cascade model (namely, the ML model), by applying a more realistic power flow 

model (namely, the OPA model).  

The optimization problem considered is addressing the network topology and in the specific case study 

we have considered for exemplification purpose the topology abstracted from the 400kV French 

power grid. In the abstraction, any station (generator, transmission/distribution substation) is regarded 

as one individual topological node in the network model, whereas the internal structure and functional 

logic of the specific station are ignored. Then, how the transmission lines interconnect with lower 

voltage networks has not been considered in this study, similar to what has been done in prior studies 

on these analyses (18-20). The purpose of performing these analyses in this way is to leverage the 

simplicity and low computational cost of the topological (cascading failure) model used within the 

(evolutionary) network optimization, which otherwise would be very costly. 

The remainder of this paper is organized as follows. In Section 2, we introduce the ML and OPA 

cascading failure models in detail. We, then, formulate the multi-objective optimization problem 

taking investment costs and failure resilience into account in Section 3. Section 4 unveils the detailed 

procedure of the proposed NSBDE algorithm. Section 5 illustrates the French 400kV power 

transmission network case study and the analysis and evaluation of the results. Discussion and 

conclusion are drawn in Section 6. 

2 CASCADING FAILURE MODELS CONSIDERED IN THIS WORK 

Modelling the dynamic evolution of system-wide cascading failure processes poses a number of 

challenges due to the diversity of mechanisms which can initiate the initial failure and influence the 

subsequent propagation of breakdowns in the power system (13). Various cascading failure models have 

been proposed; these can be divided into two main categories: those based on complex network theory 



analysis and those using power flow analysis, often including optimal economic power dispatch after 

each failure in the propagation, e.g., by linear optimal power flow (OPF) (27). 

Complex network theory models, including the ML model adopted in this work and described in 

Section 2.1 below, abstract the representation of a power grid as a graph and then study the 

connectivity characteristics, the propagation mechanisms through the graph connections and their 

relationships. They typically consider flows of discrete packets that are injected and removed from all 

nodes and follow least distance paths, and the importance of links or nodes is measured by 

“betweenness”, which is proportional to the number of least distance paths through the link or node (13). 

Among these, the ML model is the widely used and relatively simple one. These types of models have 

proved to provide a good understanding of the specific grid dynamics of cascading failures (30). 

However, in these models the assumptions only abstract the real loading of the components and the 

flow distribution through the connections. For this reason, it is necessary to ascertain the 

meaningfulness of the results for real electrical infrastructures.  

Power flow models, on the contrary, are based on realistic power flow equations to describe the flow 

dispatching dynamics and failure evolution after the initial disturbances in the power grid. The OPA 

model, which is the most commonly used of this type of models, is introduced in Section 2.2 below 

and is based on the linearized or DC power flow approximation, which has been proved to be able to 

give a good approximation of active power flows in the network (29). Another power flow model is the 

CASCADE model (43), though it is considered ‘‘too simple’’ in that it ‘‘disregards the system structure, 

neglects the times between adjacent failures and generation adaptation during failure’’ (44). 

2.1. The ML model 

The ML model has been proposed by Motter and Lai (8), with extensions to differentiate generators and 

loads (23). The power transmission network is represented as an undirected graph Q with a set of N 

nodes representing NG generators and ND loads representing distribution substations, interconnected by 

a set of edges representing transmission lines. The structure of the network is identified by an � × � 

interaction matrix �, whose element ��� is 0 if node � and � are not connected directly; otherwise it is 

assigned 1 for an unweighted network or a numerical value between � and	� for a weighted network. 

The ML model assumes that at each time step, one unit of the relevant quantity (electrical flow for 

power grids) is exchanged between every pair of generator and distributor nodes, and transmitted 

along the shortest path connecting them. The flow at one node is, then, the number of shortest paths 

passing through it. More precisely, the flow 
�  passing through node k is quantified by the node 

betweenness calculated as the fraction of the generator-distributor shortest paths passing through that 

node: 




� = 
����∑ ���(�)����∈��,�∈��,�����                                             (1) 

where ��� is the number of shortest paths between generator nodes and distributor nodes, and ���(�) is 

the number of generator-distributor shortest paths passing though node k.  

