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ABSTRACT

Large scale outages on real-world critical infrastures (Cls), although infrequent, are increagingl
disastrous to our society. In this paper, we amaanly concerned with power transmission networks
and we consider the problem of allocation of getm@nato distributors by rewiring links under the
objectives of maximizing network resilience to @diag failure and minimizing investment costs.
The combinatorial multi-objective optimization isrded out by a non-dominated sorting binary
differential evolution (NSBDE) algorithm. For eadenerators-distributors connection pattern
considered in the NSBDE search, a computation&lgap, topological model of failure cascading in a
complex network (named, the Motter-Lai (ML) mod&s) used to simulate and quantify network
resilience to cascading failures initiated by téedeattacks. The results on the 400kV French power
transmission network case study show that the megpmethod allows to identify optimal patterns of
generators-distributors connection which improvecealing resilience at an acceptable cost.

To verify the realistic character of the resultsantied by the NSBDE with embedded ML topological
model, a more realistic but also more computatigr@tpensive model of cascading failures is
adopted, based on optimal power flow (namely, thRNO-Pserc-Alaska (OPA) model). The
consistent results between the two models prowdeetus for the use of topological, complex
network theory models for analysis and optimizatémarge infrastructures against cascading failure
with the advantages of simplicity, scalability doa/ computational cost.

KEY WORDS: critical infrastructure, power transmission netkocascading failures, complex

network theory model, power flow model, optimizatio
1INTRODUCTION

Our modern society has come to depend on large-stdtical infrastructures (CIs) to deliver
resources and services to consumers and businiesaesefficient manner. These Cls are complex
networks of interconnected functional and strudtel@ments. Large scale outages on these real-world

complex networks, although infrequent, are increglgidisastrous to society, with estimates of direc



costs up to billions of dollars and inestimableiiect costs. Typical examples include blackouts in
power transmission network$®, financial bankruptcy®, telecommunication outage?, and

catastrophic failures in socio-economic systé&fs

Cascading failures are initiated typically whennzall part of the system fails for some reasons, and
the load on that part (i.e. the flow passing thioitgmust be redistributed to other parts in thetam.
This redistribution may cause other componentsxteed their capacity causing them also to fail.
Hence, the number of failed or stressed componeotsases, propagating throughout the network. In
particularly serious cases, the entire networkfescéed. Research regarding modeling, predicticth an
mitigation of cascading failures in Cls, wherebyadimmitial disturbances may propagate through the

whole infrastructure system, has addressed thdegumoin different way$*® %3

Albert et al.™ demonstrated that the vulnerability of modern isfiracture networks (e.g., power
transmission networks) is inherent to their streetThadakamall&® revealed that the topology of a
supply infrastructure has great impact on its iersile. Then, much attention has been paid in recent
years in the direction of network topology optintiaa, with the purpose of achieving desired targets
of reliability and/or resilienc€®**?®) Shao et al*” proposed a shrinking and searching algorithm to
maximize the reliability of a distributed accesswwrk with constrained total cost; however, the
intense computational cost for evaluating netweillability prohibits the application of the model t
large size networks. Gutfraiftf introduced a multi-objective optimization metham tonstructing
cascade resilient networks based on the strucfussrorist networks. Besides, Newth et®.used a
modified Metropolis evolutionary algorithm to evelvailure resilient networks with the objective of
maximizing the average network efficiency. Cadinak ® investigated the problem of optimizing
the transmission reliability efficiency of an exngf power transmission network with least cost by

adding new connection links.

In practical cases, the cost of knocking down astiery network and reconstructing it from scratsh i
prohibitive, especially for Cls like the power tsamssion network. A more practicable alternative is
to reconfigure parts of the network topology, ehy. reallocation of the links which connect

production facilities to consumers.

The primary objective of this paper is to proposmethodology for optimal allocation of the links
connecting generators and distributors in a poregsimission network for obtaining high resilience t
cascading failures while keeping the investmentsclosv. Formulated as a large-scale, nonlinear and
combinatorial multi-objective optimization problertie facility allocation problem is solved by an

evolutionary method, i.e., the non-dominated sgrbmary differential evolution (NSBDE) algorithm
(21, 22)



The search by the NSBDE requires also: (i) the ttoason of a model to describe the cascading
failure process in the network of interest, andl ffie repeated evaluation of the model for every
possible generators-distributors configuration psmal by the algorithm during the search. With
respect to the model, two approaches are typicahsidered in the analysis of power transmission
systemscomplex network theory models, such as the Motter-Lai (ML) modfe? andartificial power
flow models, such as the ORNL-Pserc-Alaska (OPA) mdféf. These approaches provide different
tradeoffs between the (relatively low) computatiar@st associated to the model evaluation (allowing
real-time applications to large scale power gridag the (high) level of detail in the system

description (including physical characteristics @o#ver flows constraints), respectively.