The capacity of node k is assumed to be proportional to its initial node 
� with a network tolerance 

parameter α,  

�� = (1 +  )
�                                                              (2) 

The concept of the tolerance parameter α (α > 0) can be understood as an operating margin allowing 

safe operation of the component under potential load increment. The occurrence of a cascading failure 

is initiated by removal of a node, which in general changes the distribution of shortest paths. Then the 

load at a particular node can change and if it increases and exceeds its capacity, the corresponding 

node fails. Any failure leads to a new redistribution of loads and, as a result, subsequent failures can 

occur. It should be noted that the single failure mechanism applied here does not attempt to simulate a 

realistic trigger event of cascading failure; instead, it is only a manner of starting the cascading failure 

simulation for the ML model (and the OPA model introduced below). 

Using this cascading failure model, the vulnerability of network Q can be characterized by the fraction 

of network efficiency lost in the cascading failure: 

!"#($) = %(&)'%(&()%(&)                                                           (3) 

where Vul(Q)	∈ (0,1) and $(  represents the residual network structure after the initial failure. E(Q) 

measures the network efficiency based on the node pair shortest path distance between generators and 

distributors. For its computation all pairs of nodes i	∈ !*, and j	∈ !+ are weighted by the inverse of 

their distance: 

   ,($) = 
����∑ ∑ 
-(�,�)�∈���∈��                                                           (4) 

where .(�, �) is the number of edges for an unweighted network or the sum of edge weights for a 

weighted network in the shortest path from i to j.  

The geodesic vulnerability !"#($)  measures the functionality of a network when subjected to a 

contingency due to cascading link disruption with regard to its steady state (base case).  As !"#($) 
increases, the impact on the network due to cascading failure also increases, as some components 

become disrupted. !"#($) has been proved to be a well-defined index being capable of providing 

results consistent with those of physical model indices (26). 

The detailed simulation of the ML cascading failure model proceeds as follows: 



Step 1. Apply equation (1) to compute the initial load of each node for a proposed network by Floyd’s 

shortest paths algorithm (31) and calculate the capacity of each node based on equation (2).  

Step 2. Trigger the initial failure. In the optimization, one of the top five most loaded nodes is chosen 

as failed and, thus, is removed from the network.  

Step 3. Recur to equation (1) and Floyd’s shortest paths algorithm to recalculate the load of each 

working node in the network. 

Step 4. Test each node for failure: for each node k (k	∈ �) of the network, if 
� > �� then node k is 

regarded as failed and, thus, is removed from the network. 

Step 5. If any working node fails, return back to step 3. Otherwise, terminate the cascading simulation 

and evaluate the vulnerability of the network using equation (3). 

Complex network theory models, such as the ML that we use within our optimization framework in 

Section 3, have no direct physical relation to the mechanisms of realistic power grids, but they have 

the key advantage that by utilizing techniques from graph theory they can be applied to analyze large-

scale networks. For this reason, this modelling approach is seeing increasing applications for 

modelling cascading failure processes in power grids. 

2.2. The OPA model 

The OPA model has been proposed by researchers at Oak Ridge National Laboratory (ORNL), Power 

System Engineering Research Center of Wisconsin University (PSerc), and Alaska University (Alaska) 
(10-12). The OPA model is built upon the Self-Organized Criticality (SOC) theory, contains two 

interdependent time scale dynamics, i.e., fast power flow dispatching dynamics and slow power grid 

growth dynamics, and describes the complexity and criticality of power systems. The slow time scale 

dynamics describes how the system evolves as demand changes over longer timeframes (e.g., over 

days), and subsequent system upgrades in response to demand vary and blackouts. On the other hand, 

the fast time scale dynamics depicts cascading failures of transmission lines over very short time (e.g., 

over seconds) during the slow dynamics. It is a novel and powerful tool for analyzing power systems. 

Our analyses focus on the fast power flow dynamics, in order to ensure comparability with the ML 

model shortest path assumption. 

The cascading failure model is based on the standard DC power flow equation, 

F = AP                                                                           (5) 

where F is a vector whose NE components are the power flows through the lines, Fij (NE is the total 

number of links in the network), P is a vector whose N-1 components are the power injection of each 

node, Pi (N is the total number of nodes in the network), with the exception of the reference generator, 

P0, and A is a constant matrix that depends on the network structure and impedances (see Ref. (11) for 



details about the computation of A). The reference generator power is not included in the vector P to 

avoid singularity of A as a consequence of the overall power balance. 