The OPA model seeks to faithfully describe the @ishing dynamics of the power flows during the
evolution of the failure propagation following timétial disturbances, by explicitly incorporatinget
standard DC power flow equations and minimizingegation cost and load sheddifi. Embracing
this more physical description and solving the t@nsed linear optimization functions associated to
the model, result in a significant increase in tlwemputational burden, rendering its application

extremely difficult for realistic networks with ige number of element¥.

For these reasons, topological models based onlegmgtwork theory (e.g. the ML model) have
emerged in recent yedfs® %2 In particular, the ML model is a relatively siramnd abstract model
relying on the resemblance of complex networkdeotgcal infrastructure systems (in terms of graph
theory). It has the advantage of modelling casepdignamics with few parameters, so that its
application to realistic, large-scale networks éssible and certainly more readily than OBA
However, ML abstracts the power flow laws and ca@ists of the electrical system. Inevitably, then,

it cannot provide direct physical measures of Watksize, but rather abstract measures such as
efficiency loss. This has posed questions on whethgot it is adequate in practice, due to itsraics
nature, although it has been recognized to offaew and interesting perspective on the study of

cascading failures on power grig8.

It is worth mentioning that studies tackling thelgem of validation of network-centric approaches
are few in literature. Some studi€$ ?” have provided qualitative comparisons between éexnp
network theory models and power flow models — idging similarities and differences, and
evaluating advantages and disadvantages. Most thec&@orrea and Yust&® conclude on the
appropriateness of graph theory techniques foragmessment of electric network vulnerability by
means of comparisons between physical power flowlaisoand scale-free graph statistic indexes.
Cupac et al®” have presented a method to quantitatively companetwork-centric model (CLM)
and the power flow model OPA, finding that the Clivbdel exhibits overall properties which are
consistent with the more realistic OPA fast-scatlet. On the other hand, Fitzmaurice et‘d find

that the topological nearest neighbor cascadigréamodel (namely, the TC model) shows different



characteristics from other two Kirchhoff modelsrredy, LD and QSS). Hines et &" conclude that
evaluating vulnerability in power networks using@y topological metrics may be misleading under
some circumstances. Furthermore, Cotilla-Sanchest. &P propose a new method for representing

electrical structure using electrical distanceleathan geographic connections.

In the present paper, we embrace the topologicaldsiécading failure model and embed it in the
NSBDE for optimally solving the problem of generatdistributors link allocation. For
exemplification, we apply the method to the 400 kknch power transmission network, under the
objectives of maximizing network resilience to aing failures and minimizing investment cdéts
We, then, tackle the problem of realistic significa of the results that can be obtained with the
proposed methodology. For this reason, the OPAerfopmed on the optimal network topologies
found. To the authors’ knowledge, this is the fistidy addressing the validation of optimization
based on topological cascade model (namely, theriddel), by applying a more realistic power flow

model (namely, the OPA model).

The optimization problem considered is addressiegietwork topology and in the specific case study
we have considered for exemplification purpose titygology abstracted from the 400kV French
power grid. In the abstraction, any station (getoeraransmission/distribution substation) is retgal

as one individual topological node in the networsdel, whereas the internal structure and functional
logic of the specific station are ignored. Thenwhibie transmission lines interconnect with lower
voltage networks has not been considered in thidystsimilar to what has been done in prior studies
on these analysé&?%. The purpose of performing these analyses in Wy is to leverage the
simplicity and low computational cost of the topgilal (cascading failure) model used within the

(evolutionary) network optimization, which othereigould be very costly.

The remainder of this paper is organized as followsSection 2, we introduce the ML and OPA
cascading failure models in detail. We, then, fdateuthe multi-objective optimization problem
taking investment costs and failure resilience stoount in Section 3. Section 4 unveils the dadail
procedure of the proposed NSBDE algorithm. Sectonllustrates the French 400kV power
transmission network case study and the analysis emaluation of the results. Discussion and

conclusion are drawn in Section 6.
2 CASCADING FAILURE MODELSCONSIDERED IN THISWORK

Modelling the dynamic evolution of system-wide Gadiog failure processes poses a number of
challenges due to the diversity of mechanisms whanh initiate the initial failure and influence the
subsequent propagation of breakdowns in the poystesm™. Various cascading failure models have

been proposed; these can be divided into two matiegories: those based on complex network theory



analysis and those using power flow analysis, aftefuding optimal economic power dispatch after

each failure in the propagation, e.g., by lineairoal power flow (OPF¥".

Complex network theory models, including the ML rabeédopted in this work and described in
Section 2.1 below, abstract the representation qfower grid as a graph and then study the
connectivity characteristics, the propagation magdms through the graph connections and their
relationships. They typically consider flows of diste packets that are injected and removed from al
nodes and follow least distance paths, and the ri@poe of links or nodes is measured by
“betweenness”, which is proportional to the numifdleast distance paths through the link or néte
Among these, the ML model is the widely used atatireely simple one. These types of models have
proved to provide a good understanding of the $ipegrid dynamics of cascading failuré¥).
However, in these models the assumptions only adistne real loading of the components and the
flow distribution through the connections. For thisason, it is necessary to ascertain the

meaningfulness of the results for real electriobistructures.