The generator power dispatch is solved using standard linear programming methods. Using the input 

power demand, the power flow equation (5) is solved with the condition of minimizing the following 

cost function: 

  �012 = ∑ 3�(2)�∈�� + 4∑ 3�(2)�∈��                                              (6) 

where VG and VD are the sets of generators and distributors, respectively. This definition gives 

preference to generation shift whilst assigning a high cost (set K = 100) to load shedding, and it is 

assumed that all generators operate at the same cost and that all loads are served with equal priority. 

The minimization is done with the following constraints: 

(1) Generator power injections are generally positive and limited by installed capacity limits: 0 ≤ 3� ≤ 3�678, � ∈ !*. 

(2) Loads always have negative power injections:	3�-96 ≤ 3� ≤ 0, � ∈ !+. 

(3) The absolute flow through links is limited by link capacities: :;��: ≤ ;678. 

(4) Total power generation and consumption remain balanced: ∑ 3� = 0�∈��∪�� . 

After solving the linear optimization by using the simplex method as implemented in Ref. (32), we 

examine which lines are overloaded. A line is considered to be overloaded if the power flow through it 

is within 1% of the limit capacity ;678. Each overloaded line may outage with probability =
 (=
 is set 

as 1 in the case study to ensure its comparability with ML). If an overloaded line experiences an 

outage, its power flow limit ;678 is divided by a very large number �
 to ensure that practically no 

power may flow through the line. This action can avoid the infeasibility of the power flow 

optimization stem from topological islands of the system by removing the component directly. Besides, 

to avoid a matrix singularity from the line outage, the impedances of failed lines are multiplied by a 

large number �>, resulting in changes of the network matrix A.  

Load shedding is utilized to quantify the damage of the cascading failure. For an individual node, load 

shedding is defined as the difference between its power injection and demand: 

?� = 3�-96 − 3�                                                           (7) 

Subsequently, total load shedding for the system is: 

? = ∑ ?��∈��                                                                (8) 

Finally, system load shedding is normalized by its total demand D and used as a measure of cascading 

vulnerability: 



? AB = ∑ C��∈D�∑ E�FGH�∈D�                                                            (9)                          

The fact that simulation results from OPA model are consistent with historical blackout data for real 

power systems has justified its effectiveness (12). However, the applications of OPA have generally 

been limited to networks with a relatively small number of nodes compared to real power grids (24), 

due to the computational efforts involved.  

3 OPTIMIZATION MODEL 

For a given network, cascading failure resilience could be enhanced in many ways. In this paper, we 

focus on choosing the connecting patterns between generators and distributors of a realistic power 

transmission network, so as to optimize resilience to cascading failures. In this study, system 

vulnerability to cascading failure (i.e. system functionality loss in cascading failure) is regarded as a 

reverse measure of system resilience: the less the functionality loss, the higher the system resilience. 

Given the goal of analyzing a realistic-size network, the ML cascading failure model is used to 

evaluate the resilience of a pattern of connections. By associating a cost to each link posed in the 

network, the optimization also seeks to minimize the total cost. 

The network is modeled as a weighted graph, in which the edge weights are given by their physical 

distances which we assume directly related to the transmitting cost of the link. We define the variables 

to be optimized as the links of generation nodes to the different distribution nodes: 

                                                   I�� = J1, if	�	is	connected	with	�	directly0, otherwise                              (10) 

for all � ∈ !* and � ∈ !+. Two constraints have to be met when rewiring generators and distributors: (1) 

each distributor node is required to connect with at least one generator node or other distributor node, 

to make it accessible to the power supplying generators; (2) each generator node has to connect at least 

with one distributor node. 

We assume that the cost associated with each connection cutting and rewiring is linearly proportional 

to the physical length of the linkage, with coefficient φ. The total investment cost of a reconstructed 

pattern I	in the power transmission network can be defined as 

 � = ∑ YI���∈���∈�� .(�, �)                                                          (11) 

where .(�, �) is the physical distance between i and j. 

The cascading failure resilience of each reconstructed pattern I can be quantified by the vulnerability 

of the new network, given by equation (3). It should be noted that the effect of the type of initial event 

could significantly influence the cascading failure result: the efficiency loss of a cascade triggered by 



the failure of a critical component could be much more severe than that originated by the failure of a 

normal component. Therefore, we consider a worst-case scenario in this study by choosing the failure 

of one of the top five most loaded nodes as initial failure in each cascade process simulation and, then, 

the results are averaged on the number of simulations. 