Power flow models, on the contrary, are based ahste power flow equations to describe the flow
dispatching dynamics and failure evolution aftes thitial disturbances in the power grid. The OPA
model, which is the most commonly used of this tgpenodels, is introduced in Section 2.2 below
and is based on the linearized or DC power flowagmation, which has been proved to be able to
give a good approximation of active power flowstie network?®. Another power flow model is the
CASCADE model*®, though it is considered “too simple” in that'itlisregards the system structure,

neglects the times between adjacent failures anergton adaptation during failuré*”.

2.1. The ML moded

The ML model has been proposed by Motter and®,aiith extensions to differentiate generators and
loads®. The power transmission network is representednaandirected grapf with a set ofN
nodes representings generators andp loads representing distribution substations, autenected by

a set of edges representing transmission lines sfrbeture of the network is identified by Arnx N
interaction matriX¥/, whose element;; is O if nodei andj are not connected directly; otherwise it is

assigned 1 for an unweighted network or a numevilale between and;j for a weighted network.

The ML model assumes that at each time step, oiteofithe relevant quantity (electrical flow for
power grids) is exchanged between every pair oegear and distributor nodes, and transmitted
along the shortest path connecting them. The floana node is, then, the number of shortest paths
passing through it. More precisely, the fléw passing through nodke is quantified by the node
betweenness calculated as the fraction of the gtvedistributor shortest paths passing through tha

node:
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wheren;; is the number of shortest paths between genemattes and distributor nodes, angl(k) is

the number of generator-distributor shortest ppssing though node

The capacity of nodk is assumed to be proportional to its initial ndgevith a network tolerance

parameter,

Cr, =1+ a)ly (2
The concept of the tolerance parametén > 0) can be understood as an operating margiwiap
safe operation of the component under potential Inerement. The occurrence of a cascading failure
is initiated by removal of a node, which in genexfadnges the distribution of shortest paths. Then t
load at a particular node can change and if iteéases and exceeds its capacity, the corresponding
node fails. Any failure leads to a new redistribatof loads and, as a result, subsequent faillaps c
occur. It should be noted that the single failuechanism applied here does not attempt to simalate
realistic trigger event of cascading failure; imsteit is only a manner of starting the cascadailgife
simulation for the ML model (and the OPA model dntnced below).

Using this cascading failure model, the vulnerapibf networkQ can be characterized by the fraction
of network efficiency lost in the cascading failure
— EQ@-E@
vul(Q) == 3)
where Vul(Q) € (0,1) andQ represents the residual network structure afterititial failure. E(Q)
measures the network efficiency based on the naiteshortest path distance between generators and

distributors. For its computation all pairs of nede V,;, andj € V,, are weighted by the inverse of

their distance:

1 1
E@Q) = mZievc Zjeva (4)

whered(i, j) is the number of edges for an unweighted netwarkhe sum of edge weights for a

weighted network in the shortest path froto .

The geodesic vulnerabilityul(Q) measures the functionality of a network when subpk to a
contingency due to cascading link disruption wiggard to its steady state (base case).Vi4§Q)
increases, the impact on the network due to casgafdilure also increases, as some components
become disruptedul(Q) has been proved to be a well-defined index beiyggble of providing

results consistent with those of physical modeides>®.

The detailed simulation of the ML cascading failaredel proceeds as follows:



Sep 1. Apply equation (1) to compute the initial loadezch node for a proposed network by Floyd's

shortest paths algorithfP and calculate the capacity of each node baseduwatien (2).

Sep 2. Trigger the initial failure. In the optimizatioone of the top five most loaded nodes is chosen

as failed and, thus, is removed from the network.

Sep 3. Recur to equation (1) and Floyd’s shortest patgerihm to recalculate the load of each

working node in the network.

Sep 4. Test each node for failure: for each nddg € N) of the network, i, > C; then nodek is

regarded as failed and, thus, is removed from ¢teark.

Sep 5. If any working node fails, return back to stegX@herwise, terminate the cascading simulation

and evaluate the vulnerability of the network usggiation (3).

Complex network theory models, such as the ML thatuse within our optimization framework in
Section 3, have no direct physical relation to itechanisms of realistic power grids, but they have
the key advantage that by utilizing techniques fgraph theory they can be applied to analyze large-
scale networks. For this reason, this modellingreggh is seeing increasing applications for

modelling cascading failure processes in powersgrid

2.2. The OPA model

The OPA model has been proposed by researcherakaRidge National Laboratory (ORNL), Power
System Engineering Research Center of Wisconsinddsity (PSerc), and Alaska University (Alaska)
(1012 The OPA model is built upon the Self-Organizedti€iity (SOC) theory, contains two
interdependent time scale dynamics, i.e., fast pdlwe dispatching dynamics and slow power grid
growth dynamics, and describes the complexity aritality of power systems. The slow time scale
dynamics describes how the system evolves as degfames over longer timeframes (e.g., over
days), and subsequent system upgrades in resppdseneind vary and blackouts. On the other hand,
the fast time scale dynamics depicts cascadingréslof transmission lines over very short timg.(e.
over seconds) during the slow dynamics. It is aehand powerful tool for analyzing power systems.
Our analyses focus on the fast power flow dynamitgrder to ensure comparability with the ML

model shortest path assumption.
The cascading failure model is based on the stdrid@rpower flow equation,