Through the quantification of the connection pattern cost and cascading failure vulnerability, the 

facility allocation problem is formulated as a multi-objective optimization problem: 

Zmin�\I��]																																																													(12_)min!"# `$a��b																																																					(12c)	  

1. 2. e∑ I���∈��∪�� > 0	∀� ∈ !+																																			(12g)∑ I���∈�� > 0	∀� ∈ !* 																																										(12.)	   

The objective function (12a) is the sum of the fixed rewiring costs; (12b) expresses the resilience 

objective. The two constraints mentioned above are enforced by formulas (12c) and (12d), respectively. 

Observe that the least costly generator allocation is simply that with no links among facilities and 

consumers. 

In our work, the multi-objective optimization problem (12a) – (12d) is tackled by the Non-dominated 

Sorting Binary Differential Evolution (NSBDE) algorithm presented in the next Section 4. 

4 NON-DOMINATED SORTING BINARY DIFFERENTIAL 

EVOLUTION ALGORITHM FOR TOPOLOGY OPTIMIZATION 

In this section, the operative procedures of the Non-dominated Sorting Binary Differential Evolution 

(NSBDE) algorithm are proposed for solving the multi-objective optimization problem introduced in 

Section 3 above. The starting point is the standard Differential Evolution (DE) algorithm, initially 

proposed as a population-based global optimization method for real-valued optimization problems, 

which has been found to outperform other optimization algorithms in various applications (21, 33, 34). In 

order to solve the combinatorial multi-objective problem of interest, the fast non-dominated sorting, 

ranking and elitism techniques used in non-dominated sorting genetic algorithm-II (NSGA-II) (35) are 

introduced into a modified binary differential evolution (MBDE), which is a binary version of DE 

developed to tackle single-objective binary-coded optimization problems (36). The NSBDE proceeds as 

follows: (21) 

Step 1. Initialization of parameters 

Set the values of the population size NP, the crossover rate CR, the scaling factor F, and the maximum 

generations Nmax. 



Step 2. Generation of initial population and evaluation 

Initialize each individual in the population which is represented as a bit-string and denoted as =h�i ={=h��i , |=h��i ∈ {0,1l; � = 1,2, … ,�3, � = 1,2,… ,ol, where NP is the population size and M is the 

dimensionality of the solutions. Each individual is also called a chromosome and forms a candidate 

solution to the problem. Each bit of each initial chromosome takes a value from the set {0, 1} with 

probability equals to 0.5: the bit takes ‘1’ if the corresponding generator node and distributor node are 

connected, ‘0’ otherwise. 

Each of the NP chromosomes is evaluated by computing the two objective functions, i.e. formula (12a) 

and (12b). 

Step 3. Generation of trial population 

Apply the binary tournament selection operator (35) to the population 3Ii to generate a trial population 3!i, which undergoes the evolution operations of mutation and crossover. 

Step 3.1 Mutation 

The following probability estimation operator P(px) is utilized to generate the mutated individuals 

according to the information of the parent population: 

3\=h��i ] = 


p9qrs[uvwx,�y z{`uvwr,�y quvw|,�y bq}.~]xzr{

                               (13) 

where b is a positive real constant, usually set as 6; F is the scaling factor; =h�
,�i , =h�>,�i  and =h��,�i  

are the j-th bits of three randomly chosen individuals at generation t. According to the probability 

estimation vector 3\=h�i] = [=h�,
i , =h�,>i , …  =h�,�i ]  created by equation (13), the corresponding 

offspring ="�i of the current target individual =h�i is generated as equation (14). 

="��i = J1, if	�_�. ≤ 3(=h��i )0, otherwise                                                         

 

(14) 

where rand is a uniformly distributed random number within the interval [0,1]. 

Step 3.2 Crossover 

The crossover operator is used to mix the target individual and its mutated individual. The trial 

individual =���i = (=��,
i , =��,>i , … =��,�i ) can be obtained by the crossover operator as follows, 

=���i = �="��i , if	�_�.� ≤ ��	or	� = �_�.�=h��i , otherwise 	                                     (15) 

where randj	∈ (0,1] is a uniform random value, CR is the crossover rate, and randi is a uniform 

discrete random number in the set {1, 2, ..., NP}. 