F=AP (5)
whereF is a vector whos&e components are the power flows through the likggNe is the total
number of links in the networkp, is a vector whosBl-1 components are the power injection of each
node,P; (N is the total number of nodes in the network), wiite exception of the reference generator,

Po, andA is a constant matrix that depends on the netwodktsire and impedances (see Ref. (11) for



details about the computation Af. The reference generator power is not includethénvectorP to

avoid singularity ofA as a consequence of the overall power balance.

The generator power dispatch is solved using stdnigear programming methods. Using the input
power demand, the power flow equation (5) is sokwitth the condition of minimizing the following

cost function:

Cost = Yiey, Pi(6) + K Xjev, Pi(t) (6)
where Vg and Vp are the sets of generators and distributors, otispéy/. This definition gives
preference to generation shift whilst assigninggh ltost (seK = 100) to load shedding, and it is

assumed that all generators operate at the sarmharmbghat all loads are served with equal priority

The minimization is done with the following constts:

(1) Generator power injections are generally positiad dmited by installed capacity limits:
0< P, <P"¥ i€V

(2) Loads always have negative power injectid?ﬁ@ <P <0,j€Vp.

(3) The absolute flow through links is limited by lisRpacities|F;;| < Fyqx-

(4) Total power generation and consumption remain leald}.;cy v, P; = 0.

After solving the linear optimization by using teenplex method as implemented in Ref. (32), we
examine which lines are overloaded. A line is coeed to be overloaded if the power flow through it
is within 1% of the limit capacit¥;,,,. Each overloaded line may outage with probabgityp, is set

as 1 in the case study to ensure its comparabilith ML). If an overloaded line experiences an
outage, its power flow limi,,,, is divided by a very large numbkey to ensure that practically no
power may flow through the line. This action canoidvthe infeasibility of the power flow
optimization stem from topological islands of tlystem by removing the component directly. Besides,
to avoid a matrix singularity from the line outagiee impedances of failed lines are multiplied by a

large numbek,, resulting in changes of the network matkix

Load shedding is utilized to quantify the damagéhefcascading failure. For an individual nodedloa
shedding is defined as the difference betweeroitgep injection and demand:
Si=Pm —P (7)

Subsequently, total load shedding for the system is

S =Yievy Si (8)

Finally, system load shedding is normalized byadtal demand and used as a measure of cascading
vulnerability:



Yievp Si
S/p =5 e 9

Yievy, P
The fact that simulation results from OPA model emesistent with historical blackout data for real
power systems has justified its effectiven€8s However, the applications of OPA have generally
been limited to networks with a relatively smallnmer of nodes compared to real power gffdls

due to the computational efforts involved.
3OPTIMIZATION MODEL

For a given network, cascading failure resilienoceld be enhanced in many ways. In this paper, we
focus on choosing the connecting patterns betwesergtors and distributors of a realistic power
transmission network, so as to optimize resilieb@wecascading failures. In this study, system
vulnerability to cascading failure (i.e. system dtionality loss in cascading failure) is regardedaa
reverse measure of system resilience: the lestitiitionality loss, the higher the system resilenc
Given the goal of analyzing a realistic-size netydhe ML cascading failure model is used to
evaluate the resilience of a pattern of connecti@ysassociating a cost to each link posed in the

network, the optimization also seeks to minimize tibtal cost.

The network is modeled as a weighted graph, in lvthe edge weights are given by their physical
distances which we assume directly related tortesiitting cost of the link. We define the varesbl

to be optimized as the links of generation nodgkedifferent distribution nodes:

X, = {1, if i is cor(;tlgf}'iiiv\;\glst:] directly (10)
for alli € V; andj € V. Two constraints have to be met when rewiring ggetioes and distributors: (1)
each distributor node is required to connect witleast one generator node or other distributoenod
to make it accessible to the power supplying ge¢oesa(2) each generator node has to connectstt lea

with one distributor node.

We assume that the cost associated with each dimmeatting and rewiring is linearly proportional
to the physical length of the linkage, with codffitt ¢. The total investment cost of a reconstructed

patternX in the power transmission network can be defined as

C = Yievgjevy Xij d(,)) (11)
whered(i, j) is the physical distance betweesnd;.
The cascading failure resilience of each reconsdupatterr¥ can be quantified by the vulnerability

of the new network, given by equation (3). It shiblbé noted that the effect of the type of initia¢et

could significantly influence the cascading failuesult: the efficiency loss of a cascade triggdrgd



the failure of a critical component could be mucbrensevere than that originated by the failure of a
normal component. Therefore, we consider a wors¢-saenario in this study by choosing the failure
of one of the top five most loaded nodes as iniéidlire in each cascade process simulation aedh, th

the results are averaged on the number of simaktio

Through the quantification of the connection patteost and cascading failure vulnerability, the

facility allocation problem is formulated as a nyvalbjective optimization problem:

min C(X;;) (12a)
min Vul (QXL.].) (12b)
Yieveuvy Xij > 0Vj €V)p (12¢)
St Y jev, Xij > OVi € Vg (12d)

The objective function (12a) is the sum of the dixewiring costs; (12b) expresses the resilience
objective. The two constraints mentioned aboveeaferced by formulas (12c) and (12d), respectively.
Observe that the least costly generator allocagsosimply that with no links among facilities and

consumers.

In our work, the multi-objective optimization preiph (12a) — (12d) is tackled by the Non-dominated
Sorting Binary Differential Evolution (NSBDE) algtrm presented in the next Section 4.

4 NON-DOMINATED SORTING BINARY DIFFERENTIAL
EVOLUTION ALGORITHM FOR TOPOLOGY OPTIMIZATION

In this section, the operative procedures of the-Nominated Sorting Binary Differential Evolution
(NSBDE) algorithm are proposed for solving the riroltjective optimization problem introduced in
Section 3 above. The starting point is the standiiffitrential Evolution (DE) algorithm, initially
proposed as a population-based global optimizatiethod for real-valued optimization problems,
which has been found to outperform other optimaratilgorithms in various applicatioffs ** %% In
order to solve the combinatorial multi-objectiveolplem of interest, the fast non-dominated sorting,
ranking and elitism techniques used in non-domihatarting genetic algorithm-1l (NSGA-Iff® are
introduced into a modified binary differential ewtbn (MBDE), which is a binary version of DE
developed to tackle single-objective binary-codptinuization problem&®. The NSBDE proceeds as

follows: @V

Sep 1. Initialization of parameters
Set the values of the population sid#ié, the crossover rateR, the scaling factofF, and the maximum

generationNux.



Sep 2. Generation of initial population and evaluation

Initialize each individual in the population whichrepresented as a bit-string and denotesas=
{px{;, Ipx{; €{0,1};i = 1,2,..,NP,j = 1,2,...,M}, whereNP is the population size ankl is the
dimensionality of the solutions. Each individualailso called a chromosome and forms a candidate
solution to the problem. Each bit of each initiak@amosome takes a value from the set {0, 1} with
probability equals to 0.5: the bit takes ‘1’ if therresponding generator node and distributor ramde

connected, ‘0’ otherwise.

Each of the\NP chromosomes is evaluated by computing the twoctibgefunctions, i.e. formula (12a)
and (12b).

Sep 3. Generation of trial population

Apply the binary tournament selection operaidtto the populatio®®X* to generate a trial population

PV, which undergoes the evolution operations of niadnd crossover.

Sep 3.1 Mutation

The following probability estimation operatB(px) is utilized to generate the mutated individuals
according to the information of the parent popolaiti

1

t t t
Zb[pxrl,j+F(pxr2,j_pxr3,j)_0‘5]
1+e 1+2F

P(pxl-tj) = (13)

whereb is a positive real constant, usually set aE & the scaling factopx, It pxt, j andpxf; j
are thej-th bits of three randomly chosen individuals ategationt. According to the probability
estimation vectoP(px}) = [px{,,px{,, ... px{y] created by equation (13), the corresponding

offspringpu! of the current target individuak! is generated as equation (14).

1, ifrand < P(pxitj)

. (14)
0, otherwise

Puitj = {
whererand is a uniformly distributed random number withir thhterval [0,1].

Sep 3.2 Crossover
The crossover operator is used to mix the targdivicual and its mutated individual. The trial

individual pv{; = (pv{,,pv{,, ... pv{y) can be obtained by the crossover operator asifsjlo

t , , .
pu;;, ifrandj < CR orj = randi
pvjj = { ! (15)

pxitj, otherwise

whererandj € (0,1] is a uniform random valu€R is the crossover rate, anahdi is a uniform

discrete random number in the set {1, 2NB}.



Sep 4. Evaluation

Evaluate each of thdP chromosomes in the populati®it by computing its rewiring cost (12a) and
resilience to cascading failures (12b) by perfognihe ML cascade process simulation procedure

presented in Section 2.2.

Sep 5. Union and Sorting

Combine the parent and trial populations to obgaumion populatio®Ut = PX' U PVt. Rank the
individuals in the union population by the fast ranminated sorting algorithf® with respect to the
objective values, and identify the ranked non-dated frontd, F», ..., Fx whereF, is the best front,

F, is the second best front aRdthe least good front.