Step 4. Evaluation 

Evaluate each of the NP chromosomes in the population 3!i by computing its rewiring cost (12a) and 

resilience to cascading failures (12b) by performing the ML cascade process simulation procedure 

presented in Section 2.2.  

Step 5. Union and Sorting 

Combine the parent and trial populations to obtain a union population 3�i = 	3Ii ∪ 3!i. Rank the 

individuals in the union population by the fast non-dominated sorting algorithm (33) with respect to the 

objective values, and identify the ranked non-dominated fronts F1, F2, …, Fk where F1 is the best front, 

F2 is the second best front and Fk the least good front. 

Step 6. Selection 

Select the first NP individuals from 3�i  to create a new parent population 3Iip
. The crowding 

distance is used in this step to choose the individuals with the same front, where crowing refers to the 

density of solution present in a neighborhood of an individual of specified radius (35): we prefer the 

individual which is located in a region with least number of individuals. The algorithm stops when it 

reaches the predefined maximum generations Nmax.   

5 CASE STUDY AND RESULTS ANALYSIS   

5.1. Case study and parameters setting 

In this paper, the 400kV French power transmission network (FPTN400) (Figure 1) is taken for 

exemplification of the proposed approach. The network is built from the data on the 400 kV 

transmission lines of the RTE website (37). It has 171 nodes (substations) and 220 edges (transmission 

lines). We distinguish the generators, which are the source of power, from the other distribution 

substations, that receive power and transmit it to other substations or distribute it in local distribution 

grids. By obtaining the power plants list from EDF website (38) and relating them with the ID of the 

buses in the transmission network, we have 26 generators and 145 distributors. Only the nuclear power 

plants, hydroelectric plants and thermal power plants whose installed capacities are larger than 1000 

MW, are considered. 

For reallocation of the power generating nodes to the other nodes, the NSBDE algorithm introduced in 

the previous section is applied. The parameters values used to run the NSBDE algorithm are reported 

in Table I. The tuning parameters are chosen based on trial-and-improvement for fast convergence of 

the algorithm (28). The network tolerance parameter α is set to 0.3 to simulate the normal operating 

condition; linkage cost parameter φ is set to 1. 



 

Fig. 1.  The 400kV French power transmission network (FPTN400) (37) 

At the beginning of the simulation, all 55 links among generators and distributors in the FPTN400 are 

cut off. The population is initialized by randomly assigning 0 or 1 to each bit of each chromosome in 

the population, forming a group of potential rewiring solutions. For evaluating the cascading 

vulnerability of a given generators-distributors allocation pattern, the ML cascading failure model is 

run starting from failing one of the top five most loaded (largest betweenness) nodes in repeated 

cascading simulations at the end of which the vulnerability values are averaged. 

Table I .  Parameters of the NSBDE algorithm 

Parameters Values 
Population size NP 25 
Dimensionality of solution M 3770 
Crossover rate CR 0.9 
Scaling factor F 0.2 
Maximum generation Nmax 300 

 
 
5.2. Topological optimization results 

Figure 2 reports the convergence plots of one run of the NSBDE algorithm. The top and bottom panels 

show the two optimal solutions with regard to the two objectives (12a) and (12b), respectively. It is 

observed that the algorithm is able to converge after around 150 generations. 



 

Fig. 2.  Convergence plots of objective functions (12a) (top) and (12b) (bottom) during the evolution of NSBDE 

 

Fig. 3.  Pareto front reached by a population of 25 chromosomes evolving for 300 generations 

The Pareto front obtained by the NSBDE algorithm at convergence is illustrated in Figure 3. The 

diamond point in Figure 3 represents the current network with the present pattern of connecting links, 

which is also the least costly network; the square point is the most resilient network, whose cascading 

vulnerability is 0.184. It is not unexpected that the original network is the least costly one, since the 

electrical transmission lines and substations are placed with geographical constraints and connections 

between two distant substations are avoided. Actually, cost-effectiveness is a major consideration in 

constructing real power transmission networks. 



 

Fig. 4.  Comparison of the cascading vulnerability between the original and the most resilient networks under 
different network tolerance values 

It is also noted from Figure 3 that the cascading failure resilience of the FPTN400 can be improved 

significantly by properly rewiring the generator-distributor connections, though at a cost; the network 

vulnerability is decreased from 0.728 to 0.184 (when α=1.3) with an increased cost of 7.3 × 10� (i.e., 

53.16 times increase). Figure 4 reports the cascading vulnerability comparison between the original 

network and the most resilient one (Pareto solution #17) with different tolerance parameters. It shows 

that when the network tolerance is very low, i.e. 0<  < 0.1, the optimized network loses most of its 

efficiency, i.e., it is quite vulnerable to intentional attacks possibly due to its intensive loading 

condition. However, when α≥0.3 (which is generally the normal operating condition (13)), the 

optimized network loses less than 20% of its efficiency during a cascading failure initiated by 

intentional attack.  

Albeit a substantial improvement of the cascading failure resilience of the FPTN400 is possible by 

adding redundant links, a tradeoff between the cost and resilience improvement is necessary for 

rational decision-making. Along the Pareto frontier of the potential solutions, there are some points at 

which a small sacrifice of cost gives a large gain of cascading resilience. More generally, by taking a 

network solution and its neighbor on the frontier (the less costly one), one can define a rate of change 

of cascading resilience with respect to cost: |∆!"#/∆g012|. This rate can be utilized as a reference to 

choose the optimized network: the larger the ratio, the more preferred the network is.  
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Fig. 5.  The topology of the Pareto solution #3 and its difference with the original network 

Figure 5 reports the topology of the network corresponding to the Pareto solution #3 (310.6, 0.59) 

whose |∆!"#/∆g012| value is comparatively large. The bold links represent the 10 added connections 

with respect to the original real network: notice that only 10 links are required to be rewired for the 

original network to gain a 19.2% cascading resilience improvement (the cascading vulnerability is 

decreased from 0.73 to 0.59). Besides, it is noted from Figure 5 that the newly added links tend to 

connect distant generator and distributor pairs, indicating that the installation of power lines between 

remote power substations can improve the resilience of the system, although at larger costs.  

5.3. Validation by the OPA model 

All the optimization results presented in the previous section are based on the ML model which 

abstracts basic power flow constraints and electrical characteristics of the power transmission network. 

In this section, the more realistic OPA model introduced in Section 2.2 is utilized to verify the optimal 

results found. 

The verification is not straightforward due to the differences of the two models in the way of 

representing system capacity, in the iterative algorithms they rely on, and in the way of measuring the 

damage produced by the cascading failure. Accordingly, some assumptions and adjustments to the 

OPA model (as described in Section 5.3.1) are necessary to ensure its applicability to assess the 

optimization solutions obtained based on the ML model (27). 

5.3.1 OPA Adjustments 

Five representative solutions (i.e., the least cost network FPTN400, the Pareto solution #17 (7300, 

0.184) which is the most resilient, together with the solutions #3 (310.6, 0.59), #5 (3344.3, 0.28) and 

#13 (1003.8, 0.48) whose |∆!"#/∆g012| values are comparatively large) along the Pareto front are 

chosen as the basic network topologies to be verified by the OPA model. To facilitate comparability 

with the ML model, all the generators are assumed to have equal capacity, and all the loads are 



assumed to have equal constant demand (we use 26, i.e. the number of generators in the simulation). 

Furthermore, all edge impedances are calculated using the typical reactance value 0.28 ohm/km at 50 

Hz (39). This heterogeneous impedance setting aligns with the weighted edge initialization in the ML 

model. 

The ML model uses the parameter α to represent network tolerance, while regarding the OPA model, 

prior studies set the initial limits (demand, generator capacity, line flow limits) by evolving the 

network using combined fast-slow dynamics until the network reaches a steady state (11). Considering 

that we limit the scope of the OPA evaluation to fast dynamics, we use a simpler initialization strategy 

(proposed by Cupac et al. (27)) which does not require the slow power grid growth dynamics, and apply 

the parallel capacity setting (the   model) to facilitate the comparison. In particular, the values of the 

initial flows ;��(0)  and of the link capacities ;��
678  are determined as follows: demand for all 

distributor nodes is fixed to a constant amount, as mention above, and total generation capacity is set 

to be equal to total demand, and equally divided among the generators. Then, the power flows along 

the lines are estimated by assuming that every distributor node would obtain an equal amount of power 

from every generator. The initial flows are calculated by selecting a generator (one at a time), setting 

all other generator capacities to 0 and then computing power flows to each distributor node. The sum 

of the power flows over all the generators results in the estimated initial flow along each link, ;��(0). 