Sep 6. Selection

Select the firstNP individuals fromPU® to create a new parent populati®ki‘*tl. The crowding
distance is used in this step to choose the indalglwith the same front, where crowing refershio t
density of solution present in a neighborhood ofirafividual of specified radiu§®: we prefer the
individual which is located in a region with leamtmber of individuals. The algorithm stops when it

reaches the predefined maximum generatidps
5CASE STUDY AND RESULTSANALYSIS

5.1. Case study and par ameter s setting

In this paper, the 400kV French power transmissietwork (FPTN400) (Figure 1) is taken for
exemplification of the proposed approach. The ndtwis built from the data on the 400 kV
transmission lines of the RTE websité It has 171 nodes (substations) and 220 edges rfirssisn
lines). We distinguish the generators, which am sburce of power, from the other distribution
substations, that receive power and transmit dith@r substations or distribute it in local distition
grids. By obtaining the power plants list from Emebsite®® and relating them with the ID of the
buses in the transmission network, we have 26 gérasrand 145 distributors. Only the nuclear power
plants, hydroelectric plants and thermal power fglavhose installed capacities are larger than 1000

MW, are considered.

For reallocation of the power generating node$i¢oather nodes, the NSBDE algorithm introduced in
the previous section is applied. The parametensegalised to run the NSBDE algorithm are reported
in Table I. The tuning parameters are chosen basddal-and-improvement for fast convergence of
the algorithm®. The network tolerance parameteis set to 0.3 to simulate the normal operating

condition; linkage cost parametgis set to 1.



Km

Fig. 1. The 400kV French power transmission network (FRay©”

At the beginning of the simulation, all 55 links @ng generators and distributors in the FPTN400 are
cut off. The population is initialized by randondgsigning O or 1 to each bit of each chromosome in
the population, forming a group of potential rewmyi solutions. For evaluating the cascading
vulnerability of a given generators-distributortoehtion pattern, the ML cascading failure model is
run starting from failing one of the top five mdstded (largest betweenness) nodes in repeated

cascading simulations at the end of which the \raloiéty values are averaged.

Tablel . Parameters of the NSBDE algorithm

Parameters Values
Population sizé&\P 25
Dimensionality of solutioM 3770
Crossover rat€R 0.9
Scaling factoF 0.2
Maximum generatiomN 300

5.2. Topological optimization results
Figure 2 reports the convergence plots of one fuheoNSBDE algorithm. The top and bottom panels
show the two optimal solutions with regard to tive tobjectives (12a) and (12b), respectively. It is

observed that the algorithm is able to converger @ftound 150 generations.
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The Pareto front obtained by the NSBDE algorithnc@ativergence is illustrated in Figure 3. The

diamond point in Figure 3 represents the curretwork with the present pattern of connecting links,

which is also the least costly network; the sqummat is the most resilient network, whose casagdin

vulnerability is 0.184. It is not unexpected thiag original network is the least costly one, sitiee

electrical transmission lines and substations &eed with geographical constraints and connections

between two distant substations are avoided. Agtuebst-effectiveness is a major consideration in

constructing real power transmission networks.
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It is also noted from Figure 3 that the cascadaityrfe resilience of the FPTN400 can be improved
significantly by properly rewiring the generatostlibutor connections, though at a cost; the nekwor
vulnerability is decreased from 0.728 to 0.184 (whel.3) with an increased cost b8 x 103 (i.e.,
53.16 times increase). Figure 4 reports the casgadilnerability comparison between the original
network and the most resilient one (Pareto solutibn) with different tolerance parameters. It shows
that when the network tolerance is very low, i€.®< 0.1, the optimized network loses most of its
efficiency, i.e., it is quite vulnerable to intesnial attacks possibly due to its intensive loading
condition. However, wher = 0.3 (which is generally the normal operating caodit"®), the
optimized network loses less than 20% of its efficy during a cascading failure initiated by

intentional attack.

Albeit a substantial improvement of the cascadmitufe resilience of the FPTN400 is possible by
adding redundant links, a tradeoff between the amst resilience improvement is necessary for
rational decision-making. Along the Pareto frontiéthe potential solutions, there are some paints
which a small sacrifice of cost gives a large g#icascading resilience. More generally, by taking
network solution and its neighbor on the frontide(less costly one), one can define a rate ofgdan
of cascading resilience with respect to ctsVul/Acost|. This rate can be utilized as a reference to

choose the optimized network: the larger the ratie,more preferred the network is.



Fig. 5. The topology of the Pareto solution #3 and itsedéhce with the original network

Figure 5 reports the topology of the network cquoesling to the Pareto solution #3 (310.6, 0.59)
whose|AVul/Acost| value is comparatively large. The bold links reygrgt the 10 added connections
with respect to the original real network: notibattonly 10 links are required to be rewired fa th

original network to gain a 19.2% cascading resilieimprovement (the cascading vulnerability is
decreased from 0.73 to 0.59). Besides, it is nfteoh Figure 5 that the newly added links tend to
connect distant generator and distributor pairdicating that the installation of power lines betwe

remote power substations can improve the resiliehtize system, although at larger costs.

5.3. Validation by the OPA modéd

All the optimization results presented in the poe section are based on the ML model which
abstracts basic power flow constraints and eledtdbaracteristics of the power transmission networ
In this section, the more realistic OPA model idtroed in Section 2.2 is utilized to verify the o

results found.

The verification is not straightforward due to tb#ferences of the two models in the way of
representing system capacity, in the iterative ritlyms they rely on, and in the way of measuring th
damage produced by the cascading failure. Accolgirmpme assumptions and adjustments to the
OPA model (as described in Section 5.3.1) are sacggo ensure its applicability to assess the

optimization solutions obtained based on the ML et&d.

5.3.10PA Adjustments

Five representative solutions (i.e., the least oe$ivork FPTN400, the Pareto solution #17 (7300,
0.184) which is the most resilient, together wthik solutions #3 (310.6, 0.59), #5 (3344.3, 0.28) an
#13 (1003.8, 0.48) whogaVul/Acost| values are comparatively large) along the Pangint fare

chosen as the basic network topologies to be edrifiy the OPA model. To facilitate comparability

with the ML model, all the generators are assunwedhdve equal capacity, and all the loads are



assumed to have equal constant demand (we usee2theé number of generators in the simulation).
Furthermore, all edge impedances are calculated) uke typical reactance value 0.28 ohm/km at 50
Hz 9, This heterogeneous impedance setting aligns withatbighted edge initialization in the ML

model.

The ML model uses the parameteto represent network tolerance, while regardirgg@PA model,
prior studies set the initial limits (demand, gexter capacity, line flow limits) by evolving the
network using combined fast-slow dynamics until tieéwork reaches a steady state Considering
that we limit the scope of the OPA evaluation t&t fdynamics, we use a simpler initialization siggte
(proposed by Cupac et &”) which does not require the slow power grid grodghamics, and apply
the parallel capacity setting (tlremodel) to facilitate the comparison. In particuldye values of the
initial flows E(O) and of the link capacitie L-’}“‘x are determined as follows: demand for all
distributor nodes is fixed to a constant amountnastion above, and total generation capacitytis se
to be equal to total demand, and equally dividedragthe generators. Then, the power flows along
the lines are estimated by assuming that everyilalisbr node would obtain an equal amount of power
from every generator. The initial flows are caltethby selecting a generator (one at a time),nggtti

all other generator capacities to 0 and then coimgytower flows to each distributor node. The sum
of the power flows over all the generators resialtthe estimated initial flow along each Ii@(O).

Analogous to the initialization process in the Mloahel, the maximum capacity for a link connecting

nodes andj is given by
F'* = (14 a)|F;(0)] (16)

It is noted that the values of the initial f|O\N_§(O) are only used to set the link flow capacitigs™
in such a way that they are comparable to the =€, used by the ML model. The network

tolerance parameter is setltea< a < 2 in our approach, parallel to the ML model, reprdiseg excess
transmission capacity. Then, the node transmissapacity is modelled as the sum of link flow

capacities of adjacent Iinlﬁjevj F/*** whereV is the set of nodes directly connected to riode

In the OPA implementation, the probability of aredeaded link is set tp; = 1 (identical with that

in Cupac et al®”), to ensure comparability with ML, where an oveded node fails and is removed
from the network with certainty. This setting wilbt change the OPA validation results where only
the relative ranking of cascade vulnerability facke network is considered, although it has probably
changed all the absolute values of cascade vuliigraBesides, we initiate the cascade in the same

manner that we do in the ML model, as stated irii&@e8.

5.3.2Validation Results



Figure 6 reports the landscapes of the node trasgoni capacities), andF;;"** under both ML

model and OPA model, respectively, for the five sd#mo networks (witle = 0). It shows that node
capacities in ML are highly correlated with nodeaeities in OPA model for the FPTN400, Pareto
solution #3, #5 and #13 (actually, the correlatmefficients are 0.904, 0.890, 0.862 and 0.914
respectively); for Pareto solution #17, the linearrelation of node transmission capacities sxits
(with correlation coefficient 0.619). This indicatthat the initialization strategy is consistert ftL

and OPA models: nodes with high capacity in ML témdéhave high capacity in OPA, and nodes with
low capacity in ML also tend to have low capacitydPA®".
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Fig. 6. Scatterplot of normalized node transmission capaciML versus OPA model using, (a) the original

FPTNA400; (b) Pareto solution #3 network; (c) Passtiition #17 network; (d) Pareto solution #5;Rayeto

solution #13. Node transmission capacity in OPAighly correlated with transmission capacity in Mhe

correlation coefficient are 0.904, 0.890, 0.6186@.and 0.914 for the five networks, respectivélye solid
lines represent the best fits.