Analogous to the initialization process in the ML model, the maximum capacity for a link connecting 

nodes i and j is given by 

;��
678 = (1 +  ):;��(0):                                                       (16) 

It is noted that the values of the initial flows ;��(0) are only used to set the link flow capacities ;��
678 

in such a way that they are comparable to the capacities �� used by the ML model. The network 

tolerance parameter is set to	0 ≤  ≤ 2 in our approach, parallel to the ML model, representing excess 

transmission capacity. Then, the node transmission capacity is modelled as the sum of link flow 

capacities of adjacent links ∑ ;��
678

�∈��  where !� is the set of nodes directly connected to node i. 

In the OPA implementation, the probability of an overloaded link is set to =
 = 1 (identical with that 

in Cupac et al. (27)), to ensure comparability with ML, where an overloaded node fails and is removed 

from the network with certainty. This setting will not change the OPA validation results where only 

the relative ranking of cascade vulnerability for each network is considered, although it has probably 

changed all the absolute values of cascade vulnerability. Besides, we initiate the cascade in the same 

manner that we do in the ML model, as stated in Section 3. 

5.3.2 Validation Results 



Figure 6 reports the landscapes of the node transmission capacities ��  and ;��
678  under both ML 

model and OPA model, respectively, for the five chosen networks (with  = 0). It shows that node 

capacities in ML are highly correlated with node capacities in OPA model for the FPTN400, Pareto 

solution #3, #5 and #13 (actually, the correlation coefficients are 0.904, 0.890, 0.862 and 0.914 

respectively); for Pareto solution #17, the linear correlation of node transmission capacities still exists 

(with correlation coefficient 0.619). This indicates that the initialization strategy is consistent for ML 

and OPA models: nodes with high capacity in ML tend to have high capacity in OPA, and nodes with 

low capacity in ML also tend to have low capacity in OPA (27).   
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(a)

R(ML, OPA) = 0.904
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R(ML, OPA) = 0.890
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(c)

R(ML, OPA) = 0.619
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(d)

R(ML, OPA) = 0.862

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

 

 

Transmission capacity (ML model)

T
ra

ns
m

is
si

on
 c

ap
ac

ity
 (

O
P

A
 m

od
el

)

(e)

R(ML, OPA) = 0.914



Fig. 6.  Scatterplot of normalized node transmission capacity in ML versus OPA model using, (a) the original 
FPTN400; (b) Pareto solution #3 network; (c) Pareto solution #17 network; (d) Pareto solution #5; (e) Pareto 
solution #13. Node transmission capacity in OPA is highly correlated with transmission capacity in ML, the 
correlation coefficient are 0.904, 0.890, 0.619, 0.862 and 0.914 for the five networks, respectively. The solid 

lines represent the best fits. 

 

In Figure 7, we plot the curves of normalized load shedding ?/A versus network tolerance α obtained 

by applying the OPA model to the five representative networks selected from the Pareto front. The 

OPA simulation is triggered by removing one of the top five most loaded nodes (i.e., targeted initial 

failure). Analogous to the ML model (Figure 4), the network damages decreases when network 

tolerance increases for all the networks. When network tolerance value is high enough ( > 1.2), any 

small intentional disturbance on the network would tend to cause quite low damage to the functioning 

of the network (< 1%). Most importantly, it is observed that in the OPA simulation, the network 

corresponding to Pareto solution #3 (310.6, 0.59) (green triangle curve) is more resilient, i.e., it 

presents less load shedding than the original network (red circle curve) over a wide range of network 

tolerance α (i.e., 0 <  < 1.2); in addition, solution #13 (1003.8, 0.48) (magenta diamond curve) 

generally outperforms the solution #3, while solution #5 (3344.3, 0.28) (grey star curve) outperforms 

#13 in terms of cascade resilience. Finally, Pareto solution #17 (7300, 0.184) (which is the most 

resilient network according to the ML model) presents the lowest load shedding among the five 

networks over the entire range of α values considered. This ranking of cascading failure resilience is 

consistent with the simulation results based on ML model.  

Figure 8 shows the results of OPA simulation on the five networks, where the failures are triggered by 

removing a randomly chosen node (i.e., random initial failure) and the results are averaged over 30 

different samples. The ranking of cascade resilience of the five networks here is also parallel with the 

optimization results based on ML. This demonstrates that a resilience-improved network from the 

optimization based on the ML model is also more resilient than another one if evaluated by 

the more realistic OPA cascade simulation, therefore, verifying that the insights gained by the 

topological optimization approach are valid. 