In Figure 7, we plot the curves of normalized Isheéddings/D versus network toleraneeobtained

by applying the OPA model to the five represenimetworks selected from the Pareto front. The
OPA simulation is triggered by removing one of tbp five most loaded nodes (i.e., targeted initial
failure). Analogous to the ML model (Figure 4), thetwork damages decreases when network
tolerance increases for all the networks. When adtuolerance value is high enough ¥ 1.2), any
small intentional disturbance on the network waldd to cause quite low damage to the functioning
of the network € 1%). Most importantly, it is observed that in the ORB#nulation, the network
corresponding to Pareto solution #3 (310.6, 0.59¢dn triangle curve) is more resilient, i.e., it
presents less load shedding than the original mk&t{ved circle curve) over a wide range of network
tolerancex (i.e.,0 < a < 1.2); in addition, solution #13 (1003.8, 0.48) (magewiiamond curve)
generally outperforms the solution #3, while sant#5 (3344.3, 0.28) (grey star curve) outperforms
#13 in terms of cascade resilience. Finally, Passtiotion #17 (7300, 0.184) (which is the most
resilient network according to the ML model) prasethe lowest load shedding among the five
networks over the entire range wivalues considered. This ranking of cascading rfaihesilience is

consistent with the simulation results based onrviidel.

Figure 8 shows the results of OPA simulation onfive networks, where the failures are triggered by
removing a randomly chosen node (i.e., randomainftiilure) and the results are averaged over 30
different samples. The ranking of cascade resiievfche five networks here is also parallel wib t
optimization results based on ML. This demonstrétasa resilience-improved network from the
optimization based on the ML model is also mordliezd than another one if evaluated by
the more realistic OPA cascade simulation, theegfarifying that the insights gained by the

topological optimization approach are valid.
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Also important is to remember that the results poedl by the simple ML topological model are
obtained at a much lower computational cost thasdlof the OPA model: actually, the average time
needed to carry out a single cascading failure Isitiam is 3.9s and 20.8s for the ML and OPA models,

respectively, on a double 2.4 GHz Intel CPU andB4RAM computer.

6 DISCUSSION AND CONCLUSIONS

Generally, the structure of power grids emergesutin an unplanned growth process to meet service

demand and/or results from optimization of costewkver, the increasing threat of large scale



failures, albeit infrequent, makes it vital to tkiof the design of resilient network systems capabl

resist against and recover from cascading failures.

In this paper, we have investigated the allocatibgenerators to distributor nodes by rewiring $ink
under the objectives of maximizing the network ealfing failure resilience and minimizing the

investment costs.

In realistic cases of networks of large numberaatas, the problem is a combinatorial multi-objegtiv
optimization problem. To effectively tackle the plem, we have proposed a NSBDE multi-objective
algorithm, within a Pareto optimality scheme ofrsbaor non-dominated solutions. To simulate and
guantify the cascading failure resilience of netwoonnection solutions selected during the NSBDE
search, a complex network model — namely, the Mt (ML) model- has been used, to exploit is

rapidity of calculation.

Exemplification has been done by considering th@k¥0 French power transmission network
(FPTN400). The results of the case study have shitvah generator-distributor allocation can be
optimized to improve the cascading resilience oéalistic power transmission network system at an

acceptable cost.

To validate the physical significance of the togidal optimization results, a detailed and more
realistic power flow modet i.e., the ORNL-Pserc-Alaska (OPA) modehas been considered. The
OPA model has been applied to five network top@sgelected from the Pareto front found by the
topological optimization process. The ranking oé tlive selected networks with respect to their
vulnerability to both intentional attacks and randfailure is consistent with that of the ML modiel;
addition, the computational time required by the diproach is shown to be 5.5 times lower than that
of the OPA approach. This verifies (i) the physigaaningfulness of the topological optimization

solutions and (ii) the practical usefulness of astcascading models in network optimization tasks

It is noted that this consistency is not insigrfit since it demonstrates that one resilience-ingato
pattern of capacity allocation optimized by the Mhodel is also of higher resilience if measured by
the more realistic OPA model, providing impetus ttee use of topological, complex network theory
models for ensemble analysis and optimization fdanfrastructures against cascading failure with
the advantages of simplicity, scalability and loswnputational cost (e.g., future studies may comside
using complex network cascading models to optinbiaéh the topology and electrical/reliability
properties of realistic power networks, which maglde unraveling questions such as which type of
resource distribution is the most favorable foreawork to resist to cascading failure, when thaltot

resource is limited).

The initialization strategy of the OPA model inghpaper ensures that we can use the network

tolerance parameteras a common measure of transmission capacitydir imodels. However, the



actual data could be used in the OPA validatichefy are initially applied in the optimization bdse
on the ML model, and if they are available. Thisildobe possible future work. Besides, performing
optimizations using directly detailed and compuatadilly intensive power flow models (e.g., embrace
Newton Raphson based power flow approaétieand/or realistic trigger event such as naturahtthz
and malevolent targeted disruptif, into the cascade modelling framework) would eaablmore
thorough and comprehensive comparison of the taesels of approaches considered in this paper.
Furthermore, it may be useful to model variatiomgéneration capacity and to consider situations
where generation capacity and demand are not gdiatributed, which is aligned with more realistic
cases of power grids. Finally, while being reldivemall compared to real scenarios with thousand
buses due to computational constraints and datdabiigy, the proposed network is sufficient to
illustrate the usefulness of the topological optiamion methodology in this study. Nevertheless, we
believe that application of the topological apptoée large-scale networks is interesting and thils f

perfectly within the scope of our future researckhis direction.
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