 

Fig. 7.  Cascading vulnerability (normalized load shedding) evaluated by the OPA model for the five chosen 
networks over a range of network tolerance values α under targeted initial failure. 

 

Fig. 8. Cascading vulnerability (normalized load shedding) evaluated by the OPA model for the five chosen 
networks over a range of network tolerance values α under random initial failure. The results have been averaged 

over 30 different samples. 

Also important is to remember that the results produced by the simple ML topological model are 

obtained at a much lower computational cost than those of the OPA model: actually, the average time 

needed to carry out a single cascading failure simulation is 3.9s and 20.8s for the ML and OPA models, 

respectively, on a double 2.4 GHz Intel CPU and 4 GB RAM computer. 

6 DISCUSSION AND CONCLUSIONS 

Generally, the structure of power grids emerges through an unplanned growth process to meet service 

demand and/or results from optimization of costs. However, the increasing threat of large scale 
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failures, albeit infrequent, makes it vital to think of the design of resilient network systems capable to 

resist against and recover from cascading failures.  

In this paper, we have investigated the allocation of generators to distributor nodes by rewiring links 

under the objectives of maximizing the network cascading failure resilience and minimizing the 

investment costs.  

In realistic cases of networks of large number of nodes, the problem is a combinatorial multi-objective 

optimization problem. To effectively tackle the problem, we have proposed a NSBDE multi-objective 

algorithm, within a Pareto optimality scheme of search for non-dominated solutions. To simulate and 

quantify the cascading failure resilience of network connection solutions selected during the NSBDE 

search, a complex network model – namely, the Motter-Lai (ML) model ‒ has been used, to exploit is 

rapidity of calculation.  

Exemplification has been done by considering the 400kV French power transmission network 

(FPTN400). The results of the case study have shown that generator-distributor allocation can be 

optimized to improve the cascading resilience of a realistic power transmission network system at an 

acceptable cost. 

To validate the physical significance of the topological optimization results, a detailed and more 

realistic power flow model ‒ i.e., the ORNL-Pserc-Alaska (OPA) model ‒ has been considered. The 

OPA model has been applied to five network topologies selected from the Pareto front found by the 

topological optimization process. The ranking of the five selected networks with respect to their 

vulnerability to both intentional attacks and random failure is consistent with that of the ML model; in 

addition, the computational time required by the ML approach is shown to be 5.5 times lower than that 

of the OPA approach. This verifies (i) the physical meaningfulness of the topological optimization 

solutions and (ii) the practical usefulness of abstract cascading models in network optimization tasks.  

It is noted that this consistency is not insignificant since it demonstrates that one resilience-improved 

pattern of capacity allocation optimized by the ML model is also of higher resilience if measured by 

the more realistic OPA model, providing impetus for the use of topological, complex network theory 

models for ensemble analysis and optimization of large infrastructures against cascading failure with 

the advantages of simplicity, scalability and low computational cost (e.g., future studies may consider 

using complex network cascading models to optimize both the topology and electrical/reliability 

properties of realistic power networks, which may enable unraveling questions such as which type of 

resource distribution is the most favorable for a network to resist to cascading failure, when the total 

resource is limited). 

The initialization strategy of the OPA model in this paper ensures that we can use the network 

tolerance parameter α as a common measure of transmission capacity for both models. However, the 



actual data could be used in the OPA validation if they are initially applied in the optimization based 

on the ML model, and if they are available. This could be possible future work. Besides, performing 

optimizations using directly detailed and computationally intensive power flow models (e.g., embrace 

Newton Raphson based power flow approaches (45) and/or realistic trigger event such as natural hazard 

and malevolent targeted disruption (46), into the cascade modelling framework) would enable a more 

thorough and comprehensive comparison of the two classes of approaches considered in this paper. 

Furthermore, it may be useful to model variations in generation capacity and to consider situations 

where generation capacity and demand are not equally distributed, which is aligned with more realistic 

cases of power grids. Finally, while being relatively small compared to real scenarios with thousand 

buses due to computational constraints and data availability, the proposed network is sufficient to 

illustrate the usefulness of the topological optimization methodology in this study. Nevertheless, we 

believe that application of the topological approach to large-scale networks is interesting and this falls 

perfectly within the scope of our future research in this direction. 
